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Lexicalized context-free grammar (LCFG) is 
an attractive compromise between the parsing ef- 
ficiency of context-free grammar (CFC) and the 
elegance and lexical sensitivity of lexicalized tree- 
adjoining grammar (LTAG). LCFC is a restricted 
form of LTAG that can only generate context- 
free languages and can be parsed in cubic time. 
However, LCF(I supports much of the elegance of 
LTAG's analysis of English and shares with LTAG 
the ability to lexicalize CF(I;s without changing 
the trees generated. 

Motivation 

Context-free grammar (CFG) has been a well ac- 
cepted framework for computational linguistics for 
a long time. While it has drawbacks, including the 
inability to express some linguistic constructions, 
it has the virtue of being computationally efficient, 
O(n3)-time in the worst case. 

Recently there has been a gain in interest in 
the so-called 'mildly' context-sensitive formalisms 
(Vijay-Shanker, 1987; Weir, 1988; Joshi, Vijay- 
Shanker, and Weir, 1991; Vijay-Shanker and Weir, 
1993a) that generate only a small superset of 
context-free languages. One such formalism is lex- 
icalized tree-adjoining grammar (LTAG) (Schabes, 
Abeill~, and Joshi, 1988; Abeillfi et al., 1990; Joshi 
and Schabes, 1992), which provides a number 
of attractive properties at the cost of decreased 
efficiency, O(n6)-time in the worst case (Vijay- 
Shanker, 1987; Schabes, 1991; Lang, 1990; Vijay- 
Shanker and Weir, 1993b). 

An LTAG lexicon consists of a set of trees each 
of which contains one or more lexical items. These 
elementary trees can be viewed as the elementary 
clauses (including their transformational variants) 
in which the lexical items participate. The trees 
are combined by substitution and adjunction. 

LTAC supports context-sensitive features that 
can capture some language constructs not cap- 
tured by CFG. However, the greatest virtue of 
LTAG is that  it is lexicalized and supports ex- 

tended domains of locality. The lexical nature of 
LTAC is of linguistic interest, since it is believed 
that the descriptions of many linguistic phenom- 
ena are dependent upon lexical data. The ex- 
tended domains allow for the localization of most 
syntactic and semantic dependencies (e.g., filler- 
gap and predicate-argument relationships). 

A fllrther interesting aspect of LTAG is its 
ability to lexicalize CFCs. One can convert a CFC 
into an LTAG that preserves the original trees 
(Joshi and Schabes, 1992). 

Lexicalized context-free grammar (LCFG) is 
an attractive compromise between LTAG and 
CFG, that combines many of the virtues of LTAG 
with the efficiency of CFG. LCFC is a restricted 
form of LTAG that  places further limits on the el- 
ementary trees that  are possible and on the way 
adjunction can be performed. These restrictions 
limit LCFG to producing only context-free lan- 
guages and allow LCFC to be parsed in O(n3) - 
time in the worst ease. However, LCFC retains 
most of the key features of LTAG enumerated 
above. 

In particular, most of the current LTAG gram- 
mar for English (Abeilld et al., 1990) follows the 
restrictions of LCFG. This is of significant practi- 
cal interest because it means that the processing 
of these analyses does not require more computa- 
tional resources than CFGs. 

In addition, any CFG can be transformed 
into an equivalent LCFC that  generates the same 
trees (and therefore the same strings). This re- 
sult breaks new ground, because heretofore ev- 
ery method of lexicalizing CFCs required context- 
sensitive operations (Joshi and Schabes, 1992). 

The following sections briefly, define LCFG, 
discuss its relationship to the current LTAG gram- 
mar for English, prove that  LC, FC can be used to 
lexicalize CFC, and present a simple cubic-time 
parser for LCFC. These topics are discussed in 
greater detail in Schabes and Waters (1993). 

121 



L e x i c a l i z e d  C o n t e x t - F r e e  G r a m m a r s  

Like an LTAG, an LC'FG consists of two sets of 
trees: initial trees, which are combined by substi- 
tution and auxiliary trees, which are combined by 
adjunction. An LCFG is lexicalized in the sense 
that  every initial and auxiliary tree is required to 
contain at least one terminal symbol on its fron- 
tier. 

More precisely, an LCFG is a five-tuple 
(Z, NT, I, A, ,5'), where ~ is a set of terminal sym- 
bols, NT is a set of non-terminal  symbols, I and 
A are sets of trees labeled by terminal and non- 
terminal symbols,  and ,5' is a distinguished non- 
terminal s tar t  symbol.  

Each initial tree in the set I satisfies the fol- 
lowing requirements. 

(i) Interior nodes are labeled by non- 
terminal symbols. 

(ii) The nodes on the frontier of the tree 
consist of zero or more non-terminal 
symbols and one or more terminal sym- 
bols. 

(iii) The non-terminal  symbols on the 
frontier are marked for substi tution. By 
convention, this is annota ted  in dia- 
grams using a down arrow (l) .  

Each auxiliary tree in the set A satisfies the 
following requirements. 

(i) Interior nodes are labeled by non- 
terminal symbols. 

(ii) The nodes on the frontier consist of 
zero or more non-terminal symbols and 
one or more terminal symbols.  

(iii) All but one of the non-terminal sym- 
bols on the frontier are marked for sub- 
stitution. 

(iv) The remaining non-terminal  on the 
frontier of the tree is called the foot. The 
label on the foot must be identical to 
the label on the root node of the tree. 
By convention, the foot is indicated in 
diagrams using an asterisk ( . ) .  

(v) the foot must be in either the leftmost 
or the r ightmost  position on the frontier. 

Figure 1, shows seven elementary trees that  
might appear  in an LCFG for English. The trees 
containing 'boy ' ,  'saw',  and ' left '  are initial trees. 
The  remainder are attxiliary trees. 

Auxiliary trees whose feet are leftrnost are 
called left recursive. Similarly, auxiliary trees 
whose feet are rightrnost are called righl recursive 
auxiliary trees. The path  from the root of an aux- 
iliary tree to the foot is called the spine. 

NP VP N VP 

A /k A /X 
D$ N V VP* A N* VP* Adv 

I I I i 
boy seems pretty smoothly 

S 

S NPi,~(+wh) S S 

NPo$ VP NP o VP NPo$ VP 

A I [ 
V SI*NA £i V V NPI$ 

I I I 
think left  saw 

Figure 1: Sample trees. 

In LCF(I,  trees can be combined with substi- 
tution and adjunction. As illustrated in Figure 2, 
substi tution replaces a node marked for substi tu- 
tion with a copy of an initial tree. 

Adjunction inserts a copy of an auxiliary tree 
into another  tree in place of an interior node that  
has the same label as the foot of the auxiliary tree. 
The subtree that  was previously connected to the 
interior node is reconnected to the foot of the copy 
of the auxiliary tree. If the auxiliary tree is left re- 
cursive, this is referred to as left recursive adjunc- 
tion (see Figure 3). If the auxiliary tree is right 
recursive, this is referred to as right recursive ad- 
junction (see Figure 4). 

Crucially, adjunction is constrained by requir- 
ing that  a left recursive auxiliary tree cannot be 
adjoined on any node that  is on the spine of a 
right recursive auxiliary tree and a right recursive 
auxiliary tree cannot be adjoined on the spine of 
a left recursive auxiliary tree. 

An LCFG derivation must s tar t  with an initial 
tree rooted in S. After that ,  this tree can be re- 
peatedly extended using substi tut ion and adjunc- 
tion. A derivation is complete when every frontier 
node is labeled with a terminal symbol.  

The difference between LCFG and LTAG is 

Figure 2: Substitution. 

1 2 2  



/ AA 
A 

Figure 3: Left recursive adjunction. 

~ A *  = "A 
% 

Figure 4: Right recursive adjunction. 

that  LTAG allows the foot of an auxiliary tree 
to appear  anywhere on the frontier and places no 
limitations on the interaction of auxiliary trees. 
In this unlimited situation, adjunction encodes 
string wrapping and is therefore more power- 
ful than concatenation (see Figure 5). However, 
the restrictions imposed by LCFG guarantee that  
no context-sensitive operations can be achieved. 
They limit the languages that  can be generated by 
LCFGs to those that  can be generated by CFGs. 

Coverage of LCFG and LTAG 

The power of LCFG is significantly less than 
LTAG. Surprisingly, it turns out that  there are 
only two situations where the current LTAG gram- 
mar  for English (Abeilld et al., 1990) fails to satisfy 
the restrictions imposed by LCFG. 

The first situation, concerns certain verbs that  
take more than one sentential complement.  An ex- 
ample of such a verb is deduce, which is associated 
with the following auxiliary tree. 

S 

NPo$ VP 

V Sl* PP 
I A 

deduce P Sz,I, 
I 

from 
Since this tree contains a foot node in the cen- 

ter of its frontier, it is not part  of an LCFG. Hav- 
ing the foot on the first sentential complement  is 
convenient, because it allows one to use the stan- 
dard LTAG wh-analyses, which depends on the 

w2 ~ W4 

% 

Figure 5: Adjunction in LTAG. 

existence of an initial tree where the filler and gap 
are local. This accounts nicely for the pair of sen- 
tences below. However, other analyses of wh ques- 
tions may not require the use of the auxiliary tree 
above. 

(1) John deduced that  Mary watered the 
grass from seeing the hose. 

(2) Wha t  did John deduce that  Mary wa- 
tered from seeing the hose. 

The second situation, concerns the way the 
current LTAG explains the ambiguous at tach- 
ments of adverbial modifiers. For example, in the 
sentence: 

(3) John said Bill left yesterday. 

the a t tachment  of yesterday is ambiguous. The 
two different LTAG derivations indicated in Fig- 
ure 6 represent this conveniently. 

Unfortunately, in LCFG the high a t tachment  
of yesterday is forbidden since a right auxiliary 
tree (corresponding to yesterday) is adjoined on 
the spines of a left auxiliary tree (corresponding to 
John said). However, one could avoid this prob- 
lem by designing a mechanism to recover the high 
a t tachment  reading from the low one. 

Besides the two cases presented above, the 
current LTAG for English uses only left and right 
recursive auxiliary trees and does not allow any 

S 

NP . . ~  ",~ .. . . . . . .  
I 

John V S* . .  . . . . . . . . . .  VP "-::. 
A 

said S ." "'° / \ 
,~t o- VP* ADV 

NP VP I 
I I yesterday 

Bill V 
I 

left 

Figure 6: Two LTAG derivations for John said Bill 
left yesterday. 
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interaction along the spine of these two kinds of 
trees. This agrees with the intuition that  most 
English analyses do not require a context-sensitive 
operation. 

LCFG. However, as shown below, combining ex- 
tended substi tution with restricted adjunction al- 
lows strong lexicalization of CFG, without intro- 
ducing greater parsing complexity than CFG. 

L e x i c a l i z a t i o n  o f  C F G s  

The lexicalization of g r am m ar  formalisms is of in- 
terest from a number of perspectives. It is of in- 
terest from a linguistic perspective, because most 
current linguistic theories give lexical accounts of a 
number of phenomena that  used to be considered 
purely syntactic. It  is of interest f rom a computa-  
tional perspective, because lexicalized g rammars  
can be parsed significantly more efficiently than 
non-lexicalized ones (Schabes and Joshi, 1990). 

Formally, a g r am m ar  is said 'lexicalized' (Sch- 
abes, Abeill~., and Joshi, 1988) if it consists of: 

,, a finite set of elementary s t ructures  of finite size, 
each of which c, ontains an overt (i.e., non-empty)  
lexical item. 

• a finite set of operations for creating derived 
structures. 

The overt lexical i tem in an elementary struc- 
ture is referred to as its anchor. A lexicalized 
g r ammar  can be organized as a lexicon where each 
lexical i tem is associated with a finite number of 
structures for which that  i tem is the anchor. 

In general, CFGs are not lexicalized since rules 
such as ,5' --* N P  V P  that  do not locally introduce 
lexical items are allowed. In contrast,  the well- 
known Creibach Normal Form (CNF)  for CFCs  
is lexicalized, because every production rule is re- 
quired to be of the form A --+ ac~ (where a is a 
terminal symbol,  A a non-terminal  symbol and a 
a possibly empty  string of non-terminal  symbols) 
and therefore locally introduces a lexical i tem a. 

It can be shown that  for any CFG (.7 ( that  does 
not derive the empty  string), there is a CNF gram- 
mar (.7 ~ that  derives the same language. However, 
it may be impossible for the set of trees produced 
by (7 ~ to be the same as the set of trees produced 
by G. 

Therefore, CNF achieves a kind of lexicaliza- 
tion of CFGs. However, it is only a weak lexical- 
ization, because the set of trees is not necessarily 
preserved. As discussed in the motivat ion section, 
strong lexicalization that  preserves tree sets is pos- 
sible using LTAG. However, this is achieved at the 
cost of significant additional parsing complexity. 

Heretofore, several a t t empts  have been made 
to lexicalize CFC with formalisms weaker than 
LTAG, but without success. In particular,  it is 
not sufficient to merely extend substi tution so that  
it applies to trees. Neither is it sutficient to rely 
solely on the kind restricted adjunction used by 

T h e o r e m  I f  G = ( ~ , N T ,  P ,S )  is a finitely 
ambiguous CFG which does not generate the 
empty .string (¢), then there is an LCFG (7 ~ = 
(~, NT ,  I, A, S) generating the same language and 
tree set as (7. Furthermore (7' can be chosen .so 
that it utilizes only lefl-recursive auxiliary trees. 

As usual in the above, a CFG (.7 is a four- 
tuple, (E, NT,  P, S), where N is a set of terminal 
symbols, N T  is a set of non-terminal symbols, P is 
a set of production rules that  rewrite non-terminal 
symbols to strings of terminal and non-terminal 
symbols, and S is a distinguished non-terminal  
symbol that  is the s tar t  symbol of any derivation. 

To prove the theorem we first prove a some- 
what weaker theorem and then extend the proof 
to the flfll theorem. In particular,  we assume for 
the moment  that  the set of rules for (.7 does not 
contain any empty  rules of the form A ~ e. 

S t e p  1 We begin the construction of (7 ~ by con- 
structing a directed graph L CG  that  we call the 
left corner derivation graph. Paths in L C G  cor- 
respond to leftmost paths from root to frontier in 
(partial) derivation trees rooted at non-terminal 
symbols in (1. 

L(TG contains a node for every symbol in E U 
N T  and an arc for every rule in P as follows. 
For each terminal and non-terminal  symbol 
X in G create a node in L C G  labeled with 
X. For each rule X --+ Y a  in G create a 
directed arc labeled with X ~ Y a  from the 
node labeled with X to the node labeled Y. 

As an example,  consider the example CFG in 
Figure 7 and the corresponding L(TG shown in 
Figure 8. 

The significance of L( ;G  is that  there is a one- 
to-one correspondence between paths in L C G  end- 
ing on a non-terminal  and left corner derivations in 
G. A left corner derivation in a CFG is a partial  
derivation star t ing from any non-terminal  where 
every expanded node (other than the root) is the 
leftmost child of its parent and the left corner is a 
non-terminal.  A left corner derivation is uniquely 
identified by the list of rules applied. Since G does 
not have any empty  rules, every rule in (7 is rep- 
resented in L(;'G. Therefore, every path  in L C G  
ending on a terminal corresponds to a left corner 
derivation in (7 and vice versa. 
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S-- -+A A 
,5' --+ B A 
A - - + B  B 
B--+ A S 
B ----+ b 

Figure 7: An example grammar .  

S ---~ B A 

S -~.A A 
S ~- A B 

B--+ A S 

B--+b 
b 

Figure 8: The LC( ;  created by Step 1. 

S t e p  2 The set of initial trees I for G'  is con- 
structed with reference to L(TG. In particular,  an 
initial tree is created corresponding to each non- 
cyclic path in L( /G that  starts at a non-terminal 
symbol X and ends on a terminal symbol y. (A 
non-cyclic path  is a path that  does not touch any 
node twice.) 

For each non-cyclic path in L C G  from X to 
y, construct an initial tree T as follows. Start  
with a root labeled X. Apply the rules in the 
path  one after another, always expanding the 
left corner node of T. While doing this, leave 
all the non-left corner non-terminal symbols 
in T unexpanded, and label them as substi- 
tution nodes. 

Given the previous example grammar ,  this 
step produces the initial trees shown in Figure 9. 

Each initial tree created is lexicalized, because 
each one has a non-terminal symbol as the left 
corner element of its frontier. There are a finite 
number of initial trees, because the number of non- 
cyclic paths in L C G  must be finite. Each initial 
tree is finite in size, because each non-cyclic path 
in L C G  is finite in length. 

Most importantly,  The set of initial trees is 
the set of non-recursive left corner derivations in 
(,'. 

S 

A AS 

B B$ B AS B B$ 

I I I 
b b b 

Figure 9: Initial trees created by Step 2. 

S t e p  3 This step constructs a set of left- 
recursive auxiliary trees corresponding to the 
cyclic path segments in L(TG that  were ignored in 
the previous step. In particular,  an attxiliary tree 
is created corresponding to each minimM cyclic 
path in L C G  that  starts  at a non-terminM sym- 
bol. 

For each minimal cycle in L C G  from X to it- 
self, construct an auxiliary tree T by star t ing 
with a root labeled X and repeatedly expand- 
ing left, corner frontier nodes using the rules 
in the path as in Step 2. When all the rules in 
the path have been used, the left corner fron- 
tier node in T will be labeled X.  Mark this 
as the foot node of T. While doing the above, 
leave all the other non-terminal symbols in T 
unexpanded, and label them all substitution 
nodes. 

The L C ( ;  in Figure 8 has two minimal cyclic 
paths (one from A to A via B and one from B to 
B via A). This leads to the the two auxiliary trees 
shown in Figure 10, one for A and one for B. 

The attxiliary trees generated in this step are 
not, necessarily lexicalized. There are a finite num- 
ber of auxiliary trees, since the number of minimal 
cyclic paths in G must be finite. Each auxiliary 
tree is finite in size, because each minimal-cycle in 
L C G  is finite in length. 

The set of trees that  can he created by corn- 
biding the initial trees from Step 2 with the auxil- 
iary trees from Step 3 by adjoining auxiliary trees 
along the left edge is the set of every left corner 
derivation in (,'. To see this, consider that  ev- 
ery path  in L( ;G  can be represented as an initial 
non-cyclic path  with zero or more minimal cycles 
inserted into it. 

The set of trees that  can be created by corn- 
biding the initial trees from Step 2 with the auxil- 
iary trees from Step 3 using both substi tution and 
adjunction is the set of every derivation in G. To 
see this, consider that  every derivation in G can 
be decomposed into a set of left corner derivations 
in G that  are combined with substitution. In par- 
ticular, whenever a non-terminal  node is not the 
leftmost child of its parent,  it is the head of a sep- 

A B 

B B$ A S$ 

A* S$ B* B$ 

Figure 10: Auxiliary trees created by Step 3. 
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arate left corner derivation. 

S t e p  4 This step lexicalizes the set of auxiliary 
trees built in step 3, without altering the trees that  
can be derived. 

For each auxiliary tree T built in step 3, con- 
sider the frontier node A just to the right of 
the foot. If  this node is a terminal do nothing. 
Otherwise, remove T from the set of auxiliary 
trees replace it with every tree that  can be 
constructed by substi tut ing one of the initial 
trees created in Step 2 for the node A in T. 

In the case of our continuing example, Step 4 
results in the set of auxiliary trees in Figure 11. 

Note that  since G is finitely ambiguous, there 
must be a frontier node to the right of the foot of 
an attxiliary tree T. If not, then T would corre- 
spond to a derivation X:~X in G and 6' would be 
infinitely ambiguous. 

After Step 4, every auxiliary tree is lexicalized, 
since every tree tha t  does not have a terminal to 
the right of its foot is replaced by one or more trees 
that  do. Since there were only a finite number of 
finite initial and auxiliary trees to s tar t  with, there 
are still only a finite number of finite attxiliary 
trees. 

The  change in the auxiliary trees caused by 
Step 4 does not alter the set of trees that  can be 
produced in any way, because the only change that  
was made was to make substi tutions that  could be 
made anyway, and when a subst i tutable  node was 
eliminated, this was only done after every possible 
substi tution at that  node was performed. 

Note that  the initial trees are left anchored 
and the auxiliary trees are ahnost  left anchored 
in the sense that  the leftmost frontier node other 
than the foot is a terminal.  This facilitates effi- 
cient left to right parsing. 

A 

A 
B B$ 

A* S B B$ 

A AS A* S A S$ 

B B$ B AS B* B 

I I I 
b b b 

Figure 1 l: Auxiliary trees created by Step 4. 

The procedure above creates a lexicalized 
g rammar  that  generates exactly the same trees as 
G and therefore the same strings. The only re- 
maining issue is the additional assumption that  G 
does not contain any empty  rules. 

If ( ;  contains an empty  rule A ~ e one first 
uses s tandard methods to transform (; into an 
equivalent g r ammar  H that  does not have any 
such rule. When doing this, create a table showing 
how each new rule added is related to the empty 
rules removed. Lexicalize H producing H '  using 
the procedure above. Derivations in H '  result in 
elements of the tree set of H.  By means of the ta- 
ble recording the relationship between (;  and H, 
these trees can be converted to derivations in G. 

[] 

A d d i t i o n a l  i s s u e s  

There are several places in the algori thm where 
greater freedom of choice is possible. For instance, 
when lexicalizing the auxiliary trees created in 
Step 3, you need not do anything if there is any 
frontier node that  is a terminal and you can choose 
to expand any frontier node you want. For in- 
stance you might want to choose the node that  
corresponds to the smallest number of initial trees. 

Alternatively, everywhere in the procedure, 
the word ' left '  can be replaced by ' r ight '  and vice 
versa. This results in the creation of a set of right 
anchored initial trees and right recursive auxiliary 
trees. This can be of interest when the right cor- 
ner derivation graph has less cycles than the left 
corner one. 

The number  of trees in G'  is related to the 
number of non-cyclic and minimal cycle paths in 
LCG.  In the worst case, this number rises very 
fast as a function of the number  of arcs in LCG, 
(i.e., in the number of rules in G). (A fully con- 
nected graph of n 2 a r c s  between n nodes has n! 
acyclic paths and n! minimal cycles.) However, in 
the typical case, this kind of an explosion of trees 
is unlikely. 

Just  as there can be many ways for a CF(~ 
to derive a given string, there can be many ways 
for an LCFG to derive a given tree. For maximal  
efficiency, it would be desirable for the g r ammar  
G'  produced by the procedure above to have no 
ambiguity in they way trees are derived. Unfortu- 
nately, the longer the minimal cycles in LCG, the 
greater the tree-generating ambiguity the proce- 
dure will introduce in G' .  However, by modifying 
the procedure to make use of constraints on what 
attxiliary trees are allowed to adjoin on what nodes 
in which initial trees, it should be possible to re- 
duce or even eliminate this ambiguity. 

All these issues are discussed at greater length 
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in Schabes and Waters (1993). 

P a r s i n g  L C F G  

Since LCFG is a restricted case of tree-adjoining 
grammar (TAG), standard O(nG)-time TAG 
parsers (Vijay-Shanker, 1987; Schabes, 1991; 
Lang, 1990) can be used for parsing LCFG. Fur- 
ther, they can be straightforwardly modified to re- 
quire at most O(n4)-tirne when applied to LCFG. 
However, this still does not take fifll advantage of 
the context-freeness of LCFC. 

This section describes a simple I)ottom-up 
recognizer for LCFG that is in the style of the 
CKY parser for (IT(I;. The virtue of this algo- 
ri thm is that it shows in a simple manner how the 
O(n3)-time worst case complexity can be achieved 
for LCFG. Schabes and Waters (1993) describes a 
more practical and more elaborate (Earley-style) 
recognizer for LCFC, which achieves the same 
bounds. 

Suppose that G = (E, NT, I , A , S )  is an 
LCFG and that a l ' " a , ~  is an input string. We 
can assume without loss of generality 1 that every 
node in I U A has at most two children. 

Let 71 be a node in an elementary tree (identi- 
fied by the name of the tree and the position of the 
node in the tree). The central concept of the al- 
gorithrn is the concepts of spanning and covering. 
71 spans a string ai+l . . . a j  if and only if there is 
some tree derived by ('; for which it is the case that  
the fringe of the subtree rooted at 71 is ai+l "" "aj. 
In particular, a non-terminal node spans aj if and 
only if the label on the node is aj.  A non-terrninal 
node spans ai+ 1 . . . a j  if and only if ai+l . . . a j  is 
the concatenation in left, to right order of strings 
spanned by the children of the node. 

• If 7 / does not subsume the foot node of an aux- 
iliary tree then: 71 covers the string ai+ 1 . . . a j  if 
and only if it spans a i + l "  . a j .  

• If 7 / is on the spine of a right recursive auxiliary 
tree T then: 71 covers ai+l." .aj if and only if 
7 / spans some strin~ that is the concatenation 
of ai+l - . . a j  and a string spanned by the foot 
of T. (This situation is illustrated by the right 
drawing in Figure 12, in which 7 / is labeled with 
B.) 

• If 71 is on the spine of a left recursive auxiliary 
tree T then: 71 covers ai+] " .aj if and only if 71 
spans some string that is the concatenation of a 
string spanned by the foot of T and ai+l . . . a j .  
(This situation is illustrated by the left drawing 
in Figure 12, in which 71 is labeled with B.) 

lit can be easily shown that by adding new nodes 
('4 "~ any L ,F(., can be transformed into an equivalent 

LC, FG satisfying this condition. 

A ,  ai+l- . -  aj  ai+l. . ,  aj  A* 

Figure 12: Coverage of nodes on the spine. 

The algorithm stores pairs of the form (71, pos) 
in an n by n array C. In a pair, pos is either t (for 
top) or b (for bottom).  For every node 7l in every 
elementary tree in (;, the algorithm guarantees the 
following. 

• ('l,b) e C[i,j] if and only if,I covers ai+l . . . a j .  

• ('l,t) E C[i,j] if and only if ('l,b} E C,[i,j] or 
ai+l . . . a j  is the concatenation (in either order) 
of a string covered by 7 / and a string covered by 
an auxiliary tree that  can be adjoined on 71 . 

The algorithm fills the upper diagonal portion 
of the array C[i, j] (0 < i < j _< n) for increasing 
values of j - i. The process starts by placing each 
foot node in every cell C'[i,i] and each terminal 
node 71 in every cell C[i, i + 1] where 71 is labeled 
a i + l  • 

The algorithm then considers all possible ways 
of combining covers into longer covers. In particu- 
lar, it fills the cells C[i, i + k] for increasing values 
of k by combining elements from the cells C[i, j] 
and C[ j , i  + k] for all j such that i < j < i + k. 
There are three situations where combination is 
possible: sibling concatenation, left recursive con- 
catenation, and right recursive concatenation. 

Sibling concatenation is illustrated in Fig- 
ure 13. Suppose that  there is a node 7/0 (labeled B) 
with two children 711 (labeled A) and 712 (labeled 
A'). If (711 , t) E C[i, j] and ('12, t} E (7[j, i + k] then 
('1o, b) E C[i, i + k]. 

Left recursive concatenation is illustrated in 
Figure 14. Here, the cover of a node is combined 
with the cover of a left auxiliary tree that  can be 
adjoined at the node. Right recursive concatena- 
tion, which is shown in Figure 15 is analogous. 

For simplicity, the recognizer is written in 
two parts. A main procedure and a subpro- 
cedure Add(node,  pos, i , j ) ,  which adds the pair 
(node, pos) into C[i, j]. 

a. . . .a .  ai+ 1 t + l  J a j + l ' " a k  "'" ak 

Figure 13: Sibling concatenation. 
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Procedure  r e c o g n i z e r  
begin 

;; foot  node initialization ( ,[z, i]) 
for i = 0 to n 

for all foot  node 71 in A call 
Add0/ ,  b, i, i) 

;; terminal  node init ialization ((;[i, i + 1]) 
f o r i = 0  t o n - l  

for all node 71 in A U I labeled by ai+l 
call Add0/ ,  t, i, i + 1) 

;; induct ion (G'[i, i + k] = (;[i, j] + (:[j,  i + k]) 
for k = 2 to n 

for i = 0 to n -  k 
f o r j = i +  1 t o i + k - 1  

;; sibling concatenat ion  
if (711 , l) 6 C,[i, j] 
and (712, t) e C[j ,  i + k] 
and r/1 is the left sibling of 7/2 

with common parent  71o 
then Add(710 , b, i, i + k) 

;; left recursive concatena t ion  
if {71, b) E C[i, j] 
and (p, t} e (,'[/, i + k] 
and p is the root  node of a left recursive 

auxil iary tree tha t  can adjoin on rl 
then Add0j  , t, i, i + k) 

;; right recursive concatenat ion  
if {'l, b) e (;[j,  i + k] 
and (p, t) E C[i, j] 
and p is the root  node of a right recursive 

auxil iary tree tha t  can adjoin on 7 I 
then Add(r/, t, i, i + k)  

if (7/, z) e c[0,  7q 
and 71 is labeled by ,5' 
and 71 is the root  node of an initial tree in I 

then return acceptance 
otherwise return rejection 

end 

Note tha t  the sole purl)ose of the codes t and b 
is to insure tha t  only one auxil iary tree can adjoin 
on a node. The  procedure  could easily be mod- 
ified to account  for o ther  constraints  on the way 
derivat ion should proceed such as those suggested 
for LTAGs (Schabes and Shieber, 1992). 

The  procedure A d d  puts  a pair into the array 
C. If the pair  is already present, nothing is (lone. 
However, if it is new, it is added to (7 and other  
pairs may be added as well. These  correspond to 
cases where the coverage is not increased: when 
a node is the only child of its parent ,  when the 

A 

/2.,+ /2... 
ai+l... ~ A * a .  ...a k J + l  ai+l'"ak 

Figure 14: Left recursive concatenat ion.  
A 

/2.,  
. . . .  A* ... ak aj+i . ,  a k ai+ 1 aj ai+ 1 

Figure 15: Right recursive concatenat ion.  

node is recognized wi thout  adjunct ion,  and when 
subs t i tu t ion  occurs. 

Procedure  Add(r / ,  pos, i, j )  
begin 

Put  (rl, pos)  in C,[i, j] 

if pos = t and r I is the only child of a parent  It 
call Add(# ,  b, i, j )  

if pos = t and rÂ is the root  node of an 
initial tree, for each subs t i tu t ion  node p 
at which 71 can subs t i tu te  call Add(p,  t, i, j )  

;; no adjunct ion 
if pos = b 

if the node 7/does not  have an OA constraint  
call Add(r/, t, i, j )  

end 

T he  O(n  3) complexi ty  of the recognizer fol- 
lows f rom the three nested induct ion loops on k, i 
and j .  (Al though the procedure  A d d  is defined 
recursively, the number  of  pairs added to (7 is 
bounded by a constant  tha t  is independent  of sen- 
tence length.)  

By recording how each pair was in t roduced in 
each cell of the array C, one can easily extend the 
recognizer to produce all derivations of the input.  

Conclusion 

LCFG combines much of the power of  LTAG with 
tile computa t iona l  efficiency of  CFG.  It suppor ts  
most  of the same linguistic analysis suppor ted  by 
LTAC. In part icular ,  most  of the current  LTAG 
for English falls into LCFG.  In addit ion,  LCFC 
can lexicalize CFG wi thout  al ter ing the trees pro- 
duced. Finally, LCFG can be parsed in O(n3)- 
time. 

There  are many  directions in which the work 
on LCFG described here could be extended.  In 
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particular, one could consider stochastic exten- 
sions, LP~ parsing, and non-deterministic LR pars- 
ing. 
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