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ABSTRACT 
The IDAS natural-language generation system 

uses a KL-ONE type classifier to perform content 
determination, surface realisation, and part of text 
planning. Generation-by-classification allows IDAS 
to use a single representation and reasoning com- 
ponent for both domain and linguistic knowledge, 
which is difficult for systems based on unification 
or systemic generation techniques. 

I n t r o d u c t i o n  
Classification is the name for the procedure of 
automatically inserting new classes into the cor- 
rect position in a KL-ONE type class taxonomy 
[Brachman and Schmolze, 1985]. When combined 
with an attribute inheritance system, classifica- 
tion provides a general pattern-matching and uni- 
fication capability that can be used to do much 
of the processing needed by NL generation sys- 
tems, including content-determination, surface- 
realisation, and portions of text planning. Classi- 
fication and inheritance are used in this manner by 
the IDAS natural language generation system [Re- 
iter et al., 1992], and their use has allowed IDAS to 
use a single knowledge representation system for 
both linguistic and domain knowledge. 

I D A S  a n d  I1  

IDAS 
IDAS is  a natural-language generation system that 
generates on-line documentation and help mes- 
sages for users of complex equipment. It supports 
user-tailoring and has a hypertext-like interface 
that allows users to pose follow-up questions. 

The input to IDAS is a point in question 
space, which specifies a basic question type (e.g., 
What-is-it), a component the question is being 
asked about (e.g., Compute r23) ,  the user's task 
(e.g. Replace-Part), the user's expertise-level 
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(e.g., Skilled), and the discourse in-focus list. The 
generation process in IDAS uses the three stages 
described in [Grosz et al., 1986]: 

• Content Determination: A content-determin- 
ation rule is chosen based on the inputs; this 
rule specifies what information from the KB 
should be communicated to the user, and 
what overall format the response should use. 

• Text Planning: An expression in the ISI 
Sentence Planning Language (SPL) [Kasper, 
1989] is formed from the information speci- 
fied in the content-determination rule. 

• Surface Realisation: The SPL is converted into 
a surface form, i.e., actual words interspersed 
with text-formatting commands. 

I1 
I1 is the knowledge representation system used 
in IDAS to represent domain knowledge, grammar 
rules, lexicons, user tasks, user-expertise models, 
and content-determination rules. The I1 system 
includes: 

• an automatic classifier; 

• a default-inheritance system that inherits 
properties from superclass to subclass, us- 
ing Touretsky's [1986] minimal inferential dis- 
tance principle to resolve conflicts; 

• various support tools, such as a graphical 
browser and editor. 

An I1 knowledge base (KB) consists of classes, 
roles, and user-expertise models. User-expertise 
models are represented as KB overlays, in a simi- 
lar fashion to the FN system [Reiter, 1990]. Roles 
are either definitional or assertional; only defini- 
tional roles are used in the classification process. 
Roles can be defined as having one filler or an arbi- 
trary number of fillers, i.e., as having an inherent 
'number restriction' of one or infinity. 

An I1 class definition consists of at least one ex- 
plicitly specified parent class, primitive? and in- 
dividual? flags, value restrictions for definitional 



roles, and value specifications for assertional roles. 
I1 does not support the more complex definitional 
constructs of KL-ONE, such as structural descrip- 
tions. The language for specifying assertional role 
values is richer than that for specifying definitional 
role value restrictions, and allows, for example: 
measurements that specify a quantity and a unit; 
references that specify the value of a role in terms 
of a KL-ONE type role chain; and templates that 
specify a parametrized class definition as a role 
value. The general design goal of I1 is to use a very 
simple definitional language, so that classification 
is computationally fast, but a rich assertional lan- 
guage, so that complex things can be stated about 
entities in the knowledge base. 

An example I1 class definition is: 

(define-class open-door 
: parent open 
: type defined 
: prop 

( ( a c t o r  animate-object) 
(ac tee  d o o r )  
(decomposition 

( (*template* 
grasp  
( a c t o r  = a c t o r  * s e l f * )  
( a c t e e  = ( h a n d l e  p a r t )  a c t e e  * s e l f * ) )  

(*template* 
turn 
(actor = actor *self*) 
(actee = (handle part) actee *self*)) 

(*template* 
pull 
(actor ffi actor *self*) 
( a c t e e  = ( h a n d l e  p a r t )  a c t e e  * s e l f * ) )  

) ) ) )  

This defines the class Open-door  to be a 
d e f i n e d  (non-primitive and non-individual) child 
of the class Open.  Actor and Actee are defini- 
tional roles, so the values given for them in the 
above definition are treated as definitional value 
restrictions; i.e., an Open -Door  entity is any 
Open  entity whose Actor role has a filler sub- 
sumed by A n i m a t e - O b j e c t ,  and whose Actee 
role has a filler subsumed by Door.  

D e c o m p o s i t i o n  is an assertional role, whose 
value is a list of three templates. Each tem- 
plate defines a class whose ancestor is an action 
(Grasp,  Turn ,  Pull)  that has the same Actor as 
the Open -Door  action and that has an Actee 
that is the filler of the Part  role of the Actee 
of the Open -Door  action which is subsumed by 
Hand l e  (i.e., (handle p a r t )  is a differentiation 
of Part  onto Handle). 

For example, if Open-12 was defined as an 
O p e n  action with role fillers Actor:Sam and 
Actee:Door-6,  then Open-12 would be classified 
beneath Open -Door  by the classifier on the basis 

of its Actor and Actee values. If an inquiry was 
issued for the value of Decomposition for Open- 
12, the above definition from Open-Door  would 
be inherited, and, if Door-6 had Handle-6 as 
one of its fillers for Part,  the templates would be 
expanded into a list of three actions, (Grasp-12 
Turn-12 Pull-12), each of which had an Actor  
of Sam and an Actee of Handle-6.  

Using Classification in 
Generation 

C o n t e n t  D e t e r m i n a t i o n  

The input to IDAS is a point in question space, 
which specifies a basic question, component, user- 
task, user-expertise model, and discourse in-focus 
list. The first three members of this tuple are 
used to pick a content-determination rule, which 
specifies the information the generated response 
should communicate. This is done by forming a 
rule-instance with fillers that specify the basic- 
question, component, and user-task; classifying 
this rule-instance into a taxonomy of content-rule 
classes, and reading off inherited values for vari- 
ous attributive roles. A (simplified) example of a 
content-rule class definition is: 

(define-class what-operat ions-rule 
:parent content-rule 
:type defined 
: prop 
( (rule-question .hat) 
(rule-task operations) 
(rule-rolegroup 
(manufacturer model-number colour) ) 

(rule-funct ion 
' (identify-schema :bullet? nil)))) 

Rule-question and Rule-Task are definitional 
roles that specify which queries a content rule 
applies to; W h a t - O p e r a t i o n s - R u l e  is used for 
"What" questions issued under an Operations task 
(for any component). Rule-Rolegroup specifies 
the role fillers of the target component that the 
response should communicate to the user; W h a t -  
Opera t lons -Rule  specifies that the manufac- 
turer, model-number, and colour of the target 
component should be communicated to the user. 
Rule-Functlon specifies a Lisp text-planning func- 
tion that is called with these role fillers in or- 
der to generate SPL. Content-rule class defini- 
tions can also contain attributive roles that spec- 
ify a human-readable title for the query; followup 
queries that will be presented as hypertext click- 
able buttons in the response window; objects to be 
added to the discourse in-focus list; and a testing 
function that determines if a query is answerable. 

Content-determination in IDAS is therefore done 
entirely by classification and feature inheritance; 
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once the rule-instance has been formed from the 
input query, the classifier is used to find the most 
specific content-rule which applies to the rule- 
instance, and the inheritance mechanism is then 
used to obtain a specification for the KB informa~ 
tion that  the response should communicate, the 
text-planning function to be used, and other rele- 
vant information. 

IDAS's content-determination system is primar- 
ily designed to allow human domain experts to rel- 
atively easily specify the desired contents of short 
(paragraph or smaller) responses. As such, it is 
quite different from systems that  depend on deeper 
plan-based reasoning (e.g. [Wahlster et al., 1991; 
Moore and Paris, 1989]). Authorabili ty is stressed 
in IDAS because we believe this is the best way to 
achieve IDAS'S goal of fairly broad, but  not neces- 
sarily deep, domain coverage; short responses are 
stressed because IDAS's hypertext  interface should 
allow users to dynamically choose the paragraphs 
they wish to read, i.e., perform their own high- 
level text-planning [Reiter et al., 1992]. 

T e x t  P l a n n i n g  

Text planning is the only part  of the generation 
process that  is not entirely done by classification 
in IDAS, The job of IDAS'S text-planning system 
is to produce an SPL expression that  communi- 
cates the information specified by the content- 
determination system. This involves, in partic- 
ular: 

• Determining how many sentences to use, and 
what information each sentence should com- 
municate (text structuring). 

• Generating referring expressions that  identify 
domain entities to the user. 

• Choosing lexical units (words) to express do- 
main concepts to the user. 

Classification is currently used only in the lexical- 
choice portion of the text-planning process, and 
even there  it only performs part  of this task. 

Text structuring in IDAS is currently done in 
a fairly trivial way; this could perhaps be im- 
plemented with classification, but this would not 
demonstrate anything interesting about  the capa- 
bilities of classification by generation. More so- 
phisticated text-structuring techniques have been 
discussed by, among others, Mann and Moore 
[1981], who used a hill-climbing algorithm based 
on an explicit preference function. We have not 
to date investigated whether classification could 
be used to implement this or other such text- 
structuring algorithms. 

Referring expressions in IDAS are generated by 
the algorithm described in [Reiter and Dale, 1992]. 
This algorithm is most naturally stated iteratively 
in a conventional programming language; there 

does not seem to be much point in a t tempt ing to 
re-express it in terms of classification. 

Lexical choice in IDAS is based on the ideas pre- 
sented in [Reiter, 1991]. When an enti ty needs to 
he lexicalized, it is classified into the main domain 
taxonomy, and all ancestors of the class tha t  have 
lexical realisations in the current user-expertise 
model are retrieved. Classes tha t  are too general 
to fulfill the system's communicative goal are re- 
jected, and preference criteria (largely based on 
lexical preferences recorded in the user-expertise 
model) are then used to choose between the re- 
maining lexicalizable ancestors. 

For example, to lexicalize the action ( A c t i v a t e  
with role fillers A c t o r : S a m  and Actee :Toggle -  
Swi t ch -23 )  under the Skilled user-expertise 
model, the classifier is called to place this action 
in the taxonomy. In the current IDAS knowledge 
base, this action would have have two realisable 
ancestors that  are sufficiently informative to meet 
an instructional communicative goal, 1 A c t i v a t e  
(realisation "activate") and ( A c t i v a t e  with role 
filler Ac tee :Swi t ch )  (realisation "flip"). Prefer- 
ence criteria would pick the second ancestor, be- 
cause it is marked as basic-level [Rosch, 1978] in 
the Skilled user-expertise model. Hence, if "the 
switch" is a valid referring expression for Toggle -  
Swl t ch -23 ,  the entire action will be realised as 
"Flip the switch". 

In short, lexical-choice in IDAS use8 classification 
to produce a set of possible lexicMizations, but  
other considerations are used to choose the most 
appropriate member of this set. The  lexical-choice 
system could be made entirely classification-based 
if it was acceptable to always use the most spe- 
cific realisable class that  subsumed an entity, but  
ignoring communicative goals and the user's pref- 
erences in this way can cause inappropriate text 
to be generated [Reiter, 1991]. 

In general, it may be the case that  an entirely 
classification-based approach is not appropriate 
for tasks which require taking into consideration 
complex pragmatic criteria, such as the user's lex- 
ical preferences or the current discourse context 
(classification may still be usefully used to per- 
form part  of these tasks, however, as is the case 
in IVAS's lexical-choice module). It is not clear 
to the authors how the user's lexical preferences 
or the discourse context could even be encoded in 
a manner that  would make them easily accessi- 
ble to a classifier-based generation algorithm, al- 
though perhaps this simply means that  more re- 
search needs to be done on this issue. 

1The general class Act ion  is an example of an an- 
cestor class that is too general to meet the communica- 
tive goal; if the user is simply told "Perform an action 
on the switch", he will not know that he is supposed 
to activate the switch. 
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S u r f a c e  R e a l i s a t i o n  

Surface realisation is performed entirely by clas- 
sification in IDAS. The SPL input to the surface 
realisation system is interpreted as an I1 class def- 
inition, and is classified beneath an ,pper model 
[Bateman et al., 1990]. The upper model dis- 
tinguishes, for example, between Rela t iona l  and 
Nonre la t iona l  propositions, and A n i m a t e  and 
I n a n i m a t e  objects. 2 A new class is then created 
whose parent is the desired grammatical unit (typ- 
ically Comple te -Phrase ) ,  and which has the SPL 
class as a filler for the definitional Semantics role. 
This class is classified, and the realisation of the 
sentence is obtained by requesting the value of its 
Realisatlon role (an attributive role). 

A simplified example of an I1 class that defines 
a grammatical unit is: 

(define-class sentence 
:parent complete-phrase 
: type  defined 
: prop 
((semantics predication) 
(realisation 

( (*reference* 
realisation subject •self•) 

(*reference• 
realisation predicate •self*))) 

(number 
(•reference• number subject •self•)) 

(subject  
(•template• 
noun-phrase 
(semantics = actor semantics •self*))) 

(predicate ...) 
...)) 

Semantics is a definitional role, so the above 
definition is for children of C o m p l e t e - P h r a s e  
whose Semantics role is filled by something clas- 
sifted beneath P r e d i c a t i o n  in the upper model. 
It states that 

• the Realisatlon of the class is formed by con- 
catenating the realisation of the Subject of 
the class with the realisation of the Predicate 
of the class; 

• the Number of the class is the Number of 
the Subject of the class; 

• the Subject of the class is obtained by creat- 
ing a new class beneath N o u n - P h r a s e  whose 
semantics is the Actor of the Semantics of 
the class; this in essence is a recursive call to 
realise a semantic constituent. 

If some specialized types of Sentence  need dif- 
ferent values for Reallsatlon, Number,  Subject, 

2The IDAS upper model is similar to a subset of the 
PENMAN upper model. 
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or another attributive role value, this can be spec- 
ified by creating a child of Sentence  that uses 
II 's  default inheritance mechanism to selectively 
override the relevant role fillers. For example, 

(define-class imperative 
:parent sentence 
:type defined 
:prop 

((semantics command) 
( r e a l i s a t i o n  

( •re fer  ence• 
real~sation predicate •self•)))) 

This defines a new class I m p e r a t i v e  that ap- 
plies to Sentences  whose Semantics filler is clas- 
sifted beneath C o m m a n d  in the upper model 
( C o m m a n d  is a child of Predica t ion) .  This 
class inherits the values of the Number and Sub- 
ject fillers from Sentence,  but specifies a new 
filler for Realisation, which is just the Realisation 
of the Predicate of the class. In other words, the 
above class informs the generation system of the 
grammatical fact that imperative sentences do not 
contain surface subjects. The classification system 
places classes beneath their most specific parent in 
the taxonomy, so to-be-realised classes always in- 
herit realisation information from the most specific 
grammatical-unit class that applies to them. 

T h e  R o l e  o f  C o n f l i c t  R e s o l u t i o n  

In general terms, a classification system can be 
thought of as supporting a pattern-matching pro- 
cess, in which the definitional role fillers of a class 
represent the pattern (e.g. (semantics  command) 
in Impera t ive ) ,  and the attributive roles (e.g., 
R.ealisation) specify some sort of action. In other 
words, a classification system is in essence a way 
of encoding pattern-action rules of the form: 

~1 -'+~1 
~2 ---~ ~2 

If several classes subsume an input, then clas- 
sification systems use the attributive roles speci- 
fied (or inherited by) the most specific subsuming 
class; in production rule terminology, this means 
that if several c~i's match an input, only the ~i as- 
sociated with the most specific matching crl is trig- 
gered. In other words, classification systems use 
the conflict resolution principle of always choosing 
the most specific matching pattern-action rule. 

This conflict-resolution principle is used in dif- 
ferent ways by different parts of ]DAS. The 
content-determination system uses it as a prefer- 
ence mechanism; if several content-determination 
rules subsume an input query, any of these rules 
can be used to generate a response, but presum- 
ably the most appropriate response will be gener- 
ated by the most specific subsuming rule. The 



lexical-choice system, in contrast, effectively ig- 
nores the 'prefer most specific' principle, and in- 
stead uses its own preference criteria to choose 
among the lexemes that  subsume an entity. The 
surface-generation system is different yet again, in 
that  it uses the conflict-resolution mechanism to 
exclude inapplicable grammar rules. If a partic- 
ular term is classified beneath I m p e r a t i v e ,  for 
example, it also must be subsumed by Sen tence ,  
but using the Realisation specified in S e n t e n c e  
to realise this term would result in text that  is 
incorrect, not just stylistically inferior. 

The 'use most specific matching rule' conflict- 
resolution principle is thus just a tool that  can 
he used by the system designer. In some cases it 
can be used to implement preferences (as in IDAS's 
content-determination system); in some cases it 
can be used to exclude incorrect rules which would 
cause an error if they were used (as in IDAS's 
surface-generation system); and in some cases it 
needs to be overridden by a more appropriate 
choice mechanism (as in IDAS's lexical choice sys- 
tem). 

Class i f icat ion vs.  O t h e r  
A p p r o a c h e s  

Perhaps the most popular alternative approaches 
to generation are unification (especially functional 
unification) and systemic grammars. As with clas- 
sification, the unification and systemic approaches 
can be applied to all phases of the generation pro- 
cess [McKeown et al., 1990; Patten, 1988]. 3 How- 
ever, most of the published work on unification 
and systemic systems deals with surface realisa- 
tion, so it is easiest to focus on this task when 
making a comparison with classification systems. 

Like classification, unification and systemic sys- 
tems can be thought of as supporting a recursive 
pattern-matching process. All three frameworks 
allow grammar rules to be written declaratively. 
They also all support unrestricted recursion, i.e., 
they all allow a grammar rule to specify that  a 
constituent of the input should be recursively pro- 
cessed by the grammar (IDAS does this with I I ' s  
template mechanism). In particular, this means 
that  all three approaches are Turing-equivalent. 
There are differences in how patterns and actions 
are specified in the three formalisms, but it is prob- 
ably fair to say that  all three approaches are suf- 
ficiently flexible to be able to encode most desir- 
able grammars. The choice between them must 
therefore be made on the basis of which is easiest 
to incorporate into a real NL generation system. 

3Although it is unclear whether unification or sys- 
temic systems can do any better at the text-planning 
tasks that are difficult for classification systems, such 
as generating referring expressions. 

We believe that  classification has a significant ad- 
vantage here because many generation systems al- 
ready include a classifier to support reasoning on 
a domain knowledge base; hence, using classifi- 
cation for generation means the same knowledge 
representation (KR) system can be used to sup- 
port both domain and linguistic knowledge. Thus, 
IDAS uses only one KR system - -  I1 - -  whereas 
systems such as COMET (unification) [McKeown 
et al., 1990] and PENMAN (systemic) [Penman 
Natural Language Group, 1989] use two different 
KR systems: a classifier-based system for domain 
knowledge, and a unification or systemic system 
for grammatical knowledge. 

Unification Systems 
The most popular unification formalism for gener- 
ation up to now has probably been functional uni- 
fication (FUG) [Kay, 1979]. FUG systems work by 
searching for patterns (alternations) in the gram- 
mar that  unify with the system's input (i.e., uni- 
fication is used for pattern-matching); inheriting 
syntactic (output) feature values from the gram- 
mar patterns (the actions); and recursively pro- 
cessing members of the constituent set (the recur- 
sion). That  is, pattern-action rules of the above 
kind are encoded as something like: 

v v . . .  

If a unification system is based on a typed feature 
logic, then its grammar can include classification- 
like subsumption tests [Elhadad, 1990], and thus 
be as expressive in specifying patterns as a classi- 
fication system. 

An initial formal comparison of unification with 
classification is given in the Appendix. Perhaps 
the most important  practical differences are: 

• Classification grammars cannot be used bidi- 
rectionally, while unification grammars can 
[Sheiber, 1988]. 

• Unification systems produce (at least in prin- 
ciple) all surface forms that  agree (unify) with 
the semantic input; classification systems pro- 
duce a single surface form output.  

These differences are in a sense a result of the fact 
that  unification grammars represent general map- 
pings between semantic and surface forms (and 
hence can be used bidirectionally, and produce 
all compatible surface forms), while classification 
systems generate a single surface form from a se- 
mantic input. In McDonald's [1983] terminology, 
classification-based generation systems determin- 
istically and indelibly make choices about alter- 
nate surface-form constructs as the choices arise, 
with no backtracking; 4 unification-based systems, 

4McDonald claims, incidentally, that indelible 
decision-making is more plausible than backtracking 
from a psycholinguistic perspective. 
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in contrast, produce the set of all syntactically cor- 
rect surface-forms that are compatible with the 
semantic input. 5 

In practice, all generation systems must possess 
a 'preference filter' of some kind that chooses a 
single output surface-form from the set of possi- 
bilities. In unification approaches, choosing a par- 
ticular surface form to output tends to be regarded 
(at least theoretically) as a separate task from gen- 
erating the set of syntactically and semantically 
correct surface forms; in classification approaches, 
in contrast, the process of making choices between 
possible surface forms is interwoven with the main 
generation algorithm. 

S y s t e m i c  a p p r o a c h e s  

Systemic grammars [Halliday, 1985] are another 
popular formalism for generation systems. Sys- 
temic systems vary substantially in the input lan- 
guage they accept; we will here focus on the NIGEL 
system [Mann, 1983], since it uses the same in- 
put language (SPL) as  IDAS'S surface realisation 
system, s Other systemic systems (e.g., [Patten, 
1988]) tend to use systemic features as their in- 
put language (i.e., they don't have an equivalent 
of NIGEL'S chooser mechanism), which makes com- 
parisons more difficult. 

NIGEL works by traversing a network of systems, 
each with an associated chooser. The choosers de- 
termine features, by performing tests on the se- 
mantic input. Choosers can be arbitrary Lisp 
code, which means that NIGEL can in principle use 
more general 'patterns' in its rules than IDAS can; 
in practice it is not clear to what extent this ex- 
tra expressive power is used in NIGEL, since many 
choosers seem to be based on subsumption tests 
between semantic components and the system's 
upper model. In any case, once a set of features 
has been chosen, these features trigger gates and 
their associated realisation rules; these rules as- 
sert information about the output text. From the 
pattern-matching perspective, choosers and gates 
provide the patterns ai  of rules, while realisation 
rules specify the actions 13i to be performed on the 
output text. 

Like classification systems (but unlike unifica- 
tion systems), systemic generation systems are, 
in McDonald's terminology, deterministic and in- 
delible choice-makers; NmEL makes choices about 

50f course these differences are in a sense more 
theoretical than practical, since one can design a uni- 
fication system to only return a single surface form 
instead of a set of surface forms, and one can include 
backtracking-like mechanisms in a classification-based 
system. 

SStrictly speaking, SPL is an input language to PEN- 
MAN, not NIGEL; we will here ignore the difference be- 
tween PENMAN a n d  NIGEL. 

alternative surface-form constructs as they arise 
during the generation process, and does not back- 
track. Systemic generation systems are thus prob- 
ably closer to classification systems than unifica- 
tion systems are; indeed, in a sense the biggest 
difference between systemic and classification sys- 
tems is that systemic systems use a notation and 
inference system that was developed by the lin- 
guistic community, while classification systems use 
a notation and inference system that was devel- 
oped by the AI community. 

O t h e r  R e l a t e d  W o r k  

RSsner [1986] describes a generation system that 
uses object-oriented techniques. SPL-like input 
specifications are converted into objects, and then 
realised by activating their To-Realise methods. 
RSsner does not use a declarative grammar; his 
grammar rules are implicitly encoded in his Lisp 
methods. He also does not use classification as an 
inference technique (his taxonomy is hand-built). 

DATR [Evans and Gazdar, 1989] is a system that 
declaratively represents morphological rules, using 
a representation that in some ways is similar to I1. 
In particular, DATR allows default inheritance and 
supports role-chain-like constructs. DATR does not 
include a classifier, and also has no equivalent of 
II 's  template mechanism for specifying recursion. 

PSI-KLONE [Brachman and Schmolze, 1985, 
appendix] is an NL understanding system that 
makes some use of classification, in particular to 
map surface cases onto semantic cases. Syntactic 
forms are classified into an appropriate taxonomy, 
and by virtue of their position inherit semantic 
rules that state which semantic cases (e.g., Actee) 
correspond to which surface cases (e.g., Object). 

Conclusion 
In summary, classification can be used to 
perform much of the necessary processing in 
natural-language generation, including content- 
determination, surface-realisation, and part of 
text-planning. Classification-based generation al- 
lows a single knowledge representation system to 
be used for both domain and linguistic knowledge; 
this means that a classification-based generation 
system can have a significantly simpler overall ar- 
chitecture than a unification or systemic genera- 
tion system, and thus be easier to build and main- 
tain. 
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A p p e n d i x :  A C o m p a r i s o n  o f  
Class i f i cat ion  and Uni f i ca t ion  

FUG is only one of a number of grammar for- 
malisms based on feature logics. The logic under- 
lying FUG is relatively simple, but much more ex- 
pressive logics are now being implemented [Emele 
and Zajac, 1990; D6rre and Seiffert, 1991; D/Srre 
and Eisele, 1991]. Here we provide an initial for- 
mal characterisation of the relation between classi- 
fication and unification, but abstracting away from 
the differences between the different unification 
systems. 

Crucial to all approaches in unification-based 
generation (or parsing) is the idea that at every 
level an input description (i.e. logical form or sim- 
ilar) 7 is combined with a set of axioms (type spec- 
ifications, grammar functional descriptions, rules) 
and the resulting logical expression is then reduced 
to a normal form that can be used straightfor- 
wardly to construct the set of models for the com- 
bined axioms and description. 

Classification is an appropriate operation to use 
in normal form construction when the axioms take 
the form oq ~ fit, with ~ interpreted as logical 
implication, and where each ai and/~i is a term 
in a feature logic. If the input description is 'com- 
plete' with respect to the conditions of these ax- 
ioms (that is, if 7 ^ ai ~ J- exactly when 7 _C ~i, 
where _ is subsumption), then it follows that for 
every model A4: 

u iff 
M I= _c u {v} 

(the relationship is more complex if the gram- 
mar is reeursive, though the same basic principle 
holds). The first step of the computation of the 
models of 7 and the axioms then just needs quick 
access to {fli17 _Coti}. The classification approach 
is to have the different ai ordered in a subsump- 
tion taxonomy. An input description 7 is placed 
in this taxonomy and the fll corresponding to its 
ancestors are collected. 

Input descriptions are 'complete' if every input 
description is fully specified as regards the condi- 
tions that will be tested on it. This implies a rigid 
distinction between 'input' and 'output' informa- 
tion which, in particular, means that classification 
will not be able to implement bidirectional gram- 
mars. If all the axioms are of the above form, 
input descriptions are complete and conjunctive, 
and the fli's are conjunctive (as is the case in IDAS) 
then there will always only be a single model. 

The above assumption about the form of ax- 
ioms is clearly very restrictive compared to what 
is allowed in many modern unification formalisms. 
In IDAS, the notation is restricted even further 
by requiring the c~i and /~i to be purely con- 
junctive. In spite of these restrictions, the sys- 
tem is still in some respects more expressive than 
the simpler unification formalisms. In Definite 
Clause Grammars (DCGs) [Pereira and Warren, 
1980], for instance, it is not possible to specify 
a l  --"/~1 and also c~z --*/~, whilst allowing that 
(al AO¢2) ~ ( ~ 1 A ~ 2 )  (unless a l a n d  as are related 
by subsumption) [Mellish, 19911. 

The comparison between unification and clas- 
sification is, unfortunately, made more complex 
when default inheritance is allowed in the classifi- 
cation system (as it is in IDAS). Partly, the use of 
defaults may be viewed formally as simply a mech- 
anism to make it easier to specify 'complete' in- 
put descriptions. The extent to which defaults are 
used in an essential way in IDAS still remains to be 
investigated. Certainly for the grammar writer the 
ability to specify defaults is very valuable, and this 
has been widely acknowledged in grammar frame- 
works and implementations. 
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