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A B S T R A C T  

We present an approach to grammar development where 
the task is decomposed into two separate subtasks. The first 
task is hnguistic, with the goal of producing a set of rules that 
have a large coverage (in the sense that the correct parse is 
among the proposed parses) on a bhnd test set of sentences. 
The second task is statistical, with the goal of developing a 
model of the grammar which assigns maximum probability 
for the correct parse. We give parsing results on text from 
computer manuals. 

1. I n t r o d u c t i o n  
Many language understanding systems and machine 

translation systems rely on a parser of English as the first 
step in processing an input sentence. The general impres- 
sion may be that parsers with broad coverage of English 
are readily available. In an effort to gauge the state of the 
art in parsing, the authors conducted an experiment in 
Summer 1990 in which 35 sentences, all of length 13 words 
or less, were selected randomly from a several-million- 
word corpus of Associated Press news wire. The sentences 
were parsed by four of the major large-coverage parsers 
for general English. 1 Each of the authors, working sep- 
arately, scored 140 parses for correctness of constituent 
boundaries, constituent labels, and part-of-speech labels. 
All that was required of parses was accuracy in delim- 
iting and identifying obvious constituents such as noun 
phrases, prepositional phrases, and clauses, along with at 
least rough correctness in assigning part-of-speech labels, 
e.g. a noun could not be labelled as a verb. The tallies of 
each evaluator were compared, and were identical or very 
close in all cases. The best-performing parser was correct 
for 60% of the sentences and the the remaining parsers 
were below 40%. More recently, in early 1992, the cre- 
ator of another well-known system performed self-scoring 
on a similar task and reported 30% of input sentences as 
having been correctly parsed. On the basis of the pre- 
ceeding evidence it seems that the current state of the 

t At least one of the p a r t i e s  involved insisted that n o  p e r f o r -  
m a n c e  results be made public. Such reticence is widespread and 
understandable. However, it is nonetheless important that perfor- 
mance norms be established for the field. Some progress has been 
made in this direction [3, 4]. 

art is far from being able to produce a robust parser of 
general English. 

In order to break through this bottleneck and begin 
making steady and quantifiable progress toward the goal 
of developing a highly accurate parser for general En- 
glish, organization of the grammar-development process 
along scientific lines and the introduction of stochastic 
modelling techniques are necessary, in our view. We have 
initiated a research program on these principles, which 
we describe in what follows. An account of our overall 
method of attacking the problem is presented in Section 
2. The grammar involved is discussed in Section 3. Sec- 
tion 4 is concerned with the statistical modelling methods  
we employ. Finally, in Section 5, we present our experi- 
mental results to date. 

2.  A p p r o a c h  

Our approach to grammar  development consists of the 
following 4 elements: 

• Selection of application domain. 

• Development of a manually-bracketed corpus (tree- 
bank) of the domain. 

• Creation of a grammar  with a large coverage of a 
blind test set of treebanked text. 

Statistical modeling with the goal that  the cor- 
rect parse be assigned maximum probability by the 
stochastic grammar.  

We now discuss each of these elements in more detail. 

A p p l i c a t i o n  d o m a i n :  It would be a good first step 
toward our goal of covering general English to demon- 
strate that  we can develop a parser that  has a high pars- 
ing accuracy for sentences in, say, any book listed in 
Books In Print concerning needlework; or in any whole- 
sale footwear catalog; or in any physics journal. The se- 
lected domain of focus should allow the acquisition of 
a naturally-occuring large corpus (at least a few million 
words) to allow for realistic evaluation of performance and 
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Fa Adverbial Phrase 

Fc Comparat ive Phrase 

Fn Nominal Clause 

Fr Relative Clause 

G Possessive Phrase 

J Adjectival Phrase 

N Noun Phrase 

Nn Nominal Proxy 

Nr Temporal  Noun Phrase 

Nv Adverbial Noun Phrase 

P Prepositional Phrase 

S Full Sentence 

Si Sentential Interrupter 

Tg Present Participial Clause 

Ti  Infinitival Clause 

Tn Past Participial Clause 

V Verb Phrase 

NULL Other 

Table 1: Lancaster constituent labels 

adequate amounts  of da ta  to characterize the domain so 
that  new test da ta  does not surprise system developers 
with a new set of phenomena hitherto unaccounted for in 
the grammar.  

We selected the domain of computer  manuals. Be- 
sides the possible practical advantages to being able to 
assign valid parses to the sentences in computer  manu- 
als, reasons for focusing on this domain include the very 
broad but  not unrestricted range of sentence types and 
the availability of large corpora of computer manuals. We 
amassed a corpus of 40 million words, consisting of several 
hundred computer  manuals. Our approach in attacking 
the goal of developing a grammar  for computer manuals 
is one of successive approximation.  As a first approxima- 
tion to the goal, we restrict ourselves to sentences of word 
length 7 - 17, drawn from a vocabulary consisting of the 
3000 most frequent words (i.e. fully inflected forms, not 
lcmmas) in a 600,000-word subsection of our corpus. Ap- 
proximately 80% of the words in the 40-million-word cor- 
pus are included in the 3000-word vocabulary. We have 
available to us about  2 million words of sentences com- 
pletely covered by the 3000-word vocabulary. A lexicon 
for this 3000-word vocabulary was completed in about  2 
months.  

T r e e b a n k :  A sizeable sample of this corpus is hand- 
parsed ("treebanked").  By definition, the hand parse 
(" treebank parse") for any given sentence is considered 

AT1 

CST 

CSW 

JJ 

NN1 

PPH1 

PPY 

RR 

VBDZ 

VVC 

VVG 

Singular Article (a, every) 

that as Conjunction 

whether as Conjunction 

General Adjective (free, subsequent) 

Singular Common Noun (character, site) 

the Pronoun "i t"  

the Pronoun "you" 

General Adverb (exactly, manually) 

"was" 

Imperative form of Verb (at tempt,  proceed) 

-ing form of Verb (containing, powering) 

Table 2: Sample of Lancaster part-of-speech labels 

its "correct parse" and is used to judge the grammar 's  
parse. To fulfill this role, treebank parses are constructed 
as "skeleton parses," i.e. so that  all obvious decisions 
are made as to part-of-speech labels, constituent bound- 
aries and constituent labels, but  no decisions are made 
which are problematic, controversial, or of which the tree- 
bankers are unsure. Hence the term "skeleton parse": 
clearly not all constituents will always figure in a tree- 
bank parse, but  the essential ones always will. In practice, 
these are quite detailed parses in most cases. The 18 con- 
sti tuent labels 2 used in the Lancaster treebank are listed 
and defined in Table 1. A sampling of the approximately 
200 part-of-speech tags used is provided in Table 2. 

To date, roughly 420,000 words (about 35,000 sen- 
tences) of the computer manuals material have been tree- 
banked by a team at the University of Lancaster, Eng- 
land, under Professors Geoffrey Leech and Roger Gar- 
side. Figure 1 shows two sample parses selected at ran- 
dom from the Lancaster Treebank. 

The treebank is divided into a training subcorpus and 
a test subcorpus. The grammar  developer is able to in- 
spect the training dataset at will, but  can never see the 
test dataset.  This latter restriction is, we feel, crucial for 
making progress in grammar development. The purpose 
of a grammar is to correctly analyze previously unseen 
sentences. It is only by setting it to this task that  its 
true accuracy can be ascertained. The value of a large 
bracketed training corpus is that  it allows the grammar- 
ian to obtain quickly a very large 3 set of sentences that  

2Actually there are 18 x 3 = 54 labels, as each label L has vari- 
ants LA: for a first conjunct, and L-{- for second and later conjuncts, 
of  t ype  L: e.g. [N[Ng~ the  cause NSz] a n d  [Nq- the  appropr i a t e  ac t ion  
N-k]N]. 

3 We discovered  t h a t  t he  g r a m m a r ' s  coverage ( to  be  defined la ter)  
of the  t r a in ing  set  increased  quickly to above 98% as soon as the  
g r a m m a r i a n  ident i f ied the  p rob l em sentences .  So we have been  
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IN It_PPH1 N] 
[V indicates_VVZ 

[Fn [Fn&whether_CSW 
[N a_AT1 call_NN1 N] 
[V completed_VVD successfully_RR V]Fn&] 

or_CC 
[Fn+ if_CSW 

IN some_DD error_NN1 N]@ 
[V was_VBDZ detected_VVN V] 
@[Fr that_CST 

[V caused_VVD 
[N the_AT call_NNl N] 
[Ti to_TO fail_VVI Wi]V]Fr]Fn+] 

Fn]V]._. 
[Fa If_CS 

[N you_PPY N] 
IV were_VBDR using_VVG 

[N a_AT1 shared_JJ folder_NN1 N]V]Fa] 
, - ,  

IV include_VVC 
IN the_AT following_JJ N]V]:_: 

Figure 1: Two sample bracketed sentences from Lan- 
caster Treebank. 

the grammar fails to parse. We currently have about  
25,000 sentences for training. 

The point of the treebank parses is to constitute a 
"strong filter," that  is to eliminate incorrect parses, on 
the set of parses proposed by a grammar for a given sen- 
tence. A candidate parse is considered to be "accept- 
able" or "correct" if it is consistent with the treebank 
parse. We define two notions of consistency: structure- 
consistent and label-consistent. The span of a consitituent 
is the string of words which it dominates, denoted by a 
pair of indices (i, j )  where i is the index of the leftmost 
word and j is the index of the rightmost word. We say 
that  a constituent A with span (i, j )  in a candidate parse 
for a sentence is structure-consistent with the treebank 
parse for the same sentence in case there is no constituent 
in the treebank parse having span (i', j ' )  satisfying 

i' < i < j '  < j 

o r  

i < i' < j < j ' .  

In other words, there can be no "crossings" of the span 
of A with the span of any treebank non-terminal. A 
grammar parse is structure-consistent with the treebank 
parse if all of its constituents are structure-consistent with 
the treebank parse. 

continuously increasing the training set as more data is treebanked. 

The notion of label-consistent requires in addition to 
structure-consistency that  the grammar  constituent name 
is equivalent 4 to the treebank non-terminal label. 

The following example will serve to illustrate our con- 
sistency criteria. We compare a "treebank parse": 

[NT1 [NT2 wl_pl w2_p2 NT2] [NT3 w3_p3 w4_p4 
w5_p5 NT3]NT1] 

with a set of "candidate parses": 

[NT1 [NT2 wl_pl w2_p2 NT2] [NT3 w3_p3 [NT4 
w4_p4 w5_p5 NT4]NT3]NTI] 

[NT1 [NT2 wl_p6 w2_p2 NT2] [NT5 w3_p9 w4_p4 
w5_p5 NT5]NTI] 

[NTI wl_pl [NT6 b_p2 w3_p15 NT6][NT7 w4_p4 
w5_p5 NTT]NTI] 

For the structure-consistent criterion, the first and sec- 
ond candidate parses are correct, even though the first 
one has a more detailed constituent spanning (4, 5). The 
third is incorrect since the constituent NT6 is a case of 
a crossing bracket. For the label-consistent criterion, the 
first candidate parse is the only correct parse, because it 
has all of the bracket labels and parts-of-speech of the 
treebank parse. The second candidate parse is incorrect, 
since two of its part-of-speech labels and one of its bracket 
labels differ from those of the treebank parse. 

Grammar writing and statistical estimation: 
The task of developing the requisite system is factored 
into two parts: a linguistic task and a statistical task. 

The linguistic task is to achieve perfect or near- 
perfect coverage of the test set. By this we mean 
that among the n parses provided by the parser for 
each sentence of the test dataset, there must be at 
least one which is consistent with the treebank ill- 
ter. s To eliminate trivial solutions to this task, the 
grammarian must hold constant over the course of 
development the geometric mean of the number of 
parses per word, or equivalently the total number of 
parses for the entire test corpus. 

The statistical task is to supply a stochastic model 
for probabilistically training the grammar such that 
the parse selected as the most likely one is a correct 
parse. 6 

4See Section 4 for the definition of a many-to-many mapping be- 
tween grammar and trcebank non-terminals for determining equiv- 
Mence of non-termlnals. 

SWe propose this sense of the term coverage as a replacement for 
the sense in current use, viz. simply supplying one or more parses, 
correct or not, for some portion of a given set of sentences. 

6Clcarly the grammarian can contribute to this task by, among 
other things, not just holding the average number of parses con- 
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The above decomposition into two tasks should lead to 
bet ter  broad-coverage grammars.  In the first task, the 
grammarian can increase coverage since he can examine 
examples of specific uncovered sentences. In the second 
task, that  of selecting a parse from the many parses pro- 
posed by a grammar,  can best be done by maximum like- 
lihood estimation constrained by a large treebank. The 
use of a large treebank allows the development of sophisti- 
cated statistical models that  should outperform the tra- 
ditional approach of using human intuition to develop 
parse preference strategies. We describe in this paper a 
model based on probabilistic context-free grammars es- 
t imated with a constrained version of the Inside-Outside 
algori thm (see Section 4)that  can be used for picking a 
parse for a sentence. In [2], we desrcibe a more sophisti- 
cated stochastic grammar  that  achieves even higher pars- 
ing accuracy. 

3. G ra m ma r  
Our grammar  is a feature-based context-free phrase 

structure grammar  employing traditional syntactic cate- 
gories. Each of its roughly 700 "rules" is actually a rule 
template,  compressing a family of related productions via 
unification. 7 Boolean conditions on values of variables 
occurring within these rule templates serve to limit their 
ambit  where necessary. To illustrate, the rule template 
below s 

f2  : V1 ~ f2  : V1 f2  : V1 

f3  : V2 f3  : V3 f3  : V2 

where 
(V2 = dig [h) & (V3 # ~) 

imposes agreement of the children with reference to fea- 
ture f2, and percolates this value to the parent. Accept- 
able values for feature f3 are restricted to three (d,g,h) for 
the second child (and the parent), and include all possi- 
ble values for feature f3 ezeept  k, for the first child. Note 
that  the variable value is also allowed in all cases men- 
tioned (V1,V2,V3). If the set of licit values for feature f3 
is (d,e,f,g,h,i,j,k,1}, and that  for feature f2 is {r,s}, then, 
allowing for the possibility of variables remaining as such, 
the rule template above represents 3*4*9 = 108 different 
rules. If the condition were removed, the rule template 
would stand for 3"10"10 = 300 different rules. 

s tunt ,  b u t  in fact steadily reducing it. The  impor t ance  of this  
con t r ibu t ion  will u l t imate ly  depend  on the power  of the stat is t i-  
cal models  developed after  a reasonable  a m o u n t  of effort. 

Unification is to  be  u n d e r s t o o d  in this  pape r  in a very l imited 
sense, which is precisely s t a ted  in Section 4. Our  g r a m m a r  is no t  
a unif icat ion g r a m m a r  in the sense which is mos t  often used in the 
l i te ra ture .  

awhere  fl,f2,f3 are features;  a,b,c are feature  values; and  
V1,V2,V3 are variables over fea ture  values 

While a non-terminal in the above grammar is a fea- 
ture vector, we group multiple non-terminals into one 
class which we call a mnemonic ,  and which is represented 
by the least-specified non-terminal of the class. A sample 
mnemonic is N2PLACE (Noun Phrase of semantic cate- 
gory Place). This mnemonic comprises all non-terminals 
that  unify with: 

I pos : n  ] 

b a r n u m  : t w o  

de ta i l s  : place 

including, for instance, Noun Phrases of Place with no 
determiner, Noun Phrases of Place with various sorts 
of determiner, and coordinate Noun Phrases of Place. 
Mnemonics are the "working nonterminals" of the gram- 
mar; our parse trees are labelled in terms of them. A 
production specified in terms of mnemonics (a m n e m o n i c  
production) is actually a family of productions, in just the 
same way that  a mnemonic is a family of non-terminals. 
Mnemonics and mnemonic productions play key roles in 
the stochastic modelling of the grammar (see below). A 
recent version of the grammar has some 13,000 mnemon- 
ics, of which about  4000 participated in full parses on 
a run of this grammar on 3800 sentences of average 
word length 12. On this run, 440 of the 700 rule tem- 
plates contributed to full parses, with the result that  the 
4000 mnemonics utilized combined to form approximately 
60,000 different mnemonic productions. The grammar 
has 21 features whose range of values is 2 - 99, with a 
median of 8 and an average of 18. Three of these features 
are listed below, with the function of each: 

det_pos 

degree 

noun_pronoun 

Determiner Subtype 

Degree of Comparison 

Nominal Subtype 

Table 3: Sample Grammatical  Features 

To handle the huge number of linguistic distinctions 
required for real-world text input, the grammarian uses 
many of the combinations of the feature set. A sample 
rule (in simplified form) illustrates this: 

pos : j 

b a r n u m  : one 

de ta i l s  : V1  

degree  : V 3  

pos : j 

b a r n u m  : ze ro  

de ta i l s  : V1  

degree  : V3  

This rule says that  a lexical adjective parses up to an ad- 
jective phrase. The logically primary use of the feature 
"details" is to more fully specify conjunctions and phrases 
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involving them. Typical  values, for coordinating conjunc- 
tions, are "or" and "but";  for subordinating conjunctions 
and associated adverb phrases, they include e.g. " that"  
and "so." But for content words and phrases (more pre- 
cisely, for nominal,  adjectival and adverbial words and 
phrases), the feature, being otherwise otiose, carries the 
semantic category of the head. 

The mnemonic names incorporate "semantic" cate- 
gories of phrasal heads, in addition to various sorts of 
syntactic information (e.g. syntactic da ta  concerning the 
embedded clause, in the case of "that-clauses").  The "se- 
mantics" is a subclassification of content words that  is 
designed specifically for the manuals  domain. To provide 
examples of these categories, and also to show a case in 
which the semantics succeeded in correctly biasing the 
probabilities of the trained grammar ,  we contrast  (simpli- 
fied) parses by an identical g rammar ,  trained on the same 
da ta  (see below), with the one difference that  semantics 
was eliminated f rom the mnemonics of the g r a m m a r  tha t  
produced the first parse below. 

[SC[V1 Enter [N2[N2 the name [P1 of the system 
P1]N2][SD you [V1 want [V2 to [V1 connect [P1 to 
P 1]V1]V2]V1]SD]N2]V1]SC]. 

[SCSEND-ABS-UNIT[V1SEND-ABS-UNIT 
Enter [N2ABS-UNIT the name [P1SYSTEMOF of 
[N2SYSTEM the system [SDORGANIZE-PERSON 
you [V1ORGANIZE want [V2ORGANIZE to con- 
nect [P1WO to P1]V2]V1]SD]N2]P1]N2]V1]SC]. 

What  is interesting here is that  the structural  parse is 
different in the two cases. The first case, which does 
not match  the treebank parse 9 parses the sentence in the 
same way as one would understand the sentence, "En- 
ter the chapter of the manual  you want to begin with." 
In the second case, the semantics were able to bias the 
statistical model in favor of the correct parse, i.e. one 
which does match  the treebank parse. As an experiment,  
the sentence was submit ted  to the second g r a m m a r  with 
a variety of different verbs in place of the original verb 
"connect", to make sure that  it is actually the semanitc 
class of the verb in question, and not some other factor, 
that  accounts for the improvement.  Whenever verbs were 
substi tuted that  were licit syntatically but not semanti-  
cally (e.g. adjust,  comment ,  lead) the parse was as in the 
first case above. Of course other verbs of the class "OR- 
GANIZE" were associated with the correct parse, and 
verbs tha t  did were not even permit ted syntactically oc- 
casioned the incorrect parse. 

We employ a lexical preprocessor to mark  multiword 

9 

[V Enter [N the name [P of [N the system [Fr[N you ][V want 
[Wl to connect [P to ]]]]]]]]. 
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units as well as to license unusual part-of-speech assign- 
ments,  or even force labellings, given a part icular  context.  
For example,  in the context: "How to:", the word "How" 
can be labelled once and for all as a General Wh-Adverb,  
rather  than  a Wh-Adverb of Degree (as in, "How tall 
he is getting!").  Three sample entries f rom our lexicon 
follow: "Full-screen" is labelled as an adjective which 

full-screen J S C R E E N - P T B *  

Hidden VALTERN* 

1983 NRSG* M-C-* 

Table 4: Sample lexical entries 

usually bears an at t r ibut ive function, with the semantic 
class "Screen-Part".  "Hidden" is categorized as a past 
participle of semantic class "Alter".  "1983" can be a 
tempora l  noun (viz. a year) or else a number.  Note 
tha t  all of these classifications were made on the basis of 
the examinat ion of concordances over a several-hundred- 
thousand-word sample of manuals  data.  Possible uses not 
encountered were in general not included in our lexicon. 

Our approach to g rammar  development,  syntactical  
as well as lexical, is frequency-based. In the case of syn- 
tax, this means that ,  at  any given time, we devote our 
a t tent ion to the most  frequently-occurring construction 
which we fail to handle, and not the most  "theoretically 
interesting" such construction. 

4 .  S t a t i s t i c a l  T r a i n i n g  a n d  E v a l u a t i o n  

In this section we will give a brief description of the 
procedures tha t  we have adopted for parsing and training 
a probabilistic model for our g rammar .  In parsing with 
the above g rammar ,  it is necessary to have an efficient 
way of determining if, for example,  a particular feature 
bundle A = (AI ,  A 2 , . . . , A N )  can be the parent of a 
given production, some of whose features are expressed 
as variables. As mentioned previously, we use the te rm 
unification to denote this matching procedure, and it is 
defined precisely in figure 2. 

In practice, the unification operations are carried out 
very efficiently by representing bundles of features as bit- 
strings, and realizing unification in terms of logical bit 
operations in the programming language PL.8 which is 
similar to C. We have developed our own tools to t ranslate  
the rule templates  and conditions into PL.8 programs.  

A second operation that  is required is to par t i t ion 
the set of nonterminals,  which is potentially ext remely 
large, into a set of equivalence classes, or mnemonics, as 
mentioned earlier. In fact, it is useful to have a tree, 
which hierarchically organizes the space of possible fea- 



UNIFY(A, B): 
do  for each feature f 

i f  n o t  FEATURE_UNIFY(A/ ,  B / )  
t h e n  r e t u r n  FALSE 

r e t u r n  TRUE 

FEATURE_UNIFY(a,  b): 
i f  a -- b t h e n  r e t u r n  TRUE 
else  i f  a is variable or b is variable 

t h e n  r e t u r n  TRUE 
r e t u r n  FALSE 

Figure 2 

ture bundles into increasingly detailed levels of semantic 
and syntactic information. Each node of the tree is it- 
self represented by a feature bundle, with the root being 
the feature bundle all of whose features are variable, and 
with a decreasing number of variable features occuring as 
a branch is traced from root to leaf. To find the mnemonic 
.A4(A) assigned to an arbi t rary feature bundle A, we find 
the node in the mnemonic tree which corresponds to the 
smallest mnemonic that  contains (subsumes) the feature 
bundle A as indicated in Fugure 3. 

.A4(A): 
n = root_of_mnemonic_tree 
r e t u r n  SEARCH_SUBTREE(n,  A) 

SEARCH_SUBTREE(n,  A) 
do  for each child m of n 

i f  Mnemonic(m) contains A 
t h e n  r e t u r n  SEARCH_SUBTREE(m, A) 

r e t u r n  Mnemonic(n) 

Figure 3 

U n c o n s t r a i n e d  t r a i n i n g :  Since our grammar has 
an extremely large number of non-terminals, we first de- 
scribe how we adapt  the well-known Inside-Outside algo- 
r i thm to estimate the parameters of a stochastic context- 
free grammar  that  approximates the above context-free 
grammar.  We begin by describing the case, which wc call 
unconstrained training, of maximizing the likelihood of an 
unbrackctcd corpus. We will later describe the modifica- 
tions necessary to train with the constraint of a bracketed 
corpus. 

To describe the training procedure we have used, we 
will assume familiarity with both the CKY algorithm 
[?] and the Inside-Outside algorithm [?], which we have 
adapted to the problem of training our grammar.  The 
main computat ions of the Inside-Outside algorithm are 
indexed using the CKY procedure which is a bot tom-up 
chart parsing algorithm. To summarize the main points 
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in our adaptat ion of these algorithms, let us assume that  
the grammar is in Chomsky normal form. The general 
case involves only straight-forward modifications. Pro- 
ceeding in a bot tom-up fashion, then, we suppose that  
we have two nonterminals (bundles of features) B and 
C, and we find all nonterminals A for which A -~ B C 
is a production in the grammar.  This is accomplished 
by using the unfication operation and checking that  the 
relevent Boolean conditions are satisfied for the nonter- 
minals A, B, and C. 

Having found such a nonterminal, the usual Inside- 
Outside algorithm requires a recursive update of the 
Inside probabilities IA ( i , j )  and outside probabilities 
OA(i  , j) that  A spans (i, j ) .  These updates involve the 
probabili ty parameter  

PrA(A ---* B C). 

In the case of our feature-based grammar, however, the 
number of such parameters would be extremely large 
(the grammar can have on the order of few billion non- 
terminals). We thus organize productions into the equiv- 
alence classes induced by the mncmomic classes on the 
non-terminals. The update then uses mnemonic produc- 
tions for the stochastic grammar using the parameter 

PrM(A)(J~4(B) --) A4(C) A4(C)). 

Of course, for lexical productions A --) w we use the 
corresponding probability 

Pr~(A)(jVI(A ) -~ w) 

in the event that we are rewriting not a pair of nontermi- 
nals, but a word w. 

Thus, probabilities are expressed in terms of the set 
of mnemonics (that is, by the nodes in the mnemonic 
tree), rather that in terms of the actual nonterminals of 
the grammar. It is in this manner that we can obtain 
efficient and reliable estimates of our parameters. Since 
the grammar is very detailed, the mnemonic map JUt can 
be increasingly refined so that a greater number of lin- 
guistic phenomena are caputured in the probabilities. In 
principle, this could be carried out automatically to de- 
termine the optimum level of detail to be incorporated 
into the model, and different paramcterizations could be 
smoothed together. To date, however, we have only con- 
tructed mnemonic maps by hand, and have thus experi- 
mented with only a small number of paramcterizations. 

Constrained training: The Inside-Outside algo- 
rithm is a special case of the general EM algorithm, and 
as such, succssive iteration is guaranteed to converge to 
a set of parameters which locally maximize the likelihood 
of generating the training corpus. We have found it use- 
ful to employ the trccbank to supervise the training of 



these parameters .  Intuitively, the idea is to modify the 
algori thm to locally maximize the likelihood of generat- 
ing the training corpus using parses which are "similar" 
to the treebank parses. This is accomplished by only 
collecting statistics over those parses which are consis- 
tent with the treebank parses, in a manner  which we will 
now describe. The notion of label-consistent is defined 
by a (many- to-many)  mapping  from the mnemonics of 
the feature-based g r a m m a r  to the nonterminal  labels of 
the treebank g rammar .  For example, our g r a m m a r  main-  
tains a fairly large number  of semantic classes of singular 
nouns, and it is natural  to stipulate that  each of them 
is label-consistent with the nonterminal  NI~I denoting a 
generic singular noun in the treebank. Of course, to ex- 
haustively specify such a mapping  would be rather t ime 
consuming. In practice, the mapping  is implemented by 
organizing the nonterminals  hierarchically into a tree, and 
searching for consistency in a recursive fashion. 

The simple modification of the CKY algori thm which 
takes into account the treebank parse is, then, the follow- 
ing. Given a pair of nonterminals B and C in the CKY 
chart, if the span of the parent is not structure-consistent 
then this occurence of B C cannot be used in the parse 
and we continue to the next pair. If, on the other hand, it 
is structure-consistent then we find all candidate parents 
A for which A ~ B C is a production of the grammar ,  
but include only those that  are label-consistent with the 
treebank nonterminal  (if any) in that  position. The prob- 
abilities are updated  in exactly the same manner  as for 
the s tandard Inside-Outside algorithm. The procedure 
that  we have described is called constrained training, and 
it significantly improves the effectiveness of the parser, 
providing a dramat ic  reduction in computat ional  require- 
ments  for parameter  est imation as well as a modest  im- 
provement in parsing accuracy. 

Sample mappings  from the terminals and non- 
terminals of our g r a m m a r  to those of the Lancaster tree- 
bank are provided in Table 5. For ease of understanding, 
we use the version of our g r a m m a r  in which the semantics 
are eliminated f rom the mnemonics (see above). Category 
names f rom our g r a m m a r  are shown first, and the Lan- 
caster categories to which they map  are shown second: 

The first case above is straightforward: our 
preposit ional-phrase category maps  to Lancaster 's .  In 
the second case, we break down the category Relative 
Clause more finely than Lancaster does, by specifying 
the syntax of the embedded clause (e.g. FRV2: " tha t  
opened the adapter") .  The third case relates to rela- 
tive clauses lacking prefatory particles, such as: "the row 
you are specifying"; we would call "you are specifying" 
an SD (Declarative Sentence), while Lancaster calls it an 
Fr (Relative Clause). Our practice of distinguishing con- 
sti tuents which function as interrupters from the same 
constituents tout court accounts for the fourth case; the 
category in question is Infinitival Clause. Finally, we gen- 
erate a t t r ibut ive  adjectives (JB) directly from past  par- 
ticiples (VVN) by rule, whereas Lancaster opts to label 
as adjectives (J J) those past participles so functioning. 

5. Experimental  Resu l t s  

We report  results below for two test sets. One (Test 
Set A) is drawn from the 600,000-word subsection of our 
corpus of computer  manuals  text which we referred to 
above. The other (Test Set B) is drawn from our full 40- 
million-word computer  manuals  corpus. Due to a more 
or less constant error rate of 2.5% in the treebank parses 
themselves, there is a corresponding built-in margin of er- 
ror in our scores. For each of the two test sets, results are 
presented first for the linguistic task: making sure tha t  a 
correct parse is present in the set of parses the g r a m m a r  
proposes for each sentence of the test set. Second, results 
are presented for the statistical task, which is to ensure 
tha t  the parse which is selected as most  likely, for each 
sentence of the test set, is a correct parse. 

Number  of Sentences 935 

Average Sentence Length 12 

Range of Sentence Lengths 7-17 

Correct Parse Present 96% 

Correct Parse Most Likely 73% 

Table 6: Results for Test Set A 

P1 P 

FRV2 Fr 

SD Fr 

IANYTI  Ti 

JBVVN* :lJ 

Table 5: Sample of g rammat ica l  category mappings  

Number  of Sentences 1105 

Average Sentence Length 12 

Range of Sentence Lengths 7-17 

Correct Parse Present 95% 

Correct Parse Most Likely 75% 

Table 7: Results for Test Set B 
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Recall (see above) that  the geometric mean of the 
number of parses per word, or equivalently the total num- 
ber of parses for the entire test set, must be held con- 
stant over the course of the grammar 's  development, to 
eliminate trivial solutions to the coverage task. In the 
roughly year-long period since we began work on the com- 
puter manuals task, this average has been held steady at 
roughly 1.35 parses per word. What  this works out to is a 
range of from 8 parses for a 7-word sentence, through 34 
parses for a 12-word sentence, to 144 parses for a 17-word 
sentence. In addition, during this development period, 
performance on the task of picking the most likely parse 
went from 58% to 73% on Test Set A. Periodic results on 
Test Set A for the task of providing at least one correct 
parse for each sentence are displayed in Table 8. 

We present additional experimental results to show 
that  our grammar  is completely separable from its accom- 
panying "semantics". Note that  semantic categories are 
not "written into" the grammar;  i.e., with a few minor 
exceptions, no rules refer to them. They simply perco- 
late up from the lexical items to the non-terminal level, 
and contribute information to the mnemonic productions 
which consti tute the parameters of the statistical training 
model. 

An example was given in Section 3 of a case in which 
the version of our grammar  that  includes semantics out- 
performed the version of the same grammar without se- 
mantics. The effect of the semantic information in that  
particular case was apprently to bias the trained grammar 
towards choosing a correct parse as most likely. However, 
we did not quantify this effect when we presented the ex- 
ample. This is the purpose of the experimental results 
shown in Table 9. Test B was used to test our current 
grammar,  first with and then without semantic categories 
in the mnemonics. 

It follows from the fact that  the semantics are not 
written into the grammar that  the coverage figure is the 
same with and without semantics. Perhaps surprising, 
however, is the slight degree of improvement due to the 
semantics on the task of picking the most likely parse: 
only 2 percentage points. The more detailed parametriza- 

January 1991 91% 

April 1991 92% 

August 1991 94% 

December 1991 96% 

April 1992 96% 

Table 8: Periodic Results for Test Set A: Sentences With 
At Least 1 Correct Parse 

Number of Sentences 1105 

Average Sentence Length 12 

Range of Sentence Lengths 7-17 

Correct Parse Present (In Both Cases) 95% 

Correct Parse Most Likely (With Semantics) 75% 

Correct Parse Most Likely (No Semantics) 73% 

Table 9: Test Subcorpus B With and Without  Semantics 

tion with semantic categories, which has about 13,000 
mnemonics achieved only a modest improvement in pars- 
ing accuracy over the parametrizat ion without semantics, 
which has about  4,600 mnemonics. 

6 .  F u t u r e  R e s e a r c h  

Our future research divides naturally into two efforts. 
Our linguistic research will be directed toward first pars- 
ing sentences of any length with the 3000-word vocabu- 
lary, and then expanding the 3000-word vocabulary to an 
unlimited vocabulary. Our statistical research will focus 
on efforts to improve our probabilistic models along the 
lines of the new approach presented in [2]. 
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