
Linear Context-Free Rewriting Systems and Deterministic Tree-Walking
Transducers*

David J. Weir

School of Cognitive and Computing Sciences
University of Sussex

Falmer, Brighton BN1 9QH
davidw @ cogs. sussex, ac. uk

A b s t r a c t

We show that the class of string languages gener-
ated by linear context-free rewriting systems is equal
to the class of output languages of deterministic tree-
walking transducers. From equivalences that have pre-
viously been established we know that this class of lan-
guages is also equal to the string languages generated
by context-free hypergraph grammars, multicompo-
nent tree-adjoining grammars, and multiple context-
free grammars and to the class of yields of images of
the regular tree languages under finite-copying top-
down tree transducers.

I n t r o d u c t i o n

In [9] a comparison was made of the generative capac-
ity of a number of grammar formalisms. Several were
found to share a number of characteristics (described
below) and the class of such formalisms was called lin-
ear context-free rewriting systems. This paper shows
how the class of string languages generated by linear
context-free rewriting systems relates to a number of
other systems that have been studied by formal lan-
guage theorists. In particular, we show that the class
of string languages generated by linear context-free
rewriting systems is equal to the class of output lan-
guages of deterministic tree-walking transducers [1].

A number of other equivalences have already been
established. In [10] it was shown that linear context-
free rewriting systems and multicomponent tree ad-
joining grammars [6] generate the same string lan-
guages. The multiple context-free grammars of [7] are
equivalent to linear context-free systems. This follows

*I would like to thank Joost Engelfriet for drawing my
attention to context-free hypergraph grammars and their
relationship to deterministic tree-walking automata.

from the fact that multiple context-free grammars are
exactly that subclass of the linear context-free rewrit-
ing systems in which the objects generated by the
grammar are tuples of strings. The class of output
languages of deterministic tree-walking transducers is
known to be equal to the class of yields of images of the
regular tree languages under finite-copying top-down
tree transducers [4] and in [3] it was shown that it also
equal to the string languages generated by context-free
hypergraph grammars [2, 5].

We therefore have a number of Characterizations of
the same class of languages and results that have been
established for the class of languages associated with
one system carry over to the others. This is particu-
larly fruitful in this case since the output languages of
deterministic tree-walking transducers have been well
studied (see [4]).

In the remainder of the paper we describe linear
context-free rewriting systems and deterministic tree-
walking transducers and outline the equivalence proof.
We then describe context-free hypergraph grammars
and observe that they are a context-free rewriting sys-
tem.

L i n e a r C o n t e x t - F r e e R e w r i t i n g S y s t e m s

Linear context-free rewriting systems arose from the
observation that a number of grammatical formalisms
share two properties.

1. Their derivation tree sets can be generated by a
context-free grammar.

2. Their composition operations are size-preserving,
i.e., when two or more substructures are com-
bined only a bounded amount of structure is
added or deleted.

136

Examples of formalisms that. satisfy these condi-
tions are head grammars [8], tree adjoining gram-
mars [6], mult icomponent tree adjoining grammars [6]
and context-free hypergraph grammars. It was
shown [9] that a system satisfying the above conditions
generates languages that are semilinear and can be
recognized in polynomial time. The definition of lin-
ear context-free rewriting systems is deliberately not
specific about the kinds of structures being manipu-
lated. In the case of head grammars these are pairs of
strings whereas tree adjoining grammars manipulate
trees and context-free hypergraph grammars manipu-
late graphs.

In [9] size-preserving operations are defined for ar-
bitrary structures in terms of properties of the cor-
responding functions over the terminal yield of the
structures involved. The yield is taken to be a tuple
of terminal strings. We call the function associated
with a composition operation the y i e l d f u n c t i o n of
that operation. The yield function of Of of a com-
position operation f gives the yield of the structure
f (c l , l do t s , cn) based on the yield of the structures
el, • • . , am.

Let ~ be an alphabet of terminal symbols, f is an
n-ary l i n e a r r e g u l a r o p e r a t i o n over tuples of strings
in ~ if it can be defined with an equation of the form

f ((xl ,1, . . . , xl ,k,) , . . . , (ran,l,..., xn,k,,)) ---- (t l , . . . , tk)

where each k i > O, n >_ 0 and each ti is a string of
variables (x's) and symbols in ~ and where the equa-
tion is regular (all the variables appearing on one side
appear on the other) and linear (the variables appear
only once on the left and right).

For example, the operations of head grammars can
be define with the equations1:

w r a p ((X l , ~2), (Yl, Y2)) : (XlYl, Y2X2)

concl((xl, x2) , (Yl, Y2)) = (xx, x2y, y2)

C0n¢2((,~1, X2) , (Yl, Y2)) = (2?IX2Yl, Y2)
Thus, we have

wrap((ab, ca), (ac, bc)) = (abac, bcca)

concl((ab, ca), (ac, bc)) = (ab, caaebc)

conc2((ab, ca), (ac, be)) = (abcaac, be)

A g e n e r a l i z e d c o n t e x t - f r e e g r a m m a r (gcfg) [8]
is denoted G = (VN, S, F, P) where

1These operations differ from (but are equivalent to)
those used in [8]

VN is a finite set of nonterminal symbols,
S is a distinguished member of VN,
F is a finite set of function symbols and
P is a finite set of productions of the form

A --+ f (A 1 , . . . , A,)

where n > 0, f C F, and A, A I , . . . , A m C VN.

With a grammatical formalism we associate an in-
t e r p r e t a t i o n f u n c t i o n m that maps symbols in F
onto the formalism's composition operations. For ex-
ample, in a typical head grammar the set F might
include { W, e l , C2} where re(W) = wrap, m (C l) =
concl and re(C2) = conc2.

A formalism is a l i n e a r c o n t e x t - f r e e r e w r i t i n g
s y s t e m (lefts) if every grammar can be expressed as
a gcfg and its interpretation function m maps sym-
bols onto operations whose yield functions are linear
regular operations.

In order to simplify the remaining discussion we as-
sume that m maps directly onto the yield functions
themselves.

The language L(G) generated by a gcfg G =
(VN, S, F, P) with associated interpretation function
m is defined as

L(G) =

where

* A =:=V r e (f)
G

i f A - - ~ f 0 E P

* A ~ m (/) (t l , . . . , t n)
G

i f A --* f (A 1 , . . . , A n) E P and
Ai ~--~ ti (l < i < n).

G

We denote the class of all languages generated by
lefrs as LCFRL.

D e t e r m i n i s t i c T r e e - W a l k i n g T r a n s d u c -

e r s

A deterministic tree-walking transducer is an automa-
ton whose inputs are derivation trees of some context-
free grammar. The automaton moves around the tree
starting at the root. At each point in the computat ion,
depending on the label of the current node and the
state of the finite state control, the au tomaton moves

137

up, down or stays at the current node and outputs a
string. The computat ion ends when the machine tries
to move to the parent of the root node.

We denote a d e t e r m i n i s t i c t r e e - w a l k i n g t r a n s -
d u c e r (dtwt) by M - (Q, G, A, 6, q0, F) where
Q is a finite set of states,
G = (VN, VT, S, P) is a context-free grammar without
e-rules,
A is a finite set of ou tput symbols,
6 : Q × (VN U VT) ---+ Q × D × A* is the transition
function where
D = {stay, up} O {d(k) [k > 1 },
q0 E Q is the initial state and
F C_ Q is the set of final states.

A configuration of M is a 4-tuple (q, 7, r/, w) where
q E Q is the current state, 7 is the derivation tree of
G under consideration, r / is a node in 7 or T (where 1"
can be thought of as the parent of the root ofT) , and
w E A* is the output string produced up to that point
in the computat ion. We have

(q, 7, r/, w) ['-M (qt, "[, r/,, WW/)

if the label of r / i s X, ~f(q, X) = (q', d, w') such that
when d = stay then T/' = r/, when d = d(i) then 7/' is
the ith child of r / (i f it exists), and when d = up then
r/' is the parent of r/(T if r / is the root of 7).

The output language O U T (M) of M is the set of
strings:

{weA*I (q0,7, r/r, e) b~/ (q f , 7, T, w),
ql E F and
7 is a derivation tree of G with root r/r }

where F-~ is the reflexive transitive closure of ['-M"
We denote the class of all languages O U T (M) where

M is a dtwt as O U T (D T W T) .

Consider the dtwt

M = ({qo, ql,q2, q3} ,G , {a ,b , c , d } ,~ f , qo,{q3})

where G = ({ S } , { e } , S , { S - * A , A - ~ A , A - * e })
and the relevant component of 6 is defined as follows.

6(q0, s) = (q0, d(1), e)
6(q0, A) = (q0, d(1), a)
6(ql, S) = (q2, d(1), e)
6(q2, A) = (q2, d(1), c)
6(q3, 5') -~ (q3, up, e)

6(qo, e) = (ql, up, e)
6(qz, A) = (qz, up, b)
~f(q~, e) = (q3, up, e)
6(q3, A) = (q3, up, d)

It can be seen that O U T (M) = { anbnc'~d '~ In > 1 }.

E q u i v a l e n c e

In this section we outline a two part proof that
O U T (D T W T) = LCFRL.

O U T (D T W T) C_ L C F R L

Consider a dtwt M = (Q, E, G, A, 6, qo, F) where G =
(VN, VT, S, P). For convenience we assume that M is
a dtwt without stay moves (see Lemma 5.1 in [3] for
proof that this can be done).

Given a derivation tree of G, and a node r / in this
tree, we record the strings contributed to the output
between the first and last visit to nodes in the subtree
rooted at r/. These contributed terminal strings can
be viewed as a k tuple where k is the number of times
that the transducer enters and then leaves the subtree.

For each production X --* X1 . . . X n in P and each
p E Q we call

C((X,p, .) -.+ (X1, e, 0) . . . (Xn, ¢, 0))

C((A, p, .) (XI, e, 0) . . . (Xn, e, 0)) simulates all sub-
computations of M that start in state p at a node
labelled X that has been expanded using the pro-
duction X --* X 1 . . . X n . The node labelled A may
be visited several times, but each t ime the machine
must be in a different state (otherwise, being deter-
ministic, it would loop indefinitely). The sequence of
visits is recorded as a string of states. The compo-
nent of the rule that is underlined indicates which of
the children or parent is currently being visited. The
call C((X, a, ¢) -~ (Xl, a l , i l) . . . (Xn, an, in)) is made
when a computat ion is being simulated in which the
node labelled A has been visited]a[times ([a[de-
notes the length of a) such that on the ith visit the
machine was in the state indicated by the ith symbol
in a. a l , . . . , an are used in a similar way to encode
the state of the machine during visits to each child
node. ¢ is a string of terms that is used to encode the
output produced between the first and last visit to the
subtree rooted at the node labelled A. Ultimately, it
has the form .tl - t k . where each ti encodes the
composition of the ith component of the tuple. The
notation used for each ti is identical to that used in
the equations used to define lefts composition opera-
tions given earlier, i.e., each ti is a string of output
symbols and x's. i l , . . . , i n are used to encode the
number of times that a given child has been visited
from above. This gives the number of times the sub-
tree rooted at that node has been visited and, hence,
encodes which component of the tuple was completed
most recently. Thus, for each j , 1 _< j _< n, the sim-
ulation has moved from the parent to the j t h child ij

138

times. This number is used to determine which com-
ponent of the tuple derived from the j t h node should
contribute to the parent's current component. When
a move is made from the parent node to the j t h child
we add the variable xj,/~+x to the term currently being
constructed for the parent node. In other words, the
next component of the parent output is the ij + l th
component of its j t h child.

The call

C((X, a, ¢) --*
(X1, oq, ix) . . . (Xj, aj, i j) . . . (Xn, an, in))

sumulates the machine visiting the j t h child of a node
expanded using the rule X --~ X1 . . . Xn.

From M the gcfg G' is constructed such that G' =
(V~, 5", F, P ') where

vk = { S ' } u {(X,a) lXeVNUVTand
non-repeating a e Q*}

and the procedure C determines P ' and F where for
each production A -~ X1 . . . Xn in P and each p E Q
we call

C((A,p, .) --* (Xx, c, 0) . . . (X~ , e, 0))

In addition, for each a E VT and each p E Q we call

C((a, p, .)) -~

C is defined as follows.

Case 1.

C((X, ap, ¢) ---* (X1, oq, ix) . . . (Xn, an, in))

Note that if n = 0 then X E VT, otherwise, X E VN.

If 6(p, X) = (q, up, w) then

(X, ap) --~ f ((X l , ~1) , . . . , (Xn, otn)) E P'

for a new function f E F where re(f) is defined by

f ((xl , . . . ,mix), . . . , (xl , . : . , mi,)) '= (t l , . . . , tk)

where Cw. = 41 " . . . " tk'. (note that when ij = 0 for
some j then (Xl , . . . , xij) will appear as e), in addition,
for each p' in Q that does not appear in ap call

C((X, o~pp', ew.) ---* (Xl, ~1, i1) . . . (Xn, O~n, in))

Note that • has been placed after ew. This indicates
that we have finished with the current component of
the tuple.

Otherwise, if 6(p,X) = (q ,d(j) ,w) and 1 _< j < n
then call

c((x, ap, ¢w=j,~j+x)
(x t , oq , i t) . . . (x j , a jq ,# + 1)...(Xn,o~,~,i,O)

Note that if Xj E VT then it is not possible for the
machine to move down the tree any further.

Case 2.

c((x, ¢) - - .

(X1, (~1, i l) . . . (Xj, ajp, i j) . . . (Xn, an, in))

If 6(p, Xj) = (q, up, w) then call

(Xl, al, i l) . . . (Xj, ajp, i j) . . . (Xn, an, in))

Note that ¢ will end with xj,ii and the i j th compoent
of the yield at As. will end in w.

Otherwise, if 6(p, Xj) = (q,d(k), w) then if Xj E VN
for each p' in Q and not in a iP call

c ((x , a, ¢) - - .

(Xl, ot], i t) . . . (Xj, %pp', ij) . .. (Xn, an, in))

This simulates the next visit to this node (which must
be from below) in the (guessed) state p'.

In addition to the productions added by C, include
in P~ the production S ~ ---. (S, qootq!) for each qi E F
and a E Q* such that aootqi is non-repeating and
/f(q, S) = (qI, up, w) for some w where q is the last
symbol in q0a.

A complete proof would establish that the following
equivalence holds.

(Aa) ~ (w t , . . . , w ,)

if and only if there is a derivation tree 7 of G with
root ~?r labelled A such that a = a t . . . a n for some
a l , . . . , a n E Q+ and for each i (1 < i < n)

7, 7, f,

where ai = pia[= a['qi for some c~, a~' E Q*.

Consider the application of this construction to ex-
ample the dtwt given earlier. The grammar contains
the following productions (where productions contain-
ing useless nonterminals have been omitted).

(S, qoqlq3) --~ A((A, qoqlq2q3))

139

where f l ((X l j , Xl,2)) -- Xl,lX1,2

(A, qoqlq2qa) --* f2((A, qoqlq2qa))

=

(A, qoqlq2q3) --~ f3((e, qoq2))

w h e r e =

(e, qoq2) ~ f 4 0

where 140 = (e, e).
By renaming nonterminal we get the four produc-

tions
S --* f l (A) A - . f 2 (A)

A ---* f3(e) e ---* f 4 0

L C F R L C_ O U T (D T W T)

Consider the gcfg G -- (VN, S, F, P) and mapping m
tha t interprets the symbols in F . Without loss of gen-
erality we assume tha t no nonterminal appears more
than once on the right of a product ion and tha t for
each A E VN there is some rank (A) = k such tha t
only k-tuples are derived f rom A.

We define a dtwt M = (Q, ~ , G ~, liT, 6, qo, F) where
G ~ is a context-free g r a m m a r tha t generates derivation
trees of G in the following way. A derivation involving
the use of a product ion zr will he represented by a tree
whose root is labelled by zr = A --* f (A 1 , . . . , Am) with
n subtrees encoding the derivations f rom A 1 , . . . , An.
The roots of these subtrees will be labelled by the
n product ions used to rewrite the A 1 , . . . , A n . Let
lhs(~r) = A and rhs(~r) = { A I , . . . , An }.

The dtwt M walks around a derivation tree 7 of
G' in such a way tha t it outputs the yield of 7. Each
subtree of 7 rooted at a node ~/labelled by the produc-
tion ~r will be visited on k = rank(lhsOr)) occasions by
M. During the i th visit to the subtree M will output
the i th component of the tuple. We therefore include
in Q k states { 1 , . . . , k } tha t are used to keep track
of which tuple is being considered. This will gener-
ally involve visiting children of y as determined by
the equat ion used to define function used in 7r. Addi-
tional s tates in Q are used to keep track of these visits
as follows. When the lth child of T/ has finished its
ruth component , M will move back up to y in state
(Az,m). Since no nonterminal appears twice on the
right of a product ion it is possible for M to determine
the value of l f rom At while at y.

For each product ion ~r = A --* f (A 1 , . . . , A n) E P
where f is interpreted as the function defined by the

equation

f ((x X , 1 , . - . , X l , k l) , . - . , (X n j , . . - , X n , k ,)) = (t l , . . . , t k)

we include the following components in the definition
of 6.

For each i (1 < i < k)

• if ti = wxl ,m¢, where w is a possibly empty ter-
minal string then let

6(i, ~) = (m, down(O, w)

• if ti = w (in which case it is t ime to move up the
tree) let

6(i, ~r) = ((lhs(Ir), i), up, w)

For each B E rhs(~r) and each m, 1 <_ m <_ rank(B) ,
let

6((B, m), 7r) = (q, move, w)

where (q, move, w) is determined as follows. For some
unique I we know that B is the lth nonterminal on the
right-hand side of 7r. There is a unique ti such tha t
ti = ¢lXZ,mw¢2 where w is a possibly empty string of
terminals.

Case 1 : ¢ 2 is empty
In this case the ith component of the current node is
complete. Thus, q = (lhs(r) , i) and move = up.

Case 2 : ¢ 2 begins with the variable xv,m,
In this case the machine M must find the m ' t h compo-
nent of t h e / ' t h child. Thus, q = m ' and move = d(l ') .

It should be clear that the s tar t s tate q0 should be
1 and the set of final states F = { (S, rank (S)) }.

A complete proof would involve verifying tha t the
following equivalence holds.

(A a) ~ (w l , . . . , W n)

if and only if there is a derivation tree 7 of G' with
root ~r labelled 7r such that lhs(lr) = A and for each i
(1 < i < n)

(i, 7, ~/r, e) t-~4 ((A, i), 7, t , w~)

We apply the construction to the g r a m m a r pro-
duced in the illustration of the first construction.
First, we name the productions of the g r a m m a r

7rl = S --~ f l (A) ~r2 = A --* f 2 (A)

140

~3 = A ---* f3(e) 7r4 = e --* f 4 0

The construction gives a machine in which the func-
tion 5 is defined as follows.

di(1, r l) = (1, d(1), e)
&(1, ~r2) = (1, d(1), a)
5(2, ~2) = (2, d(1), e)
5(1, 7rz) = (1, d(1), a)
5(2, r3) = (2, d(1), c)
5(1, ~r4) = ((e, 1), up, e)
5(2, ~,) = fie, 2), up, ~)

6((A, 1), r l) = (2, d(1), e)
6((A, 2), 7rl) : ((S, 1), up, e)
6((A, 1), r~) = ((A, 1), up, b)
5((A, 2), 7r2) = ((A, 2), up, d)
5((e, 1), 7rz) = ((A, 1), up, b)
5((e, 2), r3) = ((A, 2), up, d)

The context-free grammar whose derivation trees
are to be transduced has the following productions.

";l ' l " ~ 71"2 7l'1 - "+ 7r3

We denote a h y p e r g r a p h as a five tuple H
(V, E, ~ , incident, label) where
V is a finite set of nodes,
E is a finite set of edges,
E is a finite set of edge labels,
incident : E --* V* is the incidence function and
label : E --+ ~ is the edge labelling function

For example, in the above graph
V = {v l , v2 , vz, v4}, E = {e l , e2 , e3} ,

= { a, b, c} , incident(el) = (v2, vl, v4),
i , , c i de . t (e2) = (v4, v l) , inc ident (e3) = (v3),
label(e,) = a, label(e2) - b and label(e3) -- c.

A string can be encoded with a s t r i n g h y p e r -
g r a p h [5]. The string bcaab is encoded with the fol-
lowing graph.

71"2 ~ 71"2 71"2 ~ 71"3 71"3 ~ 7i'4

C o n t e x t - F r e e H y p e r g r a p h G r a m m a r s

In this section we describe context-free hypergraph
gramars since they are an example of a lcfrs involv-
ing the manipulation of graphs, zThe class of string
languages generated by context-free hypergraph gram-
mars is equal to O U T (D T W T) [3] and the above result
shows that they are also equal to LCFRS.

A directed hypergraph is similar to a standard
graph except that its (hyper)edges need not simply go
from one node to another but may be incident with
any number of nodes. If an edge is incident with n
nodes then it is a n-edge. The n nodes that are inci-
dent to some edge are linearly ordered. For example,
in the figure below, dots denote nodes and labelled
square boxes are edges. The edge labelled a is a 3-
edge, the edge labelled b is a 2-edge and the edge
labelled c is a 1-edge. When the number of nodes
incident to an edge exceeds 2, numbered tentacles are
used to indicate the nodes that are incident to the
edge. The numbers associated with the tentacles com-
ing from an edge indicate the linear order of the nodes
that are incident to that edge. 2-edges are shown in
the standard way and 1-edges can be used as a way of
associating labels with nodes as shown.

@

141

b c a a b

We denote a contex t - f ree h y p e r g r a p h gram-
mar (cfhg) as four tuple G = (VN, VT, S, P) where
VN is a finite nonterminal alphabet,
VT is a finite terminal alphabet,
S E VN is the initial nonterminal and
P is a finite set of productions e -* H where

H = (V, E , VN O VT, incident, label)

is a hypergraph and
e E E is a nonterminal edge in H, i.e., label(e) E VN.

Consider the application of a production e --* H to a
graph H ~ at a node e p in H ~ with the same nonterminal
label as e. The resulting graph is obtained from H ~
by replacing e ~ by the graph H with e removed from
it. This involves merging of nodes. In particular, the
ith node incident with e is merged with the ith node
incident with e ~. We require that all edges with the
same label have the same number of incident nodes. A
derivation begins with a graph containing a single edge
labelled S and no edges. A derivation is completed
when there are no nonterminal nodes in the graph.

The string language associated with a cfhg G is de-
noted STR(G). The class of languages generated by
all cfhg is denoted STR(CFHG).

Due to lack of space, rather than a complete formal
definition of cfhg derivations, we present an illustra-
tive example. Consider the three productions shown
below. Note that the edge on the left-hand-side of the
production is indicated with a double box.

1

4

a

Below we show the steps in a derivation of the string
aabbccdd involving these productions. Note that the
set of graphs derived corresponds to the string lan-
guage { anbncnd n I n > 0 }.

D

a

d

a

b j ° ~t

C

d

a

b 1

C

d

a a

° b

" ~ . . ~ £
C

d d

It is clear from their definition that cfhg satisfy the
conditions for being a lcfrs given earlier. As has been
observed [3] it is possible to represent the set of deriva-
tions of a given cfhg with a set of trees that can be
generated by a context-free grammar. The composi-
tion operation of cfhg in which a node is replaced by
a graph is clearly size-preserving since it does not in-
volve duplication or deletion of an unbounded number
of nodes or edges.

Additional Remarks

We end by elaborating on the relationship between
lcfrs, dtwt and cfhg in terms of the following complex-
ity measures.

• The maximum of rank(A) nonterminals A of a
gcfg. Let LCFRLk be the class of languages gen-
erated by gcfg of some lcfrs whose nonterminals
have rank k or less, i.e., derive at most k tuples.

• The crossing n u m b e r of a dtwt M. This is the
maximum number of times that it visits any given
subtree of an input tree. Let OUT(DTWTk)
be the class of languages output by dtwt whose
crossing number does not exceed k.

• The maximum number of tentacles of the nonter-
minals of a cfhg. Let STR(CFI-IGk) be the class
of languages associated with cfhg whose nonter-
minals have at most k tentacles.

It has been shown (Theorem 6.1 in [3]) that

OUT(DTWTk) = STR(CFHGg.k) = STR(CFHG2k+I)

It can be seen from the above constructions that

LCFRLk = OUT(DTWTk)
= STR(CFHG2k)
= STR(CFHG2k+I)

R e f e r e n c e s

[1] A. V. Aho and J. D. Ullman. Translations on a
context-free grammar. Inf. Control, 19:439-475,
1971.

[2] M. Bauderon and B. Courcelle. Graph expres-
sions and graph rewritings. Math. Syst. Theory,
20:83-127, 1987.

[3] J. Engelfriet and L. Heyker. The string generat-
ing power of context-free hypergraph grammars.
J. Comput. Syst. Sci., 43:328-360, 1991.

142

[4] J. Engelfriet, G. Rozenburg, and G. Slutzki. Tree
transducers, I systems, and two-way machines. J.
Comput. Syst. Sci., 20:150-202, 1980.

[5] A. Habel and H. Kreowski. Some structural as-
pects of hypergraph languages generated by hy-
peredge replacement. In STACS, 1987.

[6] A. K. Joshi, L. S. Levy, and M. Takahashi. Tree
adjunct grammars. J. Comput. Syst. Sci., 10(1),
1975.

[7] T. Kasami, H. Seki, and M. Fujii. General-
ized context-free grammars, multiple context-free
grammars and head grammars. Technical report,
Department of Information and Computer Sci-
ence, Osaka University, Osaka, Japan, 1988.

[8] C. Pollard. Generalized Phrase Structure Gram-
mars, Head Grammars and Natural Language.
PhD thesis, Stanford University, 1984.

[9] K. Vijay-Shanker, D. J. Weir, and A. K. Joshi.
Characterizing structural descriptions produced
by various grammatical formalisms. In 25 th meet-
ing Assoc. Comput. Ling., 1987.

[10] D. J. Weir. Characterizing Mildly Context-
Sensitive Grammar Formalisms. PhD thesis,
University of Pennsylvania, Philadelphia, PA,
1988.

143

