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ABSTRACT 

In this paper we compare two grammar-based gen- 
eration algorithms: the Semantic-Head-Driven Genera- 
tion Algorithm (SHDGA), and the Essential Arguments 
Algorithm (EAA). Both algorithms have successfully 
addressed several outstanding problems in grammar- 
based generation, including dealing with non-mono- 
tonic compositionality of representation, left-recursion, 
deadlock-prone rules, and nondeterminism. We con- 
centrate here on the comparison of selected properties: 
generality, efficiency, and determinism. We show that 
EAA's traversals of  the analysis tree for a given lan- 
guage construct, include also the one taken on by 
SHDGA. We also demonstrate specific and common 
situations in which SHDGA will invariably run into 
serious inefficiency and nondeterminism, and which 
EAA will handle in an efficient and deterministic 
manner. We also point out that only EAA allows to 
treat the underlying grammar in a truly multi-directional 
manner. 

1. INTRODUCTION 

Recently, two important new algorithms have been 
published ([SNMP89], [SNMP90], [S90a], [S90b] and 
[$91]) that address the problem of automated genera- 
tion of natural language expressions from a structured 
representation of meaning. Both algorithms follow the 
same general principle: given a grammar, and a struc- 
tured representation of meaning, produce one or more 
corresponding surface strings, and do so with a mini- 
mal possible effort. In this paper we limit our analysis 
of the two algorithms to unification-based formalisms. 

The first algorithm, which we call here the Seman- 
tic-Head-Driven Generation Algorithm (SHDGA), uses 
information about semantic heads ~ in grammar rules 
to obtain the best possible traversal of the generation 
tree, using a mixed top-down/bottom-up strategy. 

The semantic head of a rule is the literal on the right-hand 
side that shares the semantics with the literal on the left. 

The second algorithm, which we call the Essential Ar- 
guments Algorithm (EAA), rearranges grammar pro- 
ductions at compile time in such a way that a simple 
top-down left-to-right evaluation will follow an opti- 
mal path. 

Both algorithms have resolved several outstanding 
problems in dealing with natural language grammars, 
including handling of  left recursive rules, non-mono- 
tonic compositionality of representation, and deadlock- 
prone rules 2. In this paper we attempt to compare these 
two algorithms along their generality and efficiency 
lines. Throughout this paper we follow the notation used 
in [SNMP90]. 

2. MAIN CHARACTERISTICS OF SHDGA'S 
AND EAA'S TRAVERSALS 

SHDGA traverses the derivation tree in the seman- 
tic-head-first fashion. Starting from the goal predicate 
node (called the root), containing a structured repre- 
sentation (semantics) from which to generate, it selects 
a production whose leg-hand side semantics unifies with 
the semantics of  the root. If  the selected production 
passes the semantics unchanged from the left to some 
nonterminal on the right (the so-called chain rule), this 
later nonterminal becomes the new root and the algo- 
rithm is applied recursively. On the other hand, if no 
right-hand side literal has the same semantics as the 
root (the so called non-chain rule), the production is 
expanded, and the algorithm is reeursively applied to 
every literal on its right-hand side. When the evalu- 
ation of  a non-chain rule is completed, SHDGA con- 
nects its left-hand side literal (called the pivot) to the 
initial root using (in a backward manner) a series of 
appropriate chain rules. At this time, all remaining 
literals in the chain rules are expanded in a fixed order 
(left-to-right). 
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2 Deadlock-prone rules are rules in which the order of the ex- 
pansion of right-hand side literals cannot be determined locally 
(i.e. using only information available in this rule). 



Since SHDGA traverses the derivation tree ha the 
fashion described above, this traversal is neither top- 
down ('I'D), nor bottom-up (BU), nor left-to-right (LR) 
globally, with respect to the entire tree. However, it 
is LR locally, when the siblings of  the semantic head 
literal are selected for expansion on the right-hand side 
of  a chain rule, or when a non-chain rule is evaluated. 
In fact the overall traversal strategy combines both the 
TD mode (non-chain rule application) and the BU mode 
(backward application of  chain rules). 

EAA takes a unification grammar (usually Prolog- 
coded) and normalizes it by rewriting certain left re- 
cursive rules and altering the order of  right-hand side 
nonterminals in other rules. It reorders literals ha the 
original grammar (both locally within each rule, and 
globally between different rules) ha such a way that the 
optimal traversal order is achieved for a given evalu- 
ation strategy (eg. top-down left-to-righ0. This restruc- 
turing is done at compile time, so in effect a new 
executable grammar is produced. The resulting parser 
or generator is TD but not LR with respect to the origi- 
nal grammar, however, the new grammar is evaluated 
TD and LR (i.e., using a standard Prolog interpreter). 
As a part of the node reordering process EAA calcu- 
lates the minimal sets of  essential arguments (msea's) 
for all literals ha the grammar, which in turn will al- 
low to project an optimal evaluation order. The opti- 
mal evaluation order is achieved by expanding only those 
literals which are ready at any given moment, i.e., those 
that have at least one of  their mseas instantiated. The 
following example illustrates the traversal strategies of 
both algorithms. The grammar is taken from [SNMP90], 
and normalized to remove deadlock-prone rules in order 
to simplify the exposition? 

(0) sentence/deel(S)--> s(f'mite)/S. 
(1) sentence/imp(S) -- > vp(nonfmite,[np(_)/you]) 

IS. 
, , . . . . .  

(2) s(Form)/S - > Subj, vp(Form,[Subj/S. 
. . . ° ° ° .  

(3) vp(Form,Subcat)/S -- > v(Form,Z)/S, 
vpl(Form,Z)/Subcat. 

(4) vpl(Form,[Compl[ Z])/Ar --> vpl(Form, Z)/Ar, 
Compl. 

(5) vpl(Form,Ar)/Ar.  

(6) vp(Form,[Subj])/S -- > v(Form,[Subj])/VP, 
anx(Form, [Subj],VP)/S. 

(7) anx(Form,[Subjl,S)/S. 
(8) aux(Form,[Subjl ,A)/Z--> adv(A)/B, 

aux(Form[Subj],B)/Z. 
. . . . . . .  

(9) v(finite,[np(_)/O,np(3-sing)lS])llove(S,O) -- > 
[loves]. 

(10) v(f'mite, [np(_)/O,p/up,np(3 -sing)/S])/ 
call_up(S,O) -- > [calls]. 

(11) v(fmite,[np(3-sing)/S])/leave(S) -- > [leaves]. 
. . . . . .  ° 

(12) np(3-sing)/john -- > [john]. 
(13) np(3-pl)/friends -- > [friends]. 

(14) adv(VP)/often(VP)--> [often]. 

The analysis tree for both algorithms is presented on 
the next page. (Figure 1.). The input semantics is given 
as decl(call_up~ohnfriends)). The output string be- 
comes john calls up friends. The difference lists for 
each step are also provided. They are separated from 
the rest of  the predicate by the symbol I- The differ- 
ent orders in which the two algorithms expand the 
branches of  the derivation tree and generate the termi- 
nal nodes are marked, ha italics for SHDGA, and in 
roman case for EAA. The rules that were applied at 
each level are also given. 

I f  EAA is rerun for alternative solutions, it will pro- 
duce the same output string, but the order in which nodes 
vpl (finite,[p/up,np(3-sing)/john])/[Subj]/Sl_S2, and 
np(..)/~ends/S2__l] (level 4), and also, vp1(finite,[np(3- 
sing)/john])/[Subj]/S1_S12, and p/up/S12_S2, at the 
level below, are visited, will be reversed. This hap- 
pens because both literals in both pairs are ready for 
the expansion at the moment when the selection is to 
be made. Note that the traversal made by SHDGA and 
the first traversal taken by EAA actually generate the 
terminal nodes ha the same order. This property is 
formally defined below. 

Definition. Two traversals T' and T "  of  a tree T are 
said to be the same-to-a-subtree (stas), if  the follow- 
hag claim holds: Let N be any node of  the tree T, and 
S~ ... . .  S all subtrees rooted at N. If  the order in which 
the subtrees will be taken on for the traversal by T' is 
S? ..... S. n and by T"  S. t ..... S.", then SJ =SJ ..... S."=S.". 

s s .1 J l .I t j 

(S~ is one of  the subtrees rooted at N, for any k, and 1) 

Stas however does not imply that the order in which 
the nodes are visited will necessarily be the same. 

3 EAA eliminates such rules using global node reordering ([$91]). 
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sentence/decl(call._up0ohn, friends)) I St ring_[l 

s(ftnite)/call up(john, friends) IString._[] 

SubJ l String_SO 

npO-slng)/joh n I String_SO 

np(3-sing)/john I UohnlS0LS0 

1 0 /  Rule (12) 

john 

/V IV 

q)(rmJte,ISubjl)/caUup(john,trien~) I S0_[] 
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8 1 9 Rule (13) 

11I friends III 

FIGURE 1: EAA's and SHDGA's Traversals of An Analysis Tree. 

3. GENERALITY-WISE SUPERIORITY OF 
EAA OVER SHDGA 

The traversals by SHDGA and EAA as marked on 
the graph are stas. This means that the order in which 
the terminals were produced (the leaves were visited) 
is the same (in this case: calls up friends john). As noted 
previously, EAA can make other traversals to produce 
the same output string, and the order in which the 
terminals are generated will be different in each case. 
(This should not be confused with the order of  the ter- 
minals in the output string, which is always the same). 
The orders in which terminals are generated during al- 
ternative EAA traversals are: up calls friends john, 
friends calls up john, friends up calls john. In general, 
EAA can be forced to make a traversal corresponding 
to any permutation of  ready literals in the right-hand 
side of  a rule. 

We should notice that in the above example SHDGA 
happened to make all the right moves, i.e., it always 

expanded a literal whose msea happened to be instan- 
tiated. As we will see in the following sections, this 
will not always be the case for SHDGA and will be- 
come a source of  serious efficiency problems. On the 
other hand, whenever SHDGA indeed follows an 
optimal traversal, EAA will have a traversal that is same- 
to-a-subtree with it. 

The previous discussion can be summarized by the 
next theorem. 
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Theorem: If  the SHDGA, at each particular step dur- 
ing its implicit traversal of the analysis tree, visits only 
the vertices representing literals that have at least one 
of  their sets of  essential arguments instantiated at the 
moment of the visit, then the traversal taken by the 
SHDGA is the same-to-a-subtree (stas) as one of the 
traversals taken by EAA. 

The claim of the theorem is an immediate consequence 
of  two facts. The first is that the EAA always selects 



for the expansion one of  the literals with a msea cur- 
rently instantiated. The other is the definition of 
traversals being same-to-a-subtree (always choosing the 
same subtree for the next traversal). 

The following simple extract from a grammar, de- 
fining a wh-question, illustrates the forementioned (see 
Figure 2. below): 

. . . . . . . .  . °  

(1) whques/WhSem--> whsubj(Num)/WhSubj, 
whpred(Num,Tense, [WhSubj,WhObj]) 

/WhSem, whobj/WhObj. 
o . o  . . . . . .  . 

. . . . . . .  , . °  

(2) whsubj(_.)/who -- > [who]. 
(3) whsubj(__)/what - ->  [what]. 

° °  . . . . . .  , °  

(4) whpred(sing,perf, [Subj, Obj])/wrote(Subj, Obj) 
- >  [wrote]. 

. . . ° . , , , ° ,  

(5) whobj/ this--> [this]. 
° ° o o , o o o ° °  

The input semantics for this example is 
wrote(who,this), and the output string who wrote this. 
The numbering for the edges taken by the SHDGA is 
given in italics, and for the EAA in roman case. Both 
algorithm~ expand the middle subtree first, then the left, 
and finally the right one. 

Each of  the three subtrees has only one path, there- 
fore the choices of  their subtrees are unique, and there- 
fore both algorithms agree on that, too. However, the 
way they actually traverse these subtrees is different. 
For example, the middle subtree is traversed bottom- 

up by SHDGA and top-down by EAA. whpred is 
expanded first by SI-IDGA (because it shares the se- 
mantics with the root, and there is an applicable non- 
chain rule), and also by EAA (because it is the only 
literal on the right-hand side of the rule (1) that has 
one of its msea's instantiated (its semantics)). 

After the middle subtree is completely expanded, both 
sibling literals for the whpred have their semantics in- 
stantiated and thus they are both ready for expansion. 
We must note that SHDGA will always select the left- 
most literal (in this case, whsubj), whether it is ready 
or not. EAA will select the same in the first pass, but 
it will expand whobj first, and then whsubj, if we force 
a second pass. In the first pass, the terminals are gen- 
erated in the order wrote who this, while in the second 
pass the order is wrote this who. The first traversal for 
EAA, and the only one for SHDGA are same-to-a- 
subtree. 

4. EFFICIENCY-WISE SUPERIORITY OF 
EAA OVER SHDGA 

The following example is a simplified fragment of a 
parser-oriented grammar for yes or no questions. Using 
this fragment we will illustrate some deficiencies of 
SHDGA. 

o . ° o . o o o . .  

(1) sentence/ques(askif(S)) -- > yesnoq/askif(S). 

(2i" ye's'noq/asld f(S)--> 
auxverb(Num,Pers,Form)/Aux, 
subj (Num,Pers)/Subj, 
mainverb(Form, [Sub j,  Obj])/Verb, 
obj(_,J/Obj,  
adj([Verb])/S. 

wb,p~wr~e(wko.a,~) [ Q,m_U 

w h s ~ b j ( N u m ) / W h S J j  l ( ~ , e s  R I  whpred(Num, Form, [WhSubj,WhObjD/ 
wrole(who,this) I R IR2 

wl~bj/WhObj I~_11 

1 2 

wrote 
1 I 

3 3 ~ 4  4 

w ~  thh 

H l l ~ i l l  ! I !  

~TJ, t *  O )  

su~ 
4 e r 3  

1 I I  ~ "  11 

FIGURE 2: EAA's and SHDGA's STAS Traversals of Who Question's Analysis Tree. 
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(3) auxverb(sing, one,pres__perf)/laave(pres__perf, sing) 
--> [have]. 

(4) aux_verb(sing,one,pres_cont)/be(pres_cont, 
s ing- l ) - ->  [am]. 

(5) auxverb(sing,one,pres)/do(pres,sing- 1) -- > [do]. 
(6) aux_verb(sing,two,pres)/do(pres,sing-2)--> [do]. 
(7) aux_verb(sing,three,pres)/do(pres,sing-3) -- > 

[does]. 
(8) aux_verb(pl,one,pres)/do(pres,pl-1) -- > [do]. 

(9) subj(Num,Pers)/Subj -- > np(Num, Pers,su)/Subj. 
(10) obj(Num,Pers)/Obj -- > np(Num,Pers,ob)/Obj. 
(11) np(Num,Pers,Case)/NP 

--> noun(Num,Pers, Case)/NP. 
(12) np(Num,Pers,Case)/NP 

--> pnoun(Num,Pers, Case)/NP. 
(13) pnoun(sing,two,su)/you -- > [you]. 
(14) pnoun(sing,three,ob)/him -- > [him]. 

(15) main_verb(pres,[Subj,Obj])/see(Subj,Obj) 
- - >  [see]. 

(15a) main_verb(pres__perf, [Subj, Obj ])/seen(Subj, Obj ) 
- -> [seen]. 

(15b) mainverb(perf, [Subj,Obj])/saw(Subj, Obj) 
- - >  [saw]. 

(16) adj([Verb])/often(Verb)--> [often]. 

The analysis tree (given on Figure 3.) for the input 
semantics ques ( askif (often (see (you,him) ) ) ) (the 
output string being do you see him often) is presented 
below. 

Both algorithms start with the rule (1). SHDGA se- 
lects (1) because it has the left-hand side nonterminal 
with the same semantics as the root, and it is a non- 
chain rule. EAA selects (1) because its left-hand side 
unifies with the initial query (-?- sentence (OutString__G) 
/ ques(askif(often(see(you,him)))) ). 

Next, rule (2) is selected by both algorithms. Again, 
by SHDGA, because it has the left-hand side nonter- 
minal with the same semantics as the current root 
(yesnoq/askif...), and it is a non-chain rule; and by EAA, 
because the yesnoq/askif.., is the only nonterminal on 
the right-hand side of the previously chosen rule and 
it has an instantiated msea (its semantics). The crucial 
difference takes place when the right-hand side of rule 
(2) is processed. EAA deterministically selects adj for 
expansion, because it is the only rhs literal with an 
instantiated msea's. As a result of expanding adj, the 
main verb semantics becomes instantiated, and therefore 
main__verb is the next literal selected for expansion. After 
processing of main_verb is completed, Subject, Object, 
and Tense variables are instantiated, so that both subj 
and obj become ready. Also, the tense argument for 
aux_verb is instantiated (Form in rule (2)). After subj, 

se ntee~e/ques(askifloft en(see(yoo,him)))) ] String_[] 

' I 1 
yesnoqlaskiffonenlsee(you,him))) [ String_[] 

Ru~ (z) 

Rule 

aux_verb(sing,t wo, pres)/ 
do(pres,sing-2) [ Idol ROI_R0 

Rule(o) 

11 3 

do 
V 1 

sobj(sing,two)/ main_verb(pres, [you, him])/ obj(sing,three) 
youI[youlRl] RI see(you,him) ] [see [ R2]_R2 him [ [him ] R3]_R3 

Role (9) Rule (15) Rule (10) 

5 6 4 7 8 10 

np(sing,two,su)/ see np(sing,three,ob)/ 
you I [you I R I]_RI 1I II1 him I [him [ R3]_R3 

Rule.z)[ Rule(l,) I 
6 5 9 9 

pnoun(sing,two,su)/ pnoun(slng,three,ob)/ 
you I [you[ R I ] R I  him l [him I R3LR3 

Rule (13) ] Rule (14) I 

7 4 10 8 

you him 
l l I  / /  IV /V 

adj([see(you,him) ])/ 
often(see( 
you, him)) I 
[one~ I [ I L l  

Rule (16) I 
3 11 

often 
I V 

FIGURE 3: EAA's  and SHDGA's  Traversals o f  If Question's Analysis  Tree. 
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and obj are expanded (in any order), Num, and Pers 
for aux_verb are bound, and finally aux_verb is ready, 
too .  

In contrast, the SHDGA will proceed by selecting 
the leftmost literal (auxverb(Num,Pers,Form)/Aux) of 
the rule (2). At this moment, none of  its arguments is 
instantiated and any attempt to unify with an auxiliary 
verb in a lexicon will succeed. Suppose then that have 
is returned and unified with aux_verb with pres._perf 
as Tense and sing_l as Number. This restricts further 
choices of subj and main_verb. However, obj will still 
be completely randomly chosen, and then adj will reject 
all previous choices. The decision for rejecting them 
will come when the literal adj is expanded, because its 
semantics is often(see(you,him)) as inherited from 
yesnoq, but it does not match the previous choices for 
aux_verb, subj, main_verb, and obj. Thus we are forced 
to backtrack repeatedly, and it may be a while before 
the correct choices are made. 

In fact the same problem will occur whenever SHDGA 
selects a rule for expansion such that its leftmost right- 
hand side literal (first to be processed) is not ready. 
Since SHDGA does not check for readiness before ex- 
panding a predicate, other examples similar to the one 
discussed above can be found easily. We may also point 
out that the fragment used in the previous example is 
extracted from an actual computer grammar for Eng- 
lish (Sager's String Grammar), and therefore, it is not 
an artificial problem. 

The only way to avoid such problems with SHDGA 
would be to rewrite the underlying grammar, so that 
the choice of  the most instantiated literal on the righthand 
side of  a rule is forced. This could be done by chang- 
ing rule (2) in the example above into several rules which 
use meta nonterminals Aux, Subj, Main_Verb, and Obj 
in place of  literals attx verb, subj, mainverb, and obj 
respectively, as shown below: 

. . . . . ° . . . .  

yesnoq/askif(S)--> askif/S. 
askif/S -- > 

Aux, Subj, Main Verb, Obj, 
adj ([Verb],[Aux,S-ubj,Main_Verb,Obj])IS. 

. . . . . . . . . .  

Since Aux, Subj, Main_Verb, and Obj are uninstan- 
tiated variables, we are forced to go directly to adj first. 
After adj is expanded the nonterminals to the left of it 
will become properly instantiated for expansion, so in 
effect their expansion has been delayed. 

However, this solution seems to put additional bur- 
den on the grammar writer, who need not be aware of  
the evaluation strategy to be used for its grammar. 

Both algorithms handle left recursion satisfactorily. 
SHDGA processes recursive chain rules rules in a con- 
strained bottom-up fashion, and this also includes dead- 
lock prone rules. EAA gets rid of left recursive rules 
during the grammar normalization process that takes 
place at compile-time, thus avoiding the run-time 
overhead. 

5. MULTI-DIRECTIONALITY 

Another property of  EAA regarded as superior over 
the SHDGA is its mult-direcfionality. EAA can be used 
for parsing as well as for generation. The algorithm 
will simply recognize that the top-level msea is now 
the string, and will adjust to the new situation. More- 
over, EAA can be run in any direction paved by the 
predicates' mseas as they become instantiated at the time 
a rule is taken up for expansion. 

In contrast, SHDGA can only be guaranteed to work 
in one direction, given any particular grammar, although 
the same architecture can apparently be used for both 
generation, [SNMP90], and parsing, [K90], [N89]. 

The point is that some grammars (as shown in the 
example above) need to be rewritten for parsing or 
generation, or else they must be constructed in such a 
way so as to avoid indeterminacy. While it is possible 
to rewrite grammars in a form appropriate for head- 
first computation, there are real grammars which will 
not evaluate efficiently with SHDGA, even though EAA 
can handle such grammars with no problems. 

6. CONCLUSION 

In this paper we discussed several aspects of two natu- 
ral language generation algorithms: SHDGA and EAA. 
Both algorithms operate under the same general set of 
conditions, that is, given a grammar, and a structured 
representation of meaning, they attempt to produce one 
or more corresponding surface strings, and do so with 
a minimal possible effort. We analyzed the perform- 
ance of each algorithm in a few specific situations, and 
concluded that EAA is both more general and more ef- 
ficient algorithm than SHDGA. Where EAA enforces 
the optimal traversal of the derivation tree by precom- 
puting all possible orderings for nonterminal expan- 
sion, SHDGA can be guaranteed to display a compa- 
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rable performance only if its grammar is appropriately 
designed, and the semantic heads are carefully assigned 
(manually). With other grammars SHDGA will follow 
non-optimal generation paths which may lead to ex- 
treme inefficiency. 

In addition, EAA is a truly multi-directional algo- 
rithm, while SHDGA is not, which is a simple conse- 
quence of the restricted form of grammar that SHDGA 
can safely accept. 

This comparison can be broadened in several direc- 
tions. For example, an interesting problem that remains 
to be worked out is a formal characterization of the 
grammars for which each of the two generation algo- 
rithms is guaranteed to produce a finite and/or opti- 
mal search tree. Moreover, while we showed that 
SHDGA will work properly only on a subset of EAA's 
grammars, there may be legitimate g ~  that neither 
algorithm can handle. 
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