
F I N I T E - S T A T E A P P R O X I M A T I O N
OF P H R A S E S T R U C T U R E G R A M M A R S

Fernando C. N. Pereira
AT&T Bell Laboratories

600 Mountain Ave.
Murray Hill, NJ 07974

Rebecca N. Wright
Dept. of Computer Science, Yale University

PO Box 2158 Yale Station
New Haven, CT 06520

A bs t r ac t

Phrase-structure grammars are an effective rep-
resentation for important syntactic and semantic
aspects of natural languages, but are computa-
tionally too demanding for use as language mod-
els in real-time speech recognition. An algorithm
is described that computes finite-state approxi-
mations for context-free grammars and equivalent
augmented phrase-structure grammar formalisms.
The approximation is exact for certain context-
free grammars generating regular languages, in-
cluding all left-linear and right-linear context-free
grammars. The algorithm has been used to con-
struct finite-state language models for limited-
domain speech recognition tasks.

1 M o t i v a t i o n

Grammars for spoken language systems are sub-
ject to the conflicting requirements of language
modeling for recognition and of language analysis
for sentence interpretation. Current recognition
algorithms can most directly use finite-state ac-
ceptor (FSA) language models. However, these
models are inadequate for language interpreta-
tion, since they cannot express the relevant syntac-
tic and semantic regularities. Augmented phrase
structure grammar (APSG) formalisms, such as
unification-based grammars (Shieber, 1985a), can
express many of those regularities, but they are
computationally less suitable for language mod-
eling, because of the inherent cost of computing
state transitions in APSG parsers.

The above problems might be circumvented by
using separate grammars for language modeling
and language interpretation. Ideally, the recog-
nition grammar should not reject sentences ac-
ceptable by the interpretation grammar and it
should contain as much as reasonable of the con-
straints built into the interpretation grammar.

However, if the two grammars are built indepen-
dently, those goals are difficult to maintain. For
this reason, we have developed a method for con-
structing automatically a finite-state approxima-
tion for an APSG. Since the approximation serves
as language model for a speech-recognition front-
end to the real parser, we require it to be sound
in the sense that the it accepts all strings in the
language defined by the APSG. Without qualifica-
tion, the term "approximation" will always mean
here "sound approximation."

If no further constraints were placed on the
closeness of the approximation, the trivial al-
gorithm that assigns to any APSG over alpha-
bet E the regular language E* would do, but of
course this language model is useless. One pos-
sible criterion for "goodness" of approximation
arises from the observation that many interest-
ing phrase-structure grammars have substantial
parts that accept regular languages. That does
not mean that the grammar rules are in the stan-
dard forms for defining regular languages (left-
linear or right-linear), because syntactic and se-
mantic considerations often require that strings in
a regular set be assigned structural descriptions
not definable by left- or right-linear rules. A use-
ful criterion is thus that if a grammar generates
a regular language, the approximation algorithm
yields an acceptor for that regular language. In
other words, one would like the algorithm to be ex-

act for APSGs yielding regular languages. 1 While
we have not proved that in general our method
satisfies the above exactness criterion, we show in
Section 3.2 that the method is exact for left-linear
and right-linear grammars, two important classes
of context-free grammars generating regular lan-
guages.

1 At first sight, this requirement may be seen as conflict-
ing with the undecidability of determining whether a CFG
generates a regular language (Harrison, 1978). However,
note that the algorithm just produces an approximation,
but cannot say whether the approximation is exact.

246

2 The Algorithm

Our approximation method applies to any
context-free grammar (CFG), or any unification-
based grammar (Shieber, 1985a) that can be fully
expanded into a context-free grammar. 2 The re-
sulting FSA accepts all the sentences accepted
by the input grammar, and possibly some non-
sentences as well.

The current implementation accepts as input
a form of unification grammar in which features
can take only atomic values drawn from a speci-
fied finite set. Such grammars can only generate
context-free languages, since an equivalent CFG
can be obtained by instantiating features in rules
in all possible ways.

The heart of our approximation method is an
algorithm to convert the LR(0) characteristic ma-
chine .Ad(G) (Aho and Ullman, 1977; Backhouse,
1979) of a CFG G into an FSA for a superset of
the language L(G) defined by G. The characteris-
tic machine for a CFG G is an FSA for the viable
prefixes of G, which are just the possible stacks
built by the standard shift-reduce recognizer for
G when recognizing strings in L(G) .

This is not the place to review the character-
istic machine construction in detail. However, to
explain the approximation algorithm we will need
to recall the main aspects of the construction. The
states of .~4(G) are sets of dotted rules A ---* a . [3
where A ---, a/~ is some rule of G . .A4(G) is the
determinization by the standard subset construc-
tion (Aho and Ullman, 1977) of the FSA defined
as follows:

• The initial state is the dotted rule f f ---, -S
where S is the start symbol of G and S' is a
new auxiliary start symbol.

• The final state is S' --~ S..

• The other states are all the possible dotted
rules of G.

• There is a transition labeled X, where X is a
terminal or nonterminal symbol, from dotted
rule A -+ a . X~ to A --+ c~X.//.

• There is an e-transition from A --~ a • B/~ to
B --~ "7, where B is a nonterminal symbol
and B -+ 7 a rule in G.

2Unification-based grammars not in this class would
have to be weakened first, using techniques akin to those of
Sato and Tamaki (1984), Shieber (1985b) and Haas (1989).

I S' - > . S
S - > . Ab
A ->. A a
A-> .

1
Is'->s.]

'Aqk~ SA'>A'.ba J a ~ [A . > A a . j

Figure 1: Characteristic Machine for G1

.A~(G) can be seen as the finite state control for
a nondeterministic shift-reduce pushdown recog-
nizer TO(G) for G. A state transition labeled by a
terminal symbol z from state s to state s' licenses
a shift move, pushing onto the stack of the recog-
nizer the pair (s, z). Arrival at a state containing
a completed dotted rule A --~ a. licenses a reduc-
tion move. This pops from the stack as many pairs
as the symbols in a, checking that the symbols in
the pairs match the corresponding elements of a,
and then takes the transition out of the last state
popped s labeled by A, pushing (s, A) onto the
stack. (Full definitions of those concepts are given
in Section 3.)

The basic ingredient of our approximation algo-
ri thm is the f lat tening of a shift-reduce recognizer
for a grammar G into an FSA by eliminating the
stack and turning reduce moves into e-transitions.
It will be seen below that flattening 7~(G) directly
leads to poor approximations in many interesting
cases. Instead, .bq(G) must first be unfolded into
a larger machine whose states carry information
about the possible stacks of g (G) . The quality of
the approximation is crucially influenced by how
much stack information is encoded in the states of
the unfolded machine: too little leads to coarse ap-
proximations, while too much leads to redundant
automata needing very expensive optimization.

The algorithm is best understood with a simple
example. Consider the left-linear grammar G1

S---. Ab
A---* Aa Je

AJ(G1) is shown on Figure 1. Unfolding is not re-
quired for this simple example, so the approximat-
ing FSA is obtained from .Ad(G1) by the flatten-
ing method outlined above. The reducing states in
AJ(G1), those containing completed dotted rules,
are states 0, 3 and 4. For instance, the reduction
at state 4 would lead to a transition on nonter-

247

Figure 2: Flattened FSA

0
a

Figure 3: Minimal Acceptor

minal A, to state 2, from the state that activated
the rule being reduced. Thus the corresponding
e-transition goes from state 4 to state 2. Adding
all the transitions that arise in this way we ob-
tain the FSA in Figure 2. From this point on, the
arcs labeled with nonterminals can be deleted, and
after simplification we obtain the deterministic fi-
nite automaton (DFA) in Figure 3, which is the
minimal DFA for L(G1).

If flattening were always applied to the LR(0)
characteristic machine as in the example above,
even simple grammars defining regular languages
might be inexactly approximated by the algo-
rithm. The reason for this is that in general the
reduction at a given reducing state in the char-
acteristic machine transfers to different states de-
pending on context. In other words, the reducing
state might be reached by different routes which
use the result of the reduction in different ways.
Consider for example the grammar G2

S ~ a X a] bXb
X -'* c

which accepts just the two strings aca and bcb.
Flattening J~4(G2) will produce an FSA that will
also accept acb and bca, an undesirable outcome.
The reason for this is that the e-transitions leav-
ing the reducing state containing X ~ c. do not
distinguish between the different ways of reach-
ing that state, which are encoded in the stack of

One way of solving the above problem is to un-
fold each state of the characteristic machine into
a set of states corresponding to different stacks at
that state, and flattening the corresponding recog-
nizer rather than the original one. However, the
set of possible stacks at a state is in general infi-
nite. Therefore, it is necessary to do the unfolding
not with respect to stacks, but with respect to a
finite partition of the set of stacks possible at the
state, induced by an appropriate equivalence rela-
tion. The relation we use currently makes two
stacks equivalent if they can be made identical
by collapsing loops, that is, removing portions of
stack pushed between two arrivals at the same
state in the finite-state control of the shift-reduce
recognizer. The purpose of collapsing loops is to
~forget" stack segments that may be arbitrarily
repeated, s Each equivalence class is uniquely de-
fined by the shortest stack in the class, and the
classes can be constructed without having to con-
sider all the (infinitely) many possible stacks.

3 Formal Propert ies

In this section, we will show here that the approx-
imation method described informally in the pre-
vious section is sound for arbitrary CFGs and is
exact for left-linear and right-linear CFGs.

In what follows, G is a fixed CFG with termi-
nal vocabulary ~, nonterminal vocabulary N, and
start symbol S; V = ~ U N.

3 .1 S o u n d n e s s

Let J~4 be the characteristic machine for G, with
state set Q, start state so, set of final states F,
and transition function ~ : S x V --* S. As usual,
transition functions such as 6 are extended from
input symbols to input strings by defining 6(s, e) --
s and 6is , a/~) = 5(6(s, a),/~). The shift-reduce
recognizer 7~ associated to A4 has the same states,
start state and final states. Its configurations are
triples Is, a, w) of a state, a stack and an input
string. The stack is a sequence of pairs / s, X) of a
state and a symbol. The transitions of the shift-
reduce recognizer are given as follows:

Shif t : is, a, zw) t- (s', a/s , z), w) if 6(s, z) = s'

Reduce : is, err, w) ~- /5(s ' , A), cr/s', A/, w) if ei-
ther (1) A --~ • is a completed dotted rule

3Since possible stacks can be shown to form a regular
language, loop collapsing has a direct connection to the
pumping lemma for regular languages.

248

in s, s " = s and r is empty , or (2) A
X 1 . . . X n . is a comple ted dot ted rule in s,
T = i s1 , X l) . . . (s n , X n) and s" = 81.

The initial configurations of ~ are (so, e, w} for
some input s t r ing w, and the final configurations
are (s, (so, S), e) for some s ta te s E F . A deriva-
tion of a s t r ing w is a sequence of configura-
t ions c 0 , . . . , c m such tha t c0 = (s0 ,e ,w) , c,~ =
(s, (so, S) , e) for some final s ta te s, and ei-1 l- ci
for l < i < n .

Let s be a s tate. We define the set Stacks(s) to
contain every sequence (s 0 , X 0) . . . (sk ,Xk) such
tha t si = 6 (s i - l , X i - 1) , l < i < k and s =
6(s t , Xk). In addit ion, Stacks(s0) contains the
e m p t y sequence e. By construct ion, it is clear tha t
if (s, a , w) is reachable f rom an initial configura-
t ion in ~ , then o- E Stacks(s) .

A stack congruence on 7¢ is a fami ly of equiv-
alence relat ions _=o on Stacks(s) for each s ta te
s E 8 such t h a t if o- = , a ' and / f (s , X) = d then
o-(s,X} =, , , r (s ,X) . A stack congruence ---- par-
t i t ions each set Stacks(s) into equivalence classes
[<r]° of the stacks in Stacks(s) equivalent to o- un-
der --_,.

Each s tack congruence - on ~ induces a cor-
responding unfolded recognizer 7~-. The s ta tes of
the unfolded recognizer axe pairs i s, M ,) , no ta ted
more concisely as [~]°, of a s ta te and s tack equiv-
alence class a t tha t s tate. The initial s ta te is [e],o,
and the final s ta tes are all [o-]° with s E F and
o- E Stacks(s) . The t ransi t ion function 6- of the
unfolded recognizer is defined by

t-([o-]', x) = [o-is, x)] ' (' 'x)

T h a t this is well-defined follows immedia te ly f rom
the definition of stack congruence.

T h e definitions of dot ted rules in states, config-
urat ions, shift and reduce t ransi t ions given above
carry over immedia te ly to unfolded recognizers.
Also, the characteris t ic recognizer can also be seen
as an unfolded recognizer for the tr ivial coarsest
congruence.

Unfolding a characterist ic recognizer does not
change the language accepted:

P r o p o s i t i o n 1 Let G be a CFG, 7~ its charac-
teristic recognizer with transition funct ion ~, and
= a stack congruence on T¢. Then the unfolded
recognizer ~=_ and 7~ are equivalent recognizers.

P r o o f : We show first t ha t any str ing w accepted
by T¢--- is accepted by 7~. Let d o , . . . , d m be a
derivation of w in ~ = . Each di has the form
di = ([P /] " , o ' i , ul), and can be m a p p e d to an T¢

configurat ion di = (sl, 8i, ul), where £ = E and

((s, C), X) = 8 i s, X) . I t is s t ra ight forward to ver-
ify t ha t d o , . . . , d, , is a derivat ion of w in ~ .

Conversely, let w E L(G) , and c 0 , . . . , e m be
a derivat ion of w in 7~, wi th ci = isl,o-i, ui).
We define el = ([~ri] s~, hi, ui), where ~ = e and
o-is, x) = aito-]', x) .

I f ci-1 P ci is a shift move, then ui-1 = zu i and
6 (s i - l , z) = si. Therefore ,

6 - @ , _ ,] " - ' , ~) = [o-~- , (s~- , ,~)]~("- '")

= [o-,]',

Fur thermore ,

~ = o-~- l (S , - 1, ~) = ~ , - 1 ([o-,- 1] " - ' , ~)

Thus we have

~',-x = ([o - l - d " - ' , a i - x , * u ,)
~, = @d" ,e~- l (P~-d" - ' , *) ,~ '~)

with 6_=([o-i-1]"- ' , z) = [o-i]". Thus , by definition
of shift move, 6i-1 I- 6i in 7¢_--.

Assume now tha t ei-1 I- ci is a reduce move in
~ . Then ui = ui-1 and we have a s ta te s in 7~,
a symbol A E N , a s tack o- and a sequence r of
s t a t e - symbol pairs such t ha t

si = 6(s ,A)

o-i-1 = o"1"

o-, = o-(s ,a)

and either

(a) A --* • is in s i - t , s = s i -1 and r = e, or

(b) A ---, X I . . . X n . is in s i -1 , r =
(ql, X d . . . (q., X .) and s = ql-

Let ~ = [o-]*. Then

6=(~ ,A) = [o-(s,A)p0,A)
= [o-d"

We now define a pair sequence ~ to play t h e
same role in 7~- as r does in ~ . In case (a)
above, ~ = e. Otherwise, let rl = e and ri =
r i - l (q i - l , X i - 1) for 2 < i (n, and define ~ by

= ([d q', x l) . . . @ h i q', x i) • • • ([~ . p - , x .)

Then

O'i-- 1 --~- 0"7"

= o - (q 1 , X 1) . . . (q . - x , x . - x)

249

Thus

x .)
-- ¢ r (q ~ , X , } . . . (q i - h X i - l)

xd- - . x .)

=

= a([d',A)
= a(# ,A)

~i = (~f=(&A),a(~,A),ui)

which by construction of e immediately entails
tha t ~ _ 1 ~- Ci is a reduce move in ~ = . fl

For any unfolded s tate p, let Pop(p) be the set
of states reachable from p by a reduce transition.
More precisely, Pop(p) contains any state pl such
tha t there is a completed dotted rule A --* (~. in
p and a state pll such that 6 - (p I~, ~) - p and
6 - (f * , A) -- f . Then the flattening ~r= o f ~ - is
a nondeterministic FSA with the same state set,
s tar t s tate and final states as ~ - and nondeter-
ministic transit ion function @= defined as follows:

• I f 6=(p ,z) - pt for some z E E, then f E

• I f p~ E Pop(p) then f E ~b=(p, ~).

Let c o , . . . , cm be a derivation of string w in ~ ,
and put ei -- (q~,~q, wl), and p~ = [~]~'. By
construction, if ci_~ F ci is a shift move on z
(wi-x -- zw~), then 6=(p i - l ,Z) = Pi, and thus
p~ ~ ~-(p~_~, z). Alternatively, assume the transi-
tion is a reduce move associated to the completed
dotted rule A --* a . . We consider first the case
a ~ ~. Pu t a -- X 1 . . . X~. By definition of reduce
move, there is a sequence of states r l , . . . , r~ and
a stack # such that o'i-x = ¢(r~, X1)... (rn, Xn),
qi -- #(r~,A) , 5(r~,A) = qi, and 5(r j ,X1) - ri+~
for 1 ~ j < n. By definition of stack congruence,
we will then have

=

where rx = • and rj = (r ~ , X ,) . . . (r ~ - x , X ~ - ,) for
j > 1. Furthermore, again by definition of stack
congruence we have 6=([cr] r*, A) = Pi. Therefore,
Pi 6 Pop(pi_l) and thus pi e ~_--(pi-x,•). A sim-
ilar but simpler argument allows us to reach the
same conclusion for the case a = e. Finally, the
definition of final s tate for g = and ~r__ makes Pm
a final state. Therefore the sequence P0 , . - . ,Pm
is an accepting pa th for w in ~r_. We have thus
proved

P r o p o s i t i o n 2 For any CFG G and stack con-
gruence =_ on the canonical LR(0) shift-reduce rec-
ognizer 7~(G) of G, L(G) C_ L(~r-(G)), where
~r-(G) is the flattening of ofT~(G)--.

Finally, we should show tha t the stack collaps-
ing equivalence described informally earlier is in-
deed a stack congruence. A stack r is a loop if
' / " - " (81, X1)... (sk, Xk) and 6(sk, X t) = sz. A
stack ~ collapses to a stack ~' if cr = pry, cr ~ = pv
and r is a loop. Two stacks are equivalent if they
can be collapsed to the same stack. This equiv-
alence relation is closed under suffixing, therefore
it is a stack congruence.

3 . 2 E x a c t n e s s

While it is difficult to decide what should be meant
by a "good" approximation, we observed earlier
that a desirable feature of an approximation algo-
r i thm would be that it be exact for a wide class of
CFGs generating regular languages. We show in
this section that our algorithm is exact both for
left-linear and for right-linear context-free gram-
mars, which as is well-known generate regular lan-
guages.

The proofs that follow rely on the following ba-
sic definitions and facts about the LR(0) construc-
tion. Each LR(0) state s is the closure of a set of
a certain set of dotted rules, its core. The closure
[R] of a set R of dotted rules is the smallest set
of dotted rules containing R tha t contains B --~ "7
whenever it contains A --~ a • Bfl and B ---* 7 is
in G. The core of the initial s tate so contains just
the dotted rule f f ~ .S. For any other state s,
there is a state 8 ~ and a symbol X such that 8 is
the closure of the set core consisting of all dotted
rules A ~ a X . / ~ where A --* a . X/~ belongs to s'.

3 . 3 L e f t - L i n e a r G r a m m a r s

In this section, we assume that the CFG G is left-
linear, that is, each rule in G is of the form A
B/~ or A --+/~, where A, B E N and/3 E ~*.

P r o p o s i t i o n 3 Let G be a left-linear CFG, and
let gz be the FSA produced by the approximation
algorithm from G. Then L(G) = L(3r).

P r o o f : By Proposition 2, L(G) C. L(.~'). Thus we
need only show L (~) C_ L(G).

The proof hinges on the observation that each
state s of At (G) can be identified with a string

E V* such that every dotted rule in s is of the
f o r m A ~ ~ . a for some A E N and c~ E V*.

250

Clearly, this is true for so = [S' --* .S], with ~0 = e.
The core k of any other state s will by construction
contain only dotted rules of the form A ~ a .
with a ~ e. Since G is left linear, /3 must be
a terminal string, ensuring that s = [h]. There-
fore, every dotted rule A --* a . f in s must result
from dotted rule A ~ .aft in so by the sequence
of transitions determined by a (since ¢tq(G) is de-
terministic). This means that if A ~ a . f and
A' --* a ' . fl ' are in s, it must be the case that
a - a ~. In the remainder of this proof, let ~ = s
whenever a = ~.

To go from the characteristic machine .M(G) to
the FSA ~', the algorithm first unfolds Ad(G) us-
ing the stack congruence relation, and then flat-
tens the unfolded machine by replacing reduce
moves with e-transitions. However, the above ar-
gument shows that the only stack possible at a
state s is the one corresponding to the transitions
given by $, and thus there is a single stack con-
gruence state at each state. Therefore, .A4(G)
will only be flattened, not unfolded. Hence the
transition function ¢ for the resulting flattened
automaton ~" is defined as follows, where a E
N~* U]~*,a E ~, and A E N:

(a) ¢ (~ , a) = { ~ }

(b) ¢(5, e) = {.4 I A --, a e G}

The s tar t s tate of ~" is ~. The only final s tate is S.
We will establish the connection between Y~

derivations and G derivations. We claim that if
there is a path from ~ to S labeled by w then ei-
ther there is a rule A --* a such that w = xy and
S :~ A y =~ a z y , or a = S and w = e. The claim
is proved by induction on Iw[.

For the base case, suppose. [w I = 0 and there is a
path from & to .~ labeled by w. Then w = e, and
either a - S, or there is a path of e-transitions
from ~ to S. In the latter case, S =~ A =~ e for
some A E N and rule A --~ e, and thus the claim
holds.

Now, assume that the claim is true for all Iwl <
k, and suppose there is a path from & to ,~ labeled
w I, for some [wl[= k. Then w I - aw for some ter-
minal a and Iw[< k, and there is a path from ~-~
to S labeled by w. By the induction hypothesis,
S =~. A y =~ a a z ' y , where A --.* a a z ~ is a rule and
z l y - w (since aa y£ S) . Letting z -- ax I, we have
the desired result.

If w E L(~) , then there is a path from ~ to
labeled by w. Thus, by claim just proved, S =~
A y ::~ :cy, where A ~ • is a rule and w = ~y
(since e # S). Therefore, S =~ w, so w ~ L(G) , as
desired.

3 . 4 R i g h t - L i n e a r G r a m m a r s

A CFG G is right linear if each rule in G is of the
form A --~ f B or A --* /3, where A, B E N and

P r o p o s i t i o n 4 Let G be a right-l inear C F G and
9 e be the unfolded, f la t tened automaton produced
by the approximation algorithm on input G. Then
L (G) = L(Yz).

P r o o f : As before, we need only show L(~') C
L(G) .

Let ~ be the shift-reduce recognizer for G. The
key fact to notice is that , because G is right-linear,
no shift transition may follow a reduce transition.
Therefore, no terminal transition in 3 c may follow
an e-transition, and after any e-transition, there
is a sequence of G-transitions leading to the final
s tate [$' --* S.]. Hence ~" has the following kinds of
states: the start state, the final state, states with
terminal transitions entering or leaving them (we
call these reading states), s tates with e-transitions
entering and leaving them (prefinal states), and
states with terminal transitions entering them and
e-transitions leaving them (cr0ssover states). Any
accepting path through ~" will consist of a se-
quence of a start state, reading states, a crossover
state, prefinal states, and a final state. The excep-
tion to this is a path accepting the empty string,
which has a start state, possibly some prefinal
states, and a final state.

The above argument also shows that unfolding
does not change the set of strings accepted by ~ ,
because any reduction in 7~= (or e-transition in
jc), is guaranteed to be part of a path of reductions
(e-transitions) leading to a final s tate of 7~_- (~) .

Suppose now that w = w: . . . wn is accepted by
~'. Then there is a path from the s tar t s tate So
through reading states s l , . . . , s,,-1, to crossover
state sn, followed by e-transitions to the final
state. We claim that if there there is a path from
sl to sn labeled w i + l . . . w n , then there is a dot-
ted rule A ---* x • y B in si such B :~ z and yz =
w~+1 . . .wn , where A E N , B E N U ~ * , y , z ~ ~*,
and one of the following holds:

(a) z is a nonempty suffix of w t . . . wi,

(b) z = e, A " =~ A, A ' --* z ' . A " is a dotted rule
in sl, and z t is a nonempty suffix ofT1 . . .wi ,
o r

(c) z = e , s i = s 0 , a n d S = ~ A .

We prove the claim by induction on n - i. For
the base case, suppose there is an empty path from

251

Sn to s , . Because s n is the crossover state, there
must be some dotted rule A ~ x. in s n . Letting
y = z = B = e, we get that A ---* z . y B is a dotted
rule of s , and B = z. The dotted rule A --', z . y B

must have either been added to 8n by closure or
by shifts. I f it arose from a shift, z must be a
nonempty suffix of wl . . .wn . I f the dotted rule
arose by closure, z = e, and there is some dotted
rule A ~ --~ z t • A" such tha t A" =~ A and ~l is a
nonempty suffix of Wl . . . wn.

Now suppose tha t the claim holds for paths from
si to sn, and look at a pa th labeled w i . . . w n
from si-1 to sn. By the induction hypothesis,
A ~ z • y B is a dotted rule of st, where B =~ z,
u z = w i + l . . . w n , and (since st ~ s0), either z is a
nonempty suffix of wl . . . wi or z = e, A ~ - . z ~. A"
is a dotted rule of si, A" :~ A, and z ~ is a
nonempty suffix of w l . . . w l .

In the former case, when z is a nonempty suffix
of w l . . . w l , then z = w j . . . w i for some 1 < j <
i. Then A ---, w j . . . w l • y B is a dotted rule of
sl, and thus A ---* w j . . . w i - 1 • w i y B is a dotted
rule o f s i _ l . I f j < i - 1, then w j . . . w i _ l is a
nonempty suffix of w l . . . w i - 1 , and we are done.
Otherwise, w j . . . w i - 1 = e, and s o A --* . w i y B is a
dotted rule o f s i - 1 . Let y~ = w i y . Then A ~ .yJB
is a dotted rule of s i -1 , which must have been
added by closure. Hence there are nonterminals
A I and A" such tha t A" :~ A and A I ~ z I • A "

is a dotted rule of s t - l , where z ~ is a nonempty
sUtTLX of Wl .. • w i - 1.

In the lat ter case, there must be a dotted rule
A ~ ~ w j . . . w i - 1 • w i A " in s i -1. The rest of the
conditions are exactly as in the previous case.

Thus, if w - w l . . . w n is accepted by ~c, then
there is a pa th from so to sn labeled by wl . . . w, .
Hence, by the claim jus t proved, A ~ z . y B is
a dotted rule of sn, and B :~ z, where y z -"

w l . . . w a -- w. Because the st in the claim is
so, and all the dotted rules of si can have nothing
before the dot, and z must be the empty string.
Therefore, the only possible case is case 3. Thus,
S : ~ A ---, y z = w, and hence w E L (G) . The
proof tha t the empty string is accepted by ~" only
if it is in L (G) is similar to the proof of the claim.

D

4 A Complete Example

The appendix shows an APSG for a small frag-
ment of English, written in the notation accepted
by the current version of our g rammar compiler.
The categories and features used in the g rammar

are described in Tables 1 and 2 (categories without
features are omitted). Features enforce person-
number agreement, personal pronoun case, and a
limited verb subcategorization scheme.

G r a m m a r compilation has three phrases: (i)
construction of an equivalent CFG, (ii) approxi-
mation, and (iii) determinization and minimiza-
tion of the resulting FSA. The equivalent CFG is
derived by finding all full instantiations of the ini-
tial APSG rules that are actually reachable in a
derivation from the g rammar ' s s tar t symbol. In
the current implementation, the construction of
the equivalent CFG is is done by a Prolog pro-
gram, while the approximator , determinizer and
minimizer are written in C.

For the example grammar , the equivalent CFG
has 78 nonterminals and 157 rules, the unfolded
and flattened FSA 2615 states and 4096 transi-
tions, and the determinized and minimized final
DFA 16 states and 97 transitions. The runtime
for the whole process is 4.91 seconds on a Sun
SparcStation 1.

Substantially larger grammars , with thousands
of instantiated rules, have been developed for a
speech-to-speech translation project. Compilation
times vary widely, but very long compilations ap-
pear to be caused by a combinatorial explosion in
the unfolding of right recursions that will be dis-
cussed further in the next section.

5 Informal Analysis

In addition to the cases of left-linear and right-
linear g rammars discussed in Section 3, our algo-
r i thm is exact in a variety of interesting cases, in-
cluding the examples of Church and Patil (1982),
which illustrate how typical a t tachment ambigu-
ities arise as structural ambiguities on regular
string sets.

The algorithm is also exact for some self-
embedding g rammars 4 of regular languages, such
as

S --+ a S l S b l c

defining the regular language a*eb* .

A more interesting example is the following sim-
plified g rammar for the structure of English noun

4 A grammar is self-embedding if and only if licenses the

derivation X ~ c~X~ for nonempty c~ and/3. A language
is regular if and only if it can be described by some non-
self-embedding grammar.

252

Figure 4: Acceptor for Noun Phrases

phrases:

NP -+ Det Nom [PN
Det -+ Art] NP 's
Nom -+ N I Nom PP J Adj Nom
PP --* P NP

The symbols Art, N, PN and P correspond to the
parts of speech article, noun, proper noun and
preposition. From this grammar, the algorithm
derives the DFA in Figure 4.

As an example of inexact approximation, con-
sider the the self-embedding CFG

S -+ aSb I ~

for the nonregular language a'~b'~,n > O. This
grammar is mapped by the algorithm into an FSA
accepting ~ I a+b+. The effect of the algorithm is
thus to "forget" the pairing between a's and b's
mediated by the stack of the grammar's charac-
teristic recognizer.

Our algorithm has very poor worst-case perfor-
mance. First, the expansion of an APSG into a
CFG, not described here, can lead to an exponen-
tial blow-up in the number of nonterminals and
rules. Second, the subset calculation implicit in
the LR(0) construction can make the number of
states in the characteristic machine exponential
on the number of CF rules. Finally, unfolding can
yield another exponential blow-up in the number
of states.

However, in the practical examples we have con-
sidered, the first and the last problems appear to
be the most serious.

The rule instantiation problem may be allevi-
ated by avoiding full instantiation of unification
grammar rules with respect to "don't care" fea-
tures, that is, features that are not constrained by
the rule.

The unfolding problem is particularly serious in
grammars with subgrammars of the form

S -+ X I S I " " J X , ,S J Y (I)

It is easy to see that the number of unfolded states
in the subgrammar is exponential in n. This kind
of situation often arises indirectly in the expan-
sion of an APSG when some features in the right-
hand side of a rule are unconstrained and thus
lead to many different instantiated rules. In fact,
from the proof of Proposition 4 it follows immedi-
ately that unfolding is unnecessary for right-linear
grammars. Ultimately, by dividing the gram-
mar into non-mutually recursive (strongly con-
nected) components and only unfolding center-
embedded components, this particular problem
could he avoided, s In the meanwhile, the prob-
lem can be circumvented by left factoring (1) as
follows:

S -+ Z S [Y

z - + x , I...IX.

6 R e l a t e d Work and Conclu-
s ions

Our work can be seen as an algorithmic realization
of suggestions of Church and Patil (1980; 1982) on
algebraic simplifications of CFGs of regular lan-
guages. Other work on finite state approximations
of phrase structure grammars has typically re-
lied on arbitrary depth cutoffs in rule application.
While this is reasonable for psycholinguistic mod-
eling of performance restrictions on center embed-
ding (Pulman, 1986), it does not seem appropriate
for speech recognition where the approximating
FSA is intended to work as a filter and not re-
ject inputs acceptable by the given grammar. For
instance, depth cutoffs in the method described by
Black (1989) lead to approximating FSAs whose
language is neither a subset nor a superset of the
language of the given phrase-structure grammar.
In contrast, our method will produce an exact FSA
for many interesting grammars generating regular
languages, such as those arising from systematic
attachment ambiguities (Church and Patil, 1982).
It important to note, however, that even when the
result FSA accepts the same language, the origi-
nal grammar is still necessary because interpreta-

SWe have already implemented a version of the algo-
r i thm that splits the grammar into strongly connected com-
ponents, approximates and minimizes separately each com-
ponent and combines the results, but the main purpose of
this version is to reduce approximation and determinization
costs for some grmmmars.

253

t ion a lgor i thms are generally expressed in terms of
phrase s tructures described by tha t g rammar , not
in terms of the states of the FSA.

Al though the a lgor i thm described here has
mos t ly been adequate for its intended applica-
t ion - - g r a m m a r s sufficiently complex not to be
approximated within reasonable t ime and space
bounds usually yield a u t o m a t a tha t are far too
big for our current real- t ime speech recognition
hardware - - it would be eventually of interest to
handle right-recursion in a less profligate way. In a
more theoretical vein, it would also be interesting
to characterize more t ightly the class of exactly
approximable g rammars . Finally, and most spec-
ulatively, one would like to develop useful notions
of degree of approximat ion of a language by a reg-
ular language. Formal- language-theoret ic notions
such as the rat ional index (Boason et al., 1981)
or probabil ist ic ones (Soule, 1974) might be prof-
i tably investigated for this purpose.

Acknowledgments
We thank Mark Liberman for suggesting tha t we
look into finite-state approximat ions and Pedro
Moreno, David Roe, and Richard Sproat for try-
ing ou t several pro to types of the implementa t ion
and supplying test g rammars .

References
Alfred V. Aho and Jeffrey D. Ullman. 1977. Princi.

pies of Compiler Design. Addison-Wesley, Reading,
Massachusetts.

Roland C. Backhouse. 1979. Syntaz o] Programming
Languages--Theorll and Practice. Series in Com-
puter Science. Prentice-Hall, Englewood Cliffs, New
Jersey.

Alan W. Black. 1989. Finite state machines from fea-
ture grammars. In Masaru Tomita, editor, Inter.
national Workshop on Parsing Technologies, pages
277-285, Pittsburgh, Pennsylvania. Carnegie Mel-
lon University.

Luc Boason , Bruno Courcelle, and Maurice Nivat.
1981. The rational index: a complexity measure for
languages. SIAM Journal o] Computing, 10(2):284-
296.

Kenneth W. Church and Ramesh Patil. 1982. Coping
with syntactic ambiguity or how to put the block
in the box on the table. Computational Linguistics,
8(3--4):139-149.

Kenneth W. Church. 1980. On memory]imitations in
• natural language processing. Master's thesis, M.I.T.
Published as Report MIT/LCS/TR-245.

Andrew Haas. 1989. A parsing algorithm for
unification grammar. Computational Linguistics,
15(4):219-232.

Michael A. Harrison. 1978. Introduction to Formal
Language Theor~l. Addison-Wesley, Reading, Mas-
sachussets.

Steven G. Pulman. 1986. Grammars, parsers, and
memory limitations. Language and Cognitive Pro-
cesses, 1(3):197-225.

Taisuke Sato and Hisao Tamaki. 1984. Enumeration
of success patterns in logic programs. Theoretical
Computer Science, 34:227-240.

Stuart M. Shieber. 1985a. An Introduction to
Unification-Based Approaches to Grammar. Num-
ber 4 in CSLI Lecture Notes. Center for the Study
of Language and Information, Stanford, California.
Distributed by Chicago University Press.

Stuart M. Shieber. 1985b. Using restriction to ex-
tend parsing algorithms for complex-feature-based
formalisms. In ~3rd Annual Meeting of the Asso-
ciation]or Computational Linguistics, pages 145-
152, Chicago, Illinois. Association for Computa-
tionai Linguistics, Morristown, New Jersey.

Stephen Soule. 1974. Entropies of probabilistic gram-
mars. In]ormation and Control, 25:57-74.

Appendix APSG Formalism
and Example
Nonterminal symbols (syntactic categories) may have
features that specify variants of the category (eg. sin-
gular or plural noun phrases, intransitive or transitive
verbs). A category cat with feature constraints is writ-
ten

cat# [ca, • • •, em3.

Feature constraints for feature f have one of the
forms

. f = ,, (2)

] = c (3)

. f = (c~ c .) (4)

where v is a variable name (which must be capitalized)
and c, c l , . . . , c , are feature values.

All occurrences of a variable v in a rule stand for
the same unspecified value. A constraint with form (2)
specifies a feature as having that value. A constraint
of form (3) specifies an actual value for a feature, and
a constraint of form (4) specifies that a feature may
have any value from the specified set of values. The
symbol "!" appearing as the value of a feature in the
right-hand side of a rule indicates that that feature
must have the same value as the feature of the same
name of the category in the left-hand side of the rule.
This notation, as well as variables, can be used to en-
force feature agreement between categories in a rule,

¢

254

Symbol Category Features
s sentence

np
vp

args
det
n
pron
V

noun phrase
verb phrase

verb arguments
determiner
noun
pronoun
verb

n (number), p
(person)

n, p , c (case)
n, p, t (verb type)

t
n

n

n, p, C
n, p, t

Table 1: Categories of Example G r a m m a r

Feature
n' (number)
p (person)

c (case)
t (verb type)

Values
s (singular), p (plural)

! (first), 2 (second), 3 (third)
s (subject), o (nonsubject)

i (intransitive), t (transitive), d
(ditransitive)

Table 2: Features o f Example G r a m m a r

for instance, number agreement between Subject and
verb.

It is convenient to declare the features and possible
values of categories with category declarations appear-
ing before the grammar rules. Category declarations
have the form

ca t CatS[/1 = (V l l ,V2kl),
. . o ,

fm = (vml ,Vmk,)] .

giving all the possible values of all the features for the
category.

The declaration

s t a r t cat.

declares cat as the start symbol of the grammar.
I n the grammar rules, the symbol " ' " prefixes ter-

minal symbols, commas are used for sequencing and
[" for alternation.

s t a r t s .

cat sg[n=Cs,p),p=(1,2,3)].
cat npg[n=(s,p) ,p=(1,2,3) ,c=(s,o)] .
cat vpg[n=(s,p) , l>=(1,2,3) , type=(i , t ,d)] .
cat a rgsg[type=(i . t ,d)] .

cat detg[n=(s,p)] .
cat ng[n=(s,p)].

cat prong[n=(s,p),p=(1,2,3),c=(s,o)] .
cat vg [n - (s ,p) ,p=(1 ,2 ,3) , t ype=(i , t ,d)] .

s => npg[n=! ,pffi! , c=s] , vpg[n=! ,p=!] .

npg[p=3] => d e t g [n = !] , ad j s , ng [n=!] .
n l ~ [n = s , p - 3] -> pn.
np => prong In= !, p= !, c= !] .

prong [n=s,p-1, c=s] => ' i .
prong [p=2] => ' you.
p r o n g [n = s , p = 3 , c = s] => ' he I ' s he .
p rong [n - s ,p -3] => ' i t .
prong[nff ip, l~l ,c-s] => ' v s .
prong[n=p,p=3,c=s] => ' t h e y .
p rong[n=s ,p - l , c=o] => 'me.
prong[n=s ,p=3 ,c=o] => 'him [
prong[n=p,p=1,c=o] => ' u s .
prong[n=p,p-3,c=o] => 'them.

'her.

vp => vg[n=! ,p=! , t y p e = :] , a r g s g [t y p e = !] .

ad js -> ~ .
ad js => ad j , ad j s .

a rgs#[type=i] => [] .
a rgs#[type=t] => npg[c=o] .
a rgsg [type -d] => npg[c=o] , ' t o , n p g [c f o] .

pn => ' t o n I ' d i c k [' h a r r y .

det => ' soaeJ ' t h e .
det#[n=s] => ' e v e r y [' a ,
de t#[n-p] => ' a l l ['most .

n#[n=s] => ' c h i l d [' cake .
n#[n~p] => ' c h i l d r e n I ' c akes .

ad j . -> ' n i c e J ' s g e e t .

v#[n=s , l~3 , type=i] => ' s l e e p s .
v#[nffip,type=i] => ' s l e e p .
v#[n=s , l~ , (1 ,2) , type=/] => ' s l e e p .

v # [n - s , p - 3 , t y p e = t] -> ' e a t s .
v# [n~p , type - t] => ' e a t .
v # [n = s , p - (1 , 2) , t y p e = t] ffi> ' e a t .

v#[n=s,pffi3,type=d] => ' g i v e s .
v#[nffip,type-d] => ' g i v e .
v#[n=s ,p=(1 ,2) , type=d] => ' g i v e .

255

