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ABSTRACT 
Two new pars ing  a lgor i thms for 

context-free phrase  s t ruc ture  gram- 
mars  are presented which perform a 
bounded amount  of processing per  
word per analysis path, independently 
of sentence length. They are thus ca- 
pable of parsing in real-time in a par- 
allel implementat ion which forks pro- 
cessors in response to non-determinis- 
tic choice points. 

0. INTRODUCTION 
The work reported here grew out of 

our a t tempt  to improve on the o (n 2) 
performance of the  SIMD para l le l  
parser  described in (Thompson 1991). 
Rather  than  s tar t  with a commitment 
to a specific SIMD architecture, as tha t  
work had, we agreed tha t  the best  
place to s tar t  was with a more abstract 
a rch i t ec tu re - independen t  considera- 
tion of the CF-PSG pars ing problem--  
given a rb i t ra ry  resources, what  algo- 
r i thms  could one envisage which 
could recognise and/or parse atomic 
category phrase-s t ruc ture  g rammars  
in o (n) ? In the end, two quite differ- 
ent approaches emerged. One took as 
its s t a r t ing  point  non-determinis t ic  
shift-reduce parsing,  and sought to 

achieve l inear (indeed real-time) com- 
plexity by performing a constant-time 
step per word of the input. The other 
took as its s tar t ing point tabular  pars- 
ing (Earley,  C KY), and  sought  to 
achieve l inear  complexity by perform- 
ing a constant-time step for the identi- 
fication/construction of constituents of 
each length from 0 to n. The la t te r  
route  has  been widely canvassed,  
although to our knowledge has not yet 
been implemented--see  (Nijholt 1989, 
90) for extensive references.  The 
former route, whereby real-t ime pars- 
ing is achieved by processor forking at 
non-deterministic choice points in an 
extended shill-reduce parser, is to our 
knowledge new. In this paper we pre- 
sent outlines of two such parsers, 
which we call compose-reduce 
parsers. 

L COMPOSE-Rk~nUCE PARSING 
Why couldn' t  a s imple breadth-  

first  char t  parser  achieve l inear  per- 
formance on an appropr ia te  parallel  
system? If  you provided enough pro- 
cessors to immedia t e ly  process all 
agenda entries as they  were created, 
would not this give the desired result? 
No, because the processing of a single 
word might  require  m a n y  serialised 

87 



steps. Consider  processing the word 
"park" in  the sentence "The people 
who ran in the park got wet." Given a 
s imple t rad i t iona l  sort of g rammar ,  
tha t  word completes an  sP, which in 
tu rn  completes a P P, which in  tu rn  
completes a vP, which in  tu rn  com- 
pletes an s, which in t u r n  completes a 
REL, which in  tu rn  completes an  NP. 
The construction/recognition of these 
consti tuents is necessar i ly  serialised, 
so regardless of the number  of proces- 
sors avai lable a constant-t ime step is 
impossible.  (Note tha t  this  only pre- 
cludes a real-t ime parse by this route, 
but  not necessari ly  a l inear  one.) In 
the shift-reduce approach to parsing, 
all this means  is tha t  for non-l inear  
grammars ,  a single shift  step may be 
followed by many  reduce steps. This 
in turn  suggested the beginnings of a 
way out, based on categorial  gram- 
mar,  n a m e l y  t ha t  mul t ip le  reduces 
can be avoided i f  composition is al- 
lowed. To r e t u r n  to our example  
above, in a simple shift-reduce parser  
we would have had all the words pre- 
ceding the word "park" in  the stack. 
When it was shifted in, there would 
follow six reduce steps. If  a l terna-  
tively following a shift step one was al- 
lowed (non-determinist ical ly)  a com- 
pose step, this could be reduced (!) to a 
single reduce step. Restr ic t ing our- 
selves to a s impler  example, consider 
jus t  "run in the park" as a vv,  given 
rules  

VP --) v PP 

NP --) d n 

PP --) p NP. 

With a composition step allowed, 
the parse would then  proceed as fol- 
lows: 

Shift run as a v 
Shift in as a p 

Compose v and p to give 
[vP v [PP p • NP]] 

where I use a combination of brack- 
eted strings and the 'dotted rule' nota- 
tion to indicate the resul t  of composi- 
tion. The categorial equivalent would 
have been to notate v as vP /P  P, P as 
PP/NP, and the resul t  of the composi- 
tion as therefore vP/NP. 

Shift the as d 
Compose the dotted vp with d 

to give 
[VP v [PP p [NP d • n]]] 

Shift park as n 

Reduce the dotted vp with n to 
give the complete result. 

Although a number  of detai ls  re- 
mained  to be worked out, this simple 
move of allowing composition was the 
enabling step to achieving o(n)  pars- 
ing. Para l le l i sm would arise by fork- 
ing processors at  each non-determin- 
istic choice point, following the gen- 
eral model of Dixon's earl ier  work on 
para l l e l i s ing  the ATMS (Dixon & de 
Kleer 1988). 

Simply allowing composition is not 
in  i tself  sufficient to achieve o (n) per- 
formance. Some means  of guarantee- 
ing tha t  each step is constant  t ime 
mus t  still be provided. Here we found 
two different ways forward. 

II. TEn~. FIRST COMPOSE-REDUCE 
PARSER---CR4 

In this  parser  there  is no stack. 
We have s imply a current  structure, 
which corresponds to the top node of 
the stack in  a normal  shif t-reduce 
parser. This is achieved by extending 
the appeal to composition to include a 
form of left-embedded raising,  which 
wil l  be d i scussed  f u r t h e r  below. 
Special a t tent ion is also required to 
handle  left-recursive rules. 
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II.1 The Basic Pars ing Algorithm 
The constant- t ime pars ing step is 

given below (s l ight ly  simplif ied,  in  
that  empty productions and some unit  
productions are not handled). In this 
algorithm schema, and in subsequent  
discussion, the annotation "ND" will be 
used in situations where a number  of 
alternatives are (or may be) described. 
The meaning is that  these alternatives 
are to be pursued non-determinis t i -  
cally. 

Algorithm CR-I 

1 Shift the next word; 
2 ND look it up in the lexicon; 
3 ND close the resulting cate- 

gory wrt the unit produc- 
t ions;  

4a ND reduce the resulting 
category with the current 
s t r uc tu re  
or 

4b N D raise* the resulting cat- 
egory wrt the non-unary 
rules in the grammar for 
which it is a left corner, and 
compose the result with the 
current structure. 

If reduction ever completes a 
category which is marked as 
the left corner of one or 
more left-recursive rules or 
rule sequences, ND raise* in 
place wrt those rules 
(sequences), and propagate 
the marking. 

Some of these ND steps may at var- 
ious points produce complete struc- 
tures. If .the input  is exhausted, then 
those s t ructures  are parses,  or not, 
depending on whether or not they have 
reached the dis t inguished symbol. If  
the input  is not exhausted,  it is of 

course the incomplete structures,  the 
results of composition or raising, 
which are carried forward to the next 
step. 

The operation referred to above as 
"raise*" is more than simple raising, 
as was involved in the simple example 
in section IV. In order to allow for all 
possible compositions to take place all 
possible left-embedded raising must be 
pursued .  Cons ider  the following 
grammar fragment: 

S ~NP VP 

VP -~ v NP CMP 

CMP --)that S 

NP -~ propn 

NP -+ dn 

and the utterance "Kim told Robin that  
the child likes Kim". 

If  we ignore all  the ND incorrect  
paths, the current  structure after the 
"that" has been processed is 

[S [NP [propn Kim]] 

[VP [v told] 

[NP [propn Robin] ] 
[CMP that • S] ] ] 

In order for the next word, "the", to 
be correctly processed, i t  mus t  be 
raised all  the way to s ,  name ly  we 
must have 

[S [NP [d the] • n] VP]] 
to compose with the current  structure. 
What  this means  is tha t  for every en- 
try in the normal bottom-up reachabil- 
i ty table pairing a left corner with a top 
category, we need a set of dotted struc- 
tures, corresponding to all the ways 
the g r a m m a r  can get from tha t  left 
corner to that  top category. It is these 
structures which are ND made avail- 
able in step 4b of the parsing step algo- 
r i thm CR-I above.  
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II.2 Handling Left Recursion 
Now this in itself is not sufficient to 

handle left recursive structures, since 
by definition there could be an arbi- 
t rary number of left-embeddings of a 
left-recursive structure.  The final 
note in the description of algorithm 
CR-I above is designed to handle this. 
Glossing over some subtleties, left-re- 
cursion is handled by marking some 
of the structures introduced in step 3b, 
and ND raising in place if  the marked 
structure is ever completed by reduc- 
tion in the course of a parse. Consider 
the sentence ~Robin likes the chi ld ' s  
dog." We add the following two rules 
to the grammar: 

D -9 art 

D -9 NP 's 

thereby t ransforming D from a pre- 
terminal to a non-terminal. When we 
shift "the", we will raise to inter alia 

[NP [D [ a r t  t h e ] ]  • n] r 
with the NP marked for potential re- 
raising. This structure will be com- 
posed with the then current structure 
to produce 

IS [NP [propn Robin]] 
[VP Iv l i k e s ]  

[NP (as above) ]r] ] 
After reduction with ~child", we 

will have 
[S [NP [propn Robin]] 

[VP [v l i k e s ]  
[NP [D [ a r t  t h e ] ]  

[n ch i ld ]  jr]  ] 
The last  reduction will have com- 

pleted the marked  N P in t roduced 

above, so we ND left-recursively raise 
in place, giving 

[S [NP [propn Robin]] 
[VP Iv l i k e s ]  

[NP [D [NP the  ch i ld ]  
• 'S] 

n]r]] 

which will then take us through the 
rest of the sentence. 

One final detail needs to be cleared 
up. Although directly left-recursive 
rules, such as e.g. NP -9 NP PP, are 
correctly dealt  with by the above 
mechanism, indirectly left-recursive 
sets of rules, such as the one exempli- 
fied above, require one additional sub- 
tlety. Care must be taken not to intro- 
duce the potential for spurious ambi- 
guity. We will introduce the full de- 
tails in the next section. 

II.3 Nature of the required tables 
Steps 3 and 4b of CR-I require tables 

of partial structures: Closures of unit 
productions up from pre-terminals,  
for step 3; left-reachable raisings up 
from (unit production closures of) pre- 
terminals, for step 4b. In this section 
we discuss the creation of the neces- 
sary tables, in par t icular  R a i s e * ,  
against  the background of a simple 
exemplary grammar,  given below as 
Table 1. 

We have grouped the rules accord- 
ing to type--two kinds of unit  produc- 
tions (from pre-terminals or non-ter- 
minals), two kinds of left recursive 
rules (direct and indirect) and the re- 
mainder .  

vanilla 

S --) NP VP 

VP -9 v NP 

CMP --) cmp S 

PP -9 prep NP 

Table 1. 

unitl unit2 ird iri 

NP -9 propn NP -9 CMP NP -9 NP PP NP -9 D n 

D -9 art VP -9 VP PP D --) NP 's 

Exemplary grammar in groups by rule type 
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Cl* 

LRdir 

LRindir 2 

RS* 

I: 

2: 

[NP pr°pn]l'2 [D art]4 

[NP NP PP] 3: [VP VP PP] 

[NP [D NP 's] n] 

[CMP cmp S], 

[pp prep NP] 

[VP v NP] 3 
[NP D n]l, 2, 
[D NpI 's]4, 

[NP CMP] 1,2 

4: [D [NP D n] 1 's] 

[NP [CMP cmp s]]l, 2, 

[D [NP [CMP cmp S]] 1,2 's], 
[S [NP [CMP cmp S]]I, 2 VP] 

[S [NP D n]l, 2 VP] 
[S NpI'2 VP] 

Table 2. Partial structures for CR-I 

Ras* [NP -[NP propn] • pp]l,2, [NP [D -[NP propn] • 's] n] 1,2 
[D [NP i ~  ° n] 1 's] 4 

[CMP cmp • S], [NP [CMP cmp • S]]I, 2, 

[D [NP [CMP cmp • S]]I, 2 's], 
[S [NP [CMP cmp ° S]]I, 2 VP] 

[pp prep • NP] 

[VP v • NP] 3 

[NP [ D ~  " r i l l ' 2  • [S [NF J-D art] " n]l'2 VP] 
[D [Np pr°pn]l " 's]4, [S [NP P r°pn]l'2 " VP] 

Table 3. Projecting non-terminal left daughters 

As a first step towards computing 
the table which step 4b above would 
use, we can pre-compute the partial 
structures given above in Table 2. 

c l*  contains all backbone frag- 
ments constructable from the unit  
productions, and is already essentially 
what we require for step 3 of the algo- 
rithm. LRdir contains all directly left- 
recursive structures. L R i n d i r 2  con- 
tains all indirectly left-recursive struc- 
tures involving exactly two rules, and 
there might be LRindir3, 4,... as 
well. R s* contains all non-recursive 
tree fragments constructable from left- 
embedding of binary or greater rules 
and non-terminal uni t  productions. 
The superscripts denote loci where 

left-recursion may be appropriate, and 
identify the relevant structures. 

In order to get the full Raise* table 
needed for step 4b, first we need to pro- 
ject the non-terminal left daughters of 
rules such as [ s NpI' 2 VP ] down to 
terminal left daughters. We achieve 
this by substituting terminal entries 
from Cl* wherever we can in LRdir, 
LRindir2 and Rs* to give us Table 3 
from Table 2 (new embeddings are 
underlined). 

Left recursion has one remaining 
problem for us. Algorithm CR-I only 
checks for annotations and ND raises 
in place after a reduction completes a 
constituent. But in the last line of 
Ras* above there are unit constituents 
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[NP [NP propn] • 

[D [NP [D art] • 
[CMP cmp • S], 

pp]l,2, [NP [D [NP propn] • 's] 
n] 1 ,s] 4 

[NP [CMP cmp • S]]1,2, 

[D [NP [CMP cmp ° S]]I, 2 's], 

[S [NP [CMP cmp • S]]I, 2 VP] 
[pp prep • NP] 

[VP v • NP] 3 

[NP [D art] • n]l, 2, [S [NP [D art] ° n]l, 2 VP] 

[D [NP propn] ° 's]4, [D [NP [NP propn] ° pp]l ,s]4 

[S [NP propn] ° VP], [S [NP [NP propn] ° pp]l,2 VP], 

[S [NP [D [NP propn] • 's] n] 1,2 VP] 

Table 4. Final  form of the structure table Ra i S e * 

n]l, 2 

with annotations. Being already com- 
plete, they will not ever be completed, 
and consequently the annotations will 
never be checked. So we pre-compute 
the desired resul t ,  augmen t ing  the 
above l is t  with expansions  of those 
units via the indicated left recursions. 
This gives us the f inal  vers ion of 
Raise * ,  n o w  shown with  dots in- 
cluded, in Table 4. 

This table is now suited to its role 
in the algorithm. Every entry has a 
lexical left  daughter ,  all  annota ted  
const i tuents  are incomplete,  and all 
unit  productions are factored in. It is 
interest ing to note tha t  with these tree 
f ragments ,  t aken  together  with the 
terminal  entries in  Cl*,  as the ini t ial  
trees and L R d i r ,  L R i n d i r 2  , etc. as the 
a u x i l i a r y  t rees  we have  a Tree 
Adjo in ing  G r a m m a r  (Joshi  1985) 
which is strongly equivalent to the CF- 
PSG we started with. We might  call it  
the left-lexical TAG for tha t  CF-PSG, 
after Schabes et al. (1988). Note fur- 
ther that  i f  a TAG parser  respected the 
annotations as restr ict ing adjunction, 
no s p u r i o u s l y  a m b i g u o u s  p a r s e s  
would be produced. 

Indeed it  was via this relat ionship 
wi th  TAGs t h a t  the de ta i l s  were 

worked out of how the annotations are 
distributed, not presented here to con- 
serve space. 

II.4 Implementat ion and Efficiency 
Only a serial  pseudo-paral lel  im- 

p l e m e n t a t i o n  h a s  b e e n  wr i t t en .  
Because of the h igh  degree of pre- 
computation of structure, this version 
even though serialised runs quite effi- 
ciently. There is very lit t le computa- 
tion at each step, as it is straight-for- 
ward to double index the mai s e* table 
so tha t  only s t ruc tures  which will  
compose with the current  s t ructure 
are retrieved. 

The price one pays for this  effi- 
ciency, whether  in  serial  or paral le l  
versions,  is t ha t  only lef t-common 
s t ructure  is shared.  Right-common 
structure,  as for ins tance  in  P P at- 
tachment  ambiguity,  is not shared be- 
tween analysis  paths. This causes no 
difficulties for the parallel  approach in 
one sense, in tha t  i t  does not compro- 
mise the real-t ime performance of the 
parser. Indeed, it is precisely because 
no recombination is attempted that  the 
basic pars ing  step is constant  time. 
But it does mean  that  i f  the CF-PSG be- 
ing parsed is the first ha l f  of a two step 
process,  in  which  add i t iona l  con- 
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straints  are solved in the second pass, 
then the duplication of s t ructure will 
give rise to duplication of effort. Any 
para l le l  p a r s e r  which adopts  the  
s trategy of forking at  non-determinis- 
tic choice points will suffer from this 
weakness, including CR-II below. 

III. THE SECOND COMPOSE-R~nUCE 
PARSER CR-II 

Our second approach to compose- 
reduce parsing differs from the first in 
retaining a stack, having a more com- 
plex basic parsing step, while requir- 
ing far  less pre-process ing of the  
grammar .  In par t icular ,  no special 
t rea tment  is required for left-recursive 
rules. Nevertheless, the basic step is 
still constant  time, and despite the 
stack there  is no potential  processing 
'balloon' at  the end of the input. 

III. 1 The Basic Parsing Algorithm 

Algorithm CR-II 

1 Shift the next word; 
2 ND look it up in the lexicon; 
3 ND close the resulting cate- 

gory wrt the unit produc- 
t ions;  

4 N D reduce the resulting cat- 
egory with the top of the 
stack-- i f  results are com- 
plete and there is input re- 
maining, pop the stack; 

5a N D raise the results of (2), 
(3) and, where complete, (4) 
and 

5b N D either push the result 
onto the stack 
or 

5c N D compose the result with 
the top of the stack, replac- 
ing it. 

This is not an easy algori thm to 
unders tand.  In the next  section we 
present  a number  of different ways of 
motivat ing it, together  with an illus- 
trat ive example. 

III.2 CR-II Explained 
Let us first consider how CR-II will 

operate on purely  left-branching and 
purely r ight-branching structures.  In 
each case we will consider the se- 
quence of a lgori thm steps along the 
non-de te rmin i s t i ca l ly  correct  pa th ,  
ignoring the others. We will also re- 
strict  ourselves to considering binary  
branching rules, as pre- terminal  unit  
productions are handled  ent i re ly  by 
step 3 of the algorithm, and non-ter- 
minal  uni t  productions mus t  be fac- 
tored into the grammar.  On the other 
hand,  in ter ior  daugh te r s  of non-bi- 
na ry  nodes are all handled by step 4 
wi thout  changing the depth of the 
stack. 

III.2.1 Left-branching analysis 
For a purely  left-branching struc- 

ture,  the first  word will be processed 
by steps 1, 2, 5a and 5b, producing a 
stack with one en t ry  which we can 
schemat ise  as in Figure  1, where 
filled circles are processed nodes and 
unfilled ones are waiting. 

Figure 1. 
All subsequent  words except the 

last  will be processed by steps 4, 5a and 
5b (here and subsequently we will not 
mention steps 1 and 2, which occur for 
all words), effectively replacing the 
previous sole en t ry  in the stack with 
the one given in Figure 2. 
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Figure 2. 
It should be evident that  the cycle of 

steps 4, 5a and 5b constructs a left- 
branching s t ruc ture  of increasing 
depth as the sole stack entry, with one 
right daughter, of the top node, wait- 
ing to be filled. The last input word of 
course is simply processed by step 4 
and, as there is no further input, left 
on the stack as the final result. The 
complete sequence of steps for any left- 
branching analysis is thus r a i s e J r e -  
duce&raise*--reduce.  An ordinary 
shif t-reduce or left-corner pa rse r  
would go through the same sequence 
of steps. 

III.2.2 Right-branching analysis 
The first word of a purely right- 

branching structure is analysed ex- 
actly as for a left-branching one, that  
is, with 5a and 5b, with results as in 
Figure 1 (repeated here as Figure 3): 

z% 
Figure 3. 

Subsequent words, except the last, 
are processed via steps 5a and 5c, with 
the result remaining as the sole stack 
entry, as in Figure 4. 

Figure 4. 
Again it should be evident that  cy- 

cling steps 5a and 5c will construct a 
right-branching structure of increas- 
ing depth as the sole stack entry, with 
one right daughter,  of the most em- 
bedded node, wait ing to be filled. 
Again, the last input word will be pro- 
cessed by step 4. The complete se- 
quence of steps for any right-branch- 
ing  a n a l y s i s  is t h u s  r a i s e m  
raise&compose*--reduce. A catego- 
rial grammar parser with a compose- 
first  s t ra tegy would go through an 
isomorphic sequence of steps. 

III.2.3 Mixed Left- and Right-branch- 
ing Analysis 

All the steps in algorithm CR-II 
have now been illustrated, but we have 
yet to see the stack grow beyond one 
entry. This will occur in where an in- 
dividual word, as opposed to a com- 
pleted complex consti tuent,  is pro- 
cessed by steps 5a and 5b, tha t  is, 
where steps 5a and 5b apply other than 
to the results of step 4. 

Consider for instance the sentence 
"the child believes tha t  the dog likes 
biscuits. ~ With a grammar  which I 
t rust  will be obvious, we would arrive 
at the structure shown in Figure 5 
after  processing "the child believes 
t ha t  ~, having done ra ise- - reduce& 
ra i se J ra i se&compose - -  
raise&compose, tha t  is, a bit of left- 
branching analysis, followed by a bit of 
right-branching analysis. 
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S S 

VP 
VP 

S' 

thai Flr~hle~ir~ili~[::~: be dorieS the child believes t~ v~p 
with "the" which will allow immediate 
integration with this. The ND correct 
pa th  appl ies  s teps 5a and 5b, 
raise&push, giving a stack as shown 
in Figure 6: 

S 

NP 

the N 

VP 

S 

the child believes that 

Figure 6. 
We can then apply steps 4, 5a and 

5c, reduce&raise&compose, to "dog", 
with the result  shown in Figure 7. 
This puts uss back on the standard 
right-branching path for the rest of the 
sentence. 

the dog 

Figure 7. 

III.3 An Alternative View of CR-II 

Returning to a question raised ear- 
lier, we can now see how a chart  
parser could be modified in order to 
run in real-time given enough proces- 
sors to empty the agenda as fast as it is 
filled. We can reproduce the process- 
ing of CR-II within the active chart  
parsing framework by two modifica- 
tions to the fundamental rule (see e.g. 
Gazdar and Mellish 1989 or Thompson 
and Ritchie 1984 for a tutorial intro- 
duction to active chart parsing). First  
we restrict  its normal operation, in 
which an active and an inactive edge 
are combined, to apply only in the case 
of pre-terminal inactive edges. This 
corresponds to the fact that  in CR-II 
step 4, the reduction step, applies only 
to pre-terminal categories (continuing 
to ignore unit productions). Secondly 
we allow the fundamenta l  rule to 
combine two active edges, provided the 
category to be produced by one is what 
is required by the other. This effects 
composition. If we now run our chart 
parser  left-to-right, left-corner and 
breadth-first,  it will duplicate CR-II. 
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The maximum number of edges along 
a given analysis path which can be in- 
troduced by the processing of a single 
word is now at most four, correspond- 
ing to steps 2, 4, 5a and 5c of CR-IIDthe 
pre-terminal itself, a constituent com- 
pleted by it, an active edge containing 
that  constituent as left daughter, cre- 
ated by left-corner rule invocation, and 
a further active edge combining that  
one with one to its left. This in turn 
means that  there is a fixed limit to the 
amount  of processing required for 
each word. 

III.4 Implementation and Efficiency 
Although clearly not benefit ing 

from as much pre-computat ion of 
structure as CR-I, CR-II is also quite ef- 
ficient. Two modifications can be 
added to improve efficiencyDa reach- 
ability filter on step 5b, and a shaper 
test (Kuno 1965), also on 5b. For the 
latter, we need simply keep a count of 
the number of open nodes on the stack 
(equal to the number of stack entries if  
all rules are binary), and ensure that  
this number never exceeds the num- 
ber of words remaining in the input, 
as each entry will require a number of 
words equal to the number of its open 
nodes to pop it off the stack. This test 
actually cuts down the number of non- 
determinist ic  paths  quite dramati-  
cally, as the ND optionality of step 5b 
means tha t  quite deep stacks would 
otherwise be pursued along some 
search paths. Again this reduction in 
search space is of limited significance 
in a true parallel implementation, but 
in the serial simulation it makes a big 
difference. 

Note also that  no attention has been 
paid to uni t  productions, which we 
pre-compute as in CR-I. Furthermore, 
neither CR-I nor CR-II address empty 

productions, whose effect would also 
need to be pre-computed. 

IV. CONCLUSIONS 
Aside from the intrinsic interest in 

the abstract of real-time parsablility, is 
there any practical significance to 
these results. Two drawbacks, one al- 
ready referred to, certainly restrict  
their significance. One is that  the re- 
striction to atomic category CF-PSGs is 
crucial the fact that  the comparison 
between a rule element and a node la- 
bel is atomic and constant time is fun- 
damental.  Any move to features or 
other annotations would put an end to 
real-time processing. This fact gives 
added weight to the problem men- 
tioned above in section II,4, that  only 
left-common analys is  resul t s  are 
shared between alternatives. Thus if 
one finesses the atomic category prob- 
lem by using a parser such as those 
described here only as the first pass of 
a two pass system, one is only putting 
off the payment of the complexity price 
to the second pass, in the absence to 
date of any linear time solution to the 
constraint satisfaction problem. On 
this basis, one would clearly prefer a 
parallel CKY/Earley algorithm, which 
does share all common substructure, 
to the parsers presented here. 

Nevertheless, there is one class of 
applications where the left-to-right 
real-t ime behaviour of these algo- 
r i thms may be of practical benefit, 
n a m e l y  in speech recogni t ion .  
Present  day systems require on-line 
availability of syntactic and domain- 
semant ic  cons t ra in t  to l imit  the 
search space at lower levels of the sys- 
tem. Hitherto this has meant  these 
constraints must  be brought to bear 
during recognition as some form of 
regular  grammar ,  ei ther  explicitly 
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constructed as such or compiled into. 
The parsers presented here offer the 
alternative of parallel application of 
genuinely context-free grammars di- 
rectly, with the potential added benefit 
that, with sufficient processor width, 
quite high degrees of local ambiguity 
can be tolerated, such as would arise if 
(a finite subset of) a feature-based 
grammar were expanded out into 
atomic category form. 
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