
T Y P E - R A I S I N G A N D D I R E C T I O N A L I T Y I N C O M B I N A T O R Y G R A M M A R *

M a r k S t e e d m a n
Computer and Information Science, University of Pennsylvania

200 South 33rd Street
Philadelphia PA 19104-6389, USA

(Interact: steedman@cis, upenn, edu)

ABSTRACT

The form of rules in ¢ombinatory categorial grammars
(CCG) is constrained by three principles, called "adja-
cency", "consistency" and "inheritance". These principles
have been claimed elsewhere to constrain the combinatory
rules of composition and type raising in such a way as to
make certain linguistic universals concerning word order
under coordination follow immediately. The present paper
shows that the three principles have a natural expression
in a unification-based interpretation of CCG in which di-
rectional information is an attribute of the arguments of
functions grounded in string position. The universals can
thereby be derived as consequences of elementary assump-
tions. Some desirable results for grammars and parsers fol-
low, concerning type-raising rules.

P R E L I M I N A R I E S

In Categorial Grammar (CG), elements like verbs are
associated with a syntactic "category", which identi-
fies their functional type. I shall use a notation in
which the argument or domain category always ap-
pears to the right of the slash, and the result or range
category to the left. A forward slash / means that the
argument in question must appear on the right, while
a backward slash \ means it must appear on the left.

(1) enjoys := (S \ N P) / N P

The category (S \ N P) / N P can be regarded as both
a syntactic and a semantic object, in which symbols
like S are abbreviations for graphs or terms including
interpretations, as in the unification-based categorial
grammars ofZeevat et al. [8] and others (and cf. [6]).

Such functions can combine with arguments of the
appropriate type and position by rules of functional
application, written as follows:

(2) The Functional Application Rules:
a. X / Y Y =~ X (>)
b. Y X \ Y :=~ X (<)

Such rules are also both syntactic and semantic rules

*Thanks to Michael Niv and Sm Shieber. Support from: NSF
Grant CISE IIP CDA 88-22719, DARPA grant no. N0014-90J-
1863, and ARO grant no. DAAL03-89-C0031.

of combination in which X and Y are abbreviations
for more complex objects which combine via unifi-
cation. They allow context-free derivations like the
following (the application of rules is indicated by in-
dices >, < on the underlines:

(3) Mary enjoys ~usicals

m, (s \ m ') / ~]w
. >

s \ l P
. <

s

The derivation can be assumed to build a composi-
tional interpretation, (enjoy' musicals') mary', say.

Coordination can be included in CG via the follow-
ing rule, allowing constituents of like type to conjoin
to yield a single constituent of the same type:

(4) X conj X =~ X

(5) I love and admire musicals
.

.

(s \ m ') / m ,

The rest of the derivation is exactly as in (3).

In order to allow coordination of contiguous strings
that do not constitute constituents, CCG allows certain
operations on functions related to Curry's combina-
tots [1]. Functions may compose, as well as apply,
under rules like the following:

(6) Forward Composition:
X / Y Y / Z ~B X / Z (> B)

The rule corresponds to Curry's eombinator B, as
the subscripted arrow indicates. It allows sentences
like Mary admires, and may enjoy, musicals to be ac-
cepted, via the functional composition of two verbs
(indexed as >B), to yield a composite of the same
category as a transitive verb. Crucially, composition
also yields the appropriate interpretation for the com-
posite verb may prefer in this sentence (the rest of the
derivation is as in (3)):

71

(7) admires and may enjoy

(S\NP)/NP conj (S\NP)/VP VP/NP
............... >B

(SkWP)Im,

(s\~)/~P

CCG also allows type-raising rules, related to the
combinator T, which turn arguments into functions
over functions-over-such-arguments. These rules al-
low arguments to compose, and thereby lake part in
coordinations like I dislike, and Mary enjoys, musi-
cals. They too have an invariant compositional se-
mantics which ensures that the result has an appro-
priate interpretation. For example, the following rule
allows such conjuncts to form as below (again, the
remainder of the derivation is omitted):

(8) Subject ~pe-raising:
N P : y ~ T S / (S \ N P) (> T)

(9) I d i s l i k e and R a x ' y *" joys

IP (S \ I P) / I P conj lP (S \ I P) / | P
. >T >T
Sl(S\lP) Sl(S\IP)
. =--->s >S

SlIP SlIP

sliP

This apparatus has been applied to a wide variety of
phenomena of long-range dependency and coordinate
structure (cf. [2], [5], [6]). 1 For example, Dowty pro-
posed to account for the notorious "non-constituent"
coordination in (10) by adding two rules that are sim-
ply the backward mitre-image versions of the com-
position and type raising rules already given (they are
indicated in the derivation by <B and <T). 2 This is a
welcome result: not only do we capture a construction
that has been resistant to other formalisms. We also
satisfy a prediction of the theory, for the two back-
ward rules arc clearly expected once we have chosen
to introduce their mirror image originals. The ear-
lier papers show that, provided type raising is limited
to the two "order preserving" varieties exemplified in
these examples, the above reduction is the only one
permitted by the lexicon of English. A number of
related cross-linguistic regularities in the dependency
of gapping upon basic word order follow ([2], [6]).
The construction also strongly suggests that all N P s
(etc.) should be considered as type raised, preferably

I One further class of rules, corresponding to the combinator
S, has been proposed. This combinator is not discussed here, but
all the present results transfer to tho6e rules as well.

2This and other long examples have been "flmted" to later po-
sitions in the text.

in the lexicon, and that categories like N P should not
reduce at all. However, this last proposal seems tc
implies a puzzling extra ambiguity in the lexicon, and
for the moment we will continue to view type-raising
as a syntactic rule.

The universal claim depends upon type-raising be-
ing limited to the following schemata, which do not
of themselves induce new constituent orders:

(11) x =~T T/ i f \X)
X :::}T T \ (T / X)

If the following patterns (which allow constituent or-
ders that are not otherwise permitted) were allowed,
the regularity would be unexplained, and without fur-
ther restrictions, grammars would collapse into free
order:

(12) X :::}T T / (T / X)
X ::~T T \ (T \ X)

But what are the principles that limit combinatory
rules of grammar, to include (11) and exclude (12)?

The earlier papers claim that all CCG rules must
conform to three principles. The first is called the
Principle of Adjacency [5, pA05], and says that rules
may only apply to string-adjacent non-empty cate-
gories. It amounts to the assumption that combina-
tops will do the job. The second is called the Prin-
ciple of Directional Consistency. Informally stated, it
says that rules may not override the directionality on
the "cancelling" Y category in the combination. For
example, the following rule is excluded:

(13) • X \ Y Y = > X

The third is the Principle of Directional Inheritance,
which says that the directionality of any argument in
the result of a combinatory rule must be the same as
the directionality on the corresponding argument(s) in
the original functions. For example, the following
composition rule is excluded:

(14) * X / Y Y / Z = > X \ Z

However, rules like the following are permitted:

(15) Y / Z X \ Y = > X / Z (< B x)

This rule (which is not a theorem in the Lambek cal-
culus) is used in [5] to account for examples like
I shall buy today and read tomorrow, the collected
works of Proust, the crucial combination being the
following:

(16) . . . read tomorxow . . .

vP/m, vP\vP
. <Bx

VP/NP

The principles of consistency and inheritance amount

7 2

to the simple statement that combinatory rules may
not contradict the directionality specified in the lexi-
con. But how is this observation to be formalised,
and how does it bear on the type-raising rules? The
next section answers these questions by proposing an
interpretation, grounded in string positions, for the
symbols / and \ in CCG. The notation will temporar-
ily become rather heavy going, so it should be clearly
understood that this is not a proposal for a new CCG
notation. It is a semantics for the metagrammar of
the old CCG notation.

DIRECTIONALITY IN CCG

The fact that directionality of arguments is inher-
ited under combinatory rules, under the third of the
principles, strongly suggests that it is a property of
arguments themselves, just like their eategorial type,
N P or whatever, as in the work of Zeevat et al.
[8][9]. However, the feature in question will here
be grounded in a different representation, with signif-
icantly different consequences, as follows. The basic
form of a combinatory rule under the principle of ad-
jacency is a fl ~ ~,. However, this notation leaves
the linear order of ot and fl implicit. We therefore
temporarily expand the notation, replacing categories
like N P by 4-tuples, of the form {e~, DPa, L~, Ra},
comprising: a) a type such as NP; b) a Distinguished
Position, which we will come to in a minute; c) a Left-
end position; and d) a Right-end position. The Prin-
ciple of Adjacency finds expression in the fact that
all legal combinatory rules must have the the form in
(17), in which the right-end of ~ is the same as the
left-end of r : We will call the position P2, to which
the two categories are adjacent, the juncture.

The Distinguished Position of a category is simply
the one of its two ends that coincides with the junc-
ture when it is the "'cancelling" term Y. A rightward
combining function, such as the transitive verb enjoy,
specifies the distinguished position of its argument
(here underlined for salience) as being that argument's
left-end. So this category is written in full as in (18)a,
using a non-directional slash/. The notation in (a) is
rather overwhelming. When positional features are of
no immediate relevance in such categories, they will
be suppressed. For example, when we are thinking of
such a function as a function, rather than as an argu-
ment, we will write it as in (18)b, where V P stands
for {VP, DFVp, Lw, , Rvp}, and the distinguished
position of the verb is omitted. It is important to note
that while the binding of the NP argument's Distin-
guished Position to its left hand end L,p means that
enjoy is a rightward function, the distinguished posi-
tion is not bound to the right hand end of the verb,

t~verb. It follows that the verb can potentially com-
bine with an argument elsewhere, just so long as it is
to the right. This property was crucial to the earlier
analysis of heavy NP shift. Coupled with the parallel
independence in the position of the result from the
position of the verb, it is the point at which CCG
parts company with the directional Lambek calculus,
as we shall see below.

In the expanded notation the rule of forward ap-
plication is written as in (19). The fact that the dis-
tinguisbed position must be one of the two ends of
an argument category, coupled with the requirement
of the principle of Adjacency, means that only the
two order-preserving instances of functional applica-
tion shown in (2) can exist, and only consistent cate-
gories can unify with those rules.

A combination under this rule proceeds as follows.
Consider example (20), the VP enjoy musicals. The
derivation continues as follows. First the positional
variables of the categories are bound by the positions
in which the words occur in the siring, as in (21),
which in the first place we will represent explicitly,
as numbered string positions, s Next the combinatory
rule (19) applies, to unify the argument term of the
function with the real argument, binding the remain-
ing positional variables including the distinguished
position, as in (22) and (23). At the point when the
combinatory rule applies, the constraint implicit in the
distinguished position must actually hold. That is, the
distinguished position must be adjacent to the functor.

Thus the Consistency property of combinatory rules
follows from the principle of Adjacency, embodied in
the fact that all such rules identify the distinguished
position of the argument terms with the juncture P2,
the point to which the two combinands are adjacent,
as in the application example (19).

The principle of Inheritance also follows directly
from these assumptions. The fact that rules corre-
spond to combinators like composition forces direc-
tionality to be inherited, like any other property of an
argument such as being an NP. It follows that only
instances of the two very general rules of compo-
sition shown in (24) are allowed, as a consequence
of the three Principles. To conform to the principle
of consistency, it is necessary that L~ and / ~ , the
ends of the cancelling category Y, be distinct posi-
tions - that is, that Y not be coerced to the empty
string. This condition is implicit in the Principle of
Adjacency (see above), although in the notation of

3 Declaritivising position like this may seem laborious, but it is
a tactic familiar from the DCG literature, from which we shall later
borrow the elegant device of encoding such positions implicitly in
difference-lists.

73

(1o) give a policeman a flower and

(VP/liP)/tip lip ~ conj
<T <T

(~/m~)\C (vP/SP)/mD vPXC~/SP)
- - - - - - " " - - - - " < e

Vl'\(~/lw)

a d o g a b o n e

~\(~lW)

,iP

liP liP
. <T <T
CVP/sP) \ (CVP/sP)/sP) ~ \ (vv/sP)

<B

vp\ (VV lSi.)
<&>

(17) {a, DPa, Px,P~} {]~,DP~,P2, Ps} ::~ {7, DP.y,P1,Pa}

(18) a. enjoy :-- {{VP, DPvp, Lvp, Rvp}/{NP, L.p, Lnp, R.p}, DPverb, Leerb, R~erb}

b. enjoy :-- {VP/{NP, Lnp, L.p, P~p}, Leerb, R~erb}

(19) {{X, DP., PI, P3}/{Y, P2, P2, P3}, PI, P2} {Y, P2, P2, P3} :~ {X, DPz, PI, P31

(20) 1 enjoy 2 musicals 3
{VP/{NP, Larg, Larg,Rare},Llun,Rlu.} {NP, DPnp, Lnp,R.p}

(21) 1 enjoy 2 musicals 3
{VP/{NP, La,,, La,,, R.r,}, 1, 2} {NP, DPnp, 2, 3}

(22) I enjoy 2 musicals 3
{VP/{NP, L.rg,Larg,Ro~g},l,2} {NP, DP.p,2,3}

{X/{Y, P2, P2, P3}, P1, P2} {Y, P2, P2, P3}

(23) 1 enjoy 2 musicals 3
{VP/{NP, 2,2,3~,l,2~ {NP,2,2, 3}

{vP, 1, 3}

(24) a. {{X, DP~,L.,R.}/{Y, P2,P2,P~},P1,P2} {{Y, P2,P2,P~}/{Z, DPz,Lz,R.},P2,P3)
:~ {{X, DPx,L,,,R~,}/{Z, DP.,L.,R.},PI,P3}

b. {{Y, P2, Ly, P2}/{Z, DPz, Lz, Rz}, PI, P2} {{X, DPx, L~, R~}/{Y, P2, Lu, P2}, P2, P3}
:~ {{X, DPx, Lx,Rz}/{Z, DPz,L,,Rz},PI,P3}

(25) The Possible Composition Rules:
a. X /Y Y/Z =~B X/Z (>B)
b. X /Y Y\Z =~B X\Z (>Bx)
e. Y\Z X\Y =~B X\Z (<B)
d. Y/Z X\Y ::*'B X/Z (<Bx)

7'4

the appendix it has to be explicitly imposed. These
schemata permit only the four instances of the rules
of composition proposed in [5] [6], given in (25) in
the basic CCG notation. "Crossed" rules like (15)
are still allowed Coecause of the non-identity noted in
the discussion of (18) between the distinguished posi-
tion of arguments of functions and the position of the
function itself). They are distinguished from the cor-
responding non-crossing rules by further specifying
DP~, the distinguished position on Z. However, no
rule violating the Principle of Inheritance, like (14), is
allowed: such a rule would require a different distin-
guished position on the two Zs, and would therefore
not be functional composition at all. This is a desir-
able result: the example (16) and the earlier papers
show that the non-order-preserving instances (b, d)
are required for the grammar of English and Dutch.
In configurational languages like English they must
of course be carefully restricted as to the categories
that may unify with Y.

The implications of the present formalism for the
type-raising rules are less obvious. Type raising rules
are unary, and probably lexical, so the principle of
adjacency does not apply. However, we noted earlier
that we only want the order-preserving instances (11),
in which the directionality of the raised category is
the reverse of that of its argument. But how can this
reversal be anything but an arbitrary property?

Because the directionality constraints are grounded
out in string positions, the distinguished position of
the subject argument of a predicate walks - that is,
the right-hand edge of that subject - is equivalent to
the distinguished position of the predicate that consti-
tutes the argument of an order-preserving raised sub-
ject Gilbert that is, the left-hand edge of that pred-
icate. It follows that both of the order-preserving
rules are instances of the single rule (26) in the ex-
tended notation: The crucial property of this rule,
which forces its instances to be order-preserving, is
that the distinguished position variable D Parg on the
argument of the predicate in the raised category is the
same as that on the argument of the raised category
itself. (l'he two distinguished positions are underlined
in (26)). Of course, the position is unspecified at the
time of applying the rule, and is simply represented
as an unbound unification variable with an arbitrary
mnemonic identifier. However, when the category
combines with a predicate, this variable will be bound
by the directionality specified in the predicate itself.
Since this condition will be transmitted to the raised
category, it will have to coincide with the juncture of
the combination. Combination of the categories in
the non-grammatical order will therefore fail, just as

if the original categories were combining without the
mediation of type-raising.

Consider the following example. Under the above
rule, the categories of the words in the sentence
Gilbert walks are as shown in (27), before binding.
Binding of string positional variables yields the cat-
egories in (28). The combinatory rule of forward
application (19) applies as in example (29), binding
further variables by unification. In particular, DP 9,
Prop, DPw, and P2, are all bound to the juncture po-
sition 2, as in (30). By contrast, the same categories
in the opposite linear order fail to unify with any
combinatory rule. In particular, the backward appli-
cation rule fails, as in (31). (Combination is blocked
because 2 cannot unify with 3).

On the assumption implicit in (26), the only permit-
ted instances of type raising are the two rules given
earlier as (11). The earlier results concerning word-
order universals under coordination are therefore cap-
tured. Moreover, we can now think of these two rules
as a single underspecified order-preserving rule di-
rectly corresponding to (26), which we might write
less long-windediy as follows, augmenting the origi-
nal simplest notation with a non-directional slash:

(33) The Order-preserving Type-raising Rule:
X ~ TI(TIX) (T)

The category that results from this rule can combine in
either direction, but will always preserve order. Such
a property is extremely desirable in a language like
English, whose verb requires some arguments to the
right, and some to the left, but whose NPs do not bear
case. The general raised category can combine in both
directions, but will still preserve word order. It thus
eliminates what was earlier noted as a worrying extra
degree of categorial ambiguity. The way is now clear
to incorporate type raising directly into the lexicon,
substituting categories of the form T I(TIX), where X
is a category like N P or PP, directly into the lexicon
in place of the basic categories, or (more readably, but
less efficiently), to keep the basic categories and the
rule (33), and exclude the base categories from all
combination.

The related proposal of Zeevat et al. [8],[9] also
has the property of allowing a single lexical raised
category for the English NP. However, because of
the way in which the directional constraints are here
grounded in relative string position, rather than being
primitive to the system, the present proposal avoids
certain difficulties in the earlier treatment. Zeevat's
type-raised categories are actually order-changing,
and require the lexical category for the English pred-
icate to be S / N P instead of S \ N P . (Cf. [9, pp.

7S

(25) {X, DParg,L..rg, R,,rg} => {T/{T/{X, DP,,,'g,L,,rg,R,,,-g},DParg,Lpred,Ra, red},L"rg, Rar9 }

(27) 1 Gilbert 2 walks 3
{S/{S/{NP, DPg,Lg,Rg},DPg,Lpred, Rpred},Lg,Rg } {S/{NP, R~p,L.p,R~p},DP,~,Lw,R~}

(28) 1 Gilbert 2 walks 3
{S/{S/{NP, DPg, I,2},DPg,Lpre,~,R~r.d}I,2} {S/{NP, R.p,L.p,R,w},DP",2,3}

(29) 1 Gilbert 2
{S/{S/{NP, 01)9, 1, 2}, DPg, Lure& R~red}, 1,2}

{X/{Y, P2, P2, P3}, P1, P2}

walks
{S/{NP, R~p, L.p, R~p}, DP,~, 2, 3}

{Y, P2, P2, P3}

(3O) 1 Gilbert 2 walks
{S/{S/{NP, 2, 1,2}, 2, 2, 3}, 1, 2} {S/{NP, 2, 1,2}, 2, 2, 3}

{S, 1,3}

(31) 1 ,Walks 2
{S/{NP, R~p, L.~, R~p}, 1, 2}

{Y, P2, P1, P2}

Gilbert
{S/ { S/ { N P, 01)9,2, 3}, DP 9, Lpr.d, Rpred}, 2, 3}

{X/{Y, P2, Pl, P2}, P2, P3}

(32) .{X, DParg,Larg,Rarg} :=~ {T/{T/{X, DParg,Lar.,Rarg}'DPpred'Lpred'Rp red}'Larg'Rarg}

207-210]). They are thereby prevented from captur-
ing a number of generalisations of CCGs, and in fact
exclude functional composition entirely.

It is important to be clear that, while the order
preserving constraint is very simply imposed, it is
nevertheless an additional stipulation, imposed by the
form of the type raising rule (26). We could have
used a unique variable, DPpr,a say, in the crucial
position in (26), unrelated to the positional condi-
tion DP~r9 on the argument of the predicate itself,
to define the distinguished position of the predicate
argument of the raised category, as in example (32).
However, this tactic would yield a completely uncon-
strained type raising rule, whose result category could
not merely be substituted throughout the lexicon for
ground categories like N P without grammatical col-
lapse. (Such categories immediately induce totally
free word-order, for example permitting (31) on the
English lexicon). It seems likely that type raising is
universally confined to the order-preserving kind, and
that the sources of so-called free word order lie else-
where. Such a constraint can therefore be understood
in terms of the present proposal simply as a require-
ment for the lexicon itself to be consistent. It should
also be observed that a uniformly order-changing cat-
egory of the kind proposed by Zeevat et al. is not
possible under this theory.

The above argument translates directly into
unification-based frameworks such as PATR or Pro-
log. A small Prolog program, shown in an appendix,
can be used to exemplify and check the argument. 4
The program makes no claim to practicality or ef-
ficiency as a CCG parser, a question on which the
reader is refered to [7]. Purely for explanatory sim-
plicity, it uses type raising as a syntactic rule, rather
than as an offline lexical rule. While a few English
lexical categories and an English sentence are given
by way of illustration, the very general combinatory
rules that are included will of course require further
constraints if they are not to overgenerate with larger
fragments. (For example, >B and >Bx must be dis-
anguished as outlined above, and file latter must be
greatly constrained for English.) One very general
constraint, excluding all combinations with or into
NP, is included in the program, in order to force
type-raising and exemplify the way in which further
constrained rule-instances may be specified.

CONCLUSION

We can now safely revert to the original CCG nota-

4The program is based on a simple shift-reduce
parser/rccogniscr, using "difference list"-encoding of string posi-
tion (el. [41, [31).

tion described in the preliminaries to the paper, mod-
ified only by the introduction of the general order-
preserving type raising rule (26), having established
the following results. First, the earlier claims con-
cerning word-order universals follow fTom first prin-
ciples in a unification-based CCG in which direction-
ality is an attribute of arguments, grounded out in
string position. The Principles of Consistency and In-
heritance follow as theorems, rather than stipulations.
A single general-purpose order-preserving type-raised
category can be assigned to arguments, simplifying
the grammar and the parser.

R E F E R E N C E S

[1] Curry, I-Iaskell and Robert Feys: 1958, Combi-
natory Logic, North Holland, Amsterdam.

[2] Dowry, David: 1988, Type raising, functional
composition, and non-constituent coordination, in
Richard T. Oehrle, E. Bach and D. Wheeler,
(eds), Categorial Grammars and Natural Lan-
guage Structures, Reidel, Dordrecht, 153-198.

[3] Gerdeman, Dale and Hinrichs, Erhard: 1990.
Functor-driven Natural Language Generation with
Categorial Unification Grammars. Proceedings of
COLING 90, Helsinld, 145-150.

[4] Pereira, Fernando, and Smart Shieber: 1987, Pro-
log and Natural Language Analysis, CSLIAJniv.
of Chicago Press.

[5] Steedman, Mark: 1987. Combinatory grammars
and parasitic gaps. Natural Language & Linguis-
tic Theory, 5, 403-439.

[6] Steedman, Mark: 1990, Gapping as Constitu-
tent Coordination, Linguistics and Philosophy, 13,
207-263.

[7] Vijay-Shartkar, K and David Weir: 1990, 'Poly-
nomial Time Parsing of Combinatory Categorial
Grammars', Proceedings of the 28th Annual Con-
ference of the ACL, Pittsburgh, June 1990.

[8] Zeevat, Hunk, Ewan Klein, and Jo Calder: 1987,
'An Introduction to Unification Categorial Gram-
mar', in N. Haddock et al. (eds.), Edinburgh
Working Papers in Cognitive Science, 1: Catego-
rial Grammar, Unification Grammar, and Pars-
ing.

[9] Zeevat, Henk: 1988, 'Combining Categorial
Grammar and Unification', in U. Reyle and C.
Rohrer (eds.), Natural Language Parsing and Lin-
guistic Theories, Dordrecht, Reidel, 202-229.

77'

APPENDIX

~ A Lexical Frasment: parse wi l l bind pos i t ion (via l i s t - encod ing) :

c a t e g o r y (g i l b e r t , cat(np, _, P1, P2)).
c a t e g o r y (b r i g i t t e , cat(np, _, P1, P2)).
ca tegory(ua lks0ca t (ca t (s ) / ca t (np ,P2 ,_ ,P2) ,_ ,P3 ,P4)) .
ca tegory(love , ca t (ca t (vp ) / ca t (np ,P3 ,P3 ,_) ,_ ,P1 ,P2)) .
c a t ego ry (mus t , ca t (ca t (ca t (s ) /cat (np,P2,_,P2) ) / ca t (vp ,P5 ,PS,_) ,_ ,P3 ,P4)) .
category(madly, ca t (ca t (vp , ) / ca t (vp ,P2 ,_ ,P2) ,_ ,P3 ,P4)) .

~ Applicat ion and (overgeneral) Composition: P a r t i a l evaluat ion of DPy with the ac tua l Juncture P2
~ imposes Adjacency. DPy (=P2) must not be =- Y'e other end (see <B and >B). Antecedent \+ Y=np
~ disal lows ALL combination with unraisedNPe.
reduce(cat (ca t (X,DPx,Pl ,P3) /ca t (Y,P2,P2,P3) ,_ ,Pl ,P2) ,

cat(Y, P2, P2,P3),
cat(X,VPx,Pl,P3)) : - \+ Y-rip. ~>

reduce(cat (Y,P2,Pl ,P2) ,
cat(cat(X,DPx,P1,P3)/cat(Y,P2,P1,P2),_,P2,P3),
cat(X,DPx,Pl,P3)) : - \+ Y~np.

reduce (cat (cat (X,DPx,Xl,X2)/cat (Y,P2,P2,Y2) ,_,P1,P2),
cat (cat (Y ,P2 ,P2 ,Y2)/cat (z , DPz, ZI, Z2), _ ,P2 ,P3),
cat(cat(X,DPx,Xl,X2)/cat(Z,VPz,Zl,Z2),_,P1,P3)) : - \+ Y=np,\+ Y2=-P2. ~>B, cf . ex. 24a

reduce(ca t (ca t (Y,P2,YI ,P2) /ca t (Z,DPz,Zl ,Z2) ,_ ,Pl ,P2) ,
cat(cat(X,DPx,Xl,X2)/cat(Y,P2,YI,P2),_,P2,P3),
ca t (ca t (X,DPx, l l ,X2) /ca t (Z,DPz,ZI ,Z2) ,_ ,PI ,P3)) : - \+ Y=np,\+ YI==P2. ~<B, of. ex. 24b

~ O r d a r P r e s e r v i n g T y p e Rais ins: the ru le np -> TI(TInp).
ra ise(ca t (np ,DPnp,Pl ,P2) , % Binds PI , P2

cat(cat(T,DPt,TI,T2)/cat(cat(T,VPt,TI,T2)/cat(np,DPnp,PI,P2),VPnp,_,_), ~ cf . ex. 26
_ ,P l ,P2)) .

~ Parse sJJmlates r e d u c e - f i r s t sh i f t - reduce recosn i se r with backtracking (i n e f f i c i e n t l y)
parse([Result] , O , Resul t) . ~ Halt
pa r se ([Ca t l [S tack] , Buffer , Result) : - X Raise (syn tac t i c)

raise(Carl, Cat2),
parse([Cat21Stack], Buffer, Result).

parse([Cat2, Ca t l lS tack] , Buffer , Result) : - ~ Reduce
reduce(Carl , Cat2, Cat3),
parse([Cat3[Stack] , Buffer , Result) .

parse(Stack, [3/oral[Buffer], Result) : - ~ Shif t
category(Word, cat(W,DPs, ~/ordlBuffer] ,Buffer)) , ~ Pos i t ion is l i s t -encoded
parse ([cat (W, DPs, [Word I Buff er] ,Buff er) J St ack], Buff er , Result) .

~ Example c r u c i a l l y iuvolvin 8 b i d i r e c t i o n a l T (t s ice) and <Bx:
[? - p a r s e (D , ~ i l b e r t , m u s t , l o v e , m a d l y , b r i g i t t e] ,R).

R " cat (s ,_37, ~ilbert ,must, love ,madly,hrigitte], D) ~ ; -- plus 4 more equivalent derivations

yes

78

