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ABSTRACT 

A user may typically need to combine the 
strengths of more than one system in order to perform 
a task. In this paper, we describe a component of the 
Janus natural language interface that translates inten- 
sional logic expressions representing the meaning of 
a request into executable code for each application 
program, chooses which combination of application 
systems to use, and designs the transfer of data 
among them in order to provide an answer. The com- 
plete Janus natural language system has been ported 
to two large command and control decision support 
aids. 

1. Introduction 
The norm in the next generation of user en- 

vironments will be distributed, networked applications. 
Many problems will be solvable only by use of a corn- 
bination of applications. If natural language technol- 
ogy is to be applicable in such environments, we must 
continue to enable the user to talk to computers about 
his/her problem, not about which application(s) to use. 

Most current natural language (NL) systems, 
whether accepting spoken or typed input, are 
designed to interface to a single homogeneous under- 
lying system; they have a component geared to 
producing code for that single class of application sys- 
tems, such as a single relational database[12]. 
Providing an English interface to the user's data base, 
a separate English interface to the same user's plan- 
ning system, and a third interface to a simulation 
package, for instance, will neither be attractive nor 
cost-effective. By contrast, a seamless, multi-modal, 
natural language interface will make use of a 
heterogeneous environment feasible and, ff done well, 
transparent; this can be accomplished by enabling the 
user to state information needs without specifying how 
to decompose those needs into a program calling the 
various underlying systems required to meet those 
needs. We believe users who see that NL technology 
does insulate them from the underlying impleman- 
tation idiosyncrasies of one application will expect that 
our models of language and understanding will extend 
to simultaneous access of several applications. 

Consider an example. In DARPA's Fleet Com- 
mand Center Battle Management Program 
(FCCBMP), several applications (call them underlying 
systems) are involved, including a relational data base 
(IDB), two expert systems (CASES and FRESH), and 
a decision support system (OSGP). The hardware 
platforms include workstations, conventional time- 
sharing machines, and parallel mainframes. Suppose 
the user asks Which of those submarines has the 
greatest probability of locating A within 10 hours? 
Answering that question involves subproblems from 
several underlying applications: the display facility, to 
determine what "those submarines" refers to; FRESH, 
to calculate how long each submarine would take to 
get to A's vicinity; CASES, for an intensive, paral- 
lelizable numerical calculation estimating the 
probabilities; and the display facility again, to present 
the response. 

While acoustic and linguistic processing can 
determine what the user wants, the problem of trans- 
lating that into an effective program to do what the 
user wants is a challenging, but solvable problem. In 
order to deal with multiple underlying systems, not 
only must our NL interface be able to represent the 
meaning of the user's request, but it must also be 
capable of organizing the various application 
programs at its disposal, choosing which combination 
of resources to use, and supervising the transfer of 
data among them. We call this the multiple underlying 
systems (MUS) problem. This paper provides an 
overview of our approach and results on the MUS 
problem. The implementation is part of the back end 
of the Janus natural language interface and is docu- 
mented in [7]. 

2. Scope of the Problem 
Our view of access to multiple underlying sys- 

tems is given in Figure 2. As implied in the graphical 
representation, the user's request, whatever its 
modality, is translated into an internal representation 
of the meaning of what the user needs. We initially 
explored a first-order logic for this purpose; however, 
in Janus [13] we have adopted an intensional logic 
[3, 14] to investigate whether intensional logic offers 
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more appropriate representations for applications 
more complex than databases, e.g., simulations and 
other calculations in hypothetical situations. From the 
statement of what the user needs, we next derive a 
statement of how to fulfill that need, an execution p/an 
composed of abstract commands. The execution plan 
takes the form of a limited class of data flow graphs 
for a virtual machine that includes the capabilities of 
all of the application systems. At the level of that 
virtual machine, specific commands to specific under- 
lying systems are dispatched, results from those ap- 
plication systems are composed, and decisions are 
made regarding the appropriate presentation of infor- 
mation to the user. Thus, the multiple underlying sys- 
tems (MUS) problem is a mapping, 

MUS: Semantic representation -- > Program 

that is, a mapping from what the user wants to a 
program to fulfill those needs, using the 
heterogeneous application programs' functionality. 

Though the statement of the problem as 
phrased above may at first suggest an extremely dif- 
ficult and long-range program of research in automatic 
programming (e.g., see [8]), there are several ways 
one can narrow the scope of the problem to make 
utility achievable. Restricting the input language, as 
others have done [4, 6], is certainly one way to narrow 
the problem to one that is tractable. 

In contrast, we allow a richer input language (an 
intensional logic), but assume that the output is a 
restricted class of programs: acyclic data flow graphs. 
The implication of this restriction is that the programs 
generatabla by the MUS component may include only: 

• Functions available in the underlying applications 
systems 

• Routines preprogrammed by the application sys- 
tem staff, and 

• Operators on those elements, such as functional 
composition, if-then-else, operators from the rela- 
tional algebra, and mapping over lists (for in- 
stance, for universal quantification and cardinality 
of sets). 

If all the quantifiers are assumed to be restricted to 
finite sets with a generator function, then the quan- 
tifiers can be converted to simple loops over the ele- 
ments of sets, such as the MAPCAR of Lisp, rather 
than having to undertake synthesis of arbitrary 
program loops. We assume that all primitives of the 
logic have at least one transformation which will 
rewrite it, potentially in conjunction with other primi- 
tives, from the level of the statement of the user's 
needs to the level of the executable plan. These 
transformations will have been elicited from the ap- 
plication system experts, e.g., expert system builders, 
database administrators, and systems programming 

staff of other application systems. (Some work has 
been done on automating this process.) 

3. Approach 
The problem of multiple systems may be 

decomposed into the following issues, as others have 
done [4, 9]: 

• Representation. It is necessary to represent un- 
derlying system capabilities in a uniform way, and 
to represent the user request in a form independ- 
ent of any particular underlying system. The 
input/output constraints for each function of each 
underlying system must be specified, thus defining 
the services available. 

• Formulation. One must choose a combination of 
underlying system services that satisfies the user 
request. Where more than one alternative exists, 
it is preferable to select a solution with low execu- 
tion costs and low passing of information between 
systems 

• Execution. Actual calls to the underlying systems 
must be accomplished, information must be 
passed among the systems as required, and an 
appropriate response must be generated. 

3,1. Representation 

3.1.1. Representing the semantics of utterances 
Since the meaning of an utterance in Janus is 

represented as an expression in WML (World Model 
Language [3]), an intensional logic., the input to the 
MUS component is in WML. For a sentence such as 
Display the destroyers within 500 miles of Vinson, the 
WML is as follows: 

(bring-about 
((intension 
(exists ?a display 
(object-of ?a 
(iota ?b (power destroyer) 
(exists ?c 
(lambda (?d) interval 

(& (starts-interval ?d VINSON) 
(less-than 

(iota ?e length-measure 
(interval-length ?d ?e)) 

(iota ?f length-measure 
(& (measure-unit ?f miles) 

(measure-quantity ?f 500)))))) 
(ends-interval ?c ?b)))))) 

TIME WORLD)) 
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3.1.2. Representing Application Capabilities 
To represent the functional capabilities of un- 

derlying systems, we define services and servers. A 
server is a functional module typically corresponding 
to an underlying system or a major part of an under- 
lying system. Each server offers a number of 
services: objects describing a particular piece of 
functionality provided by a server. Specifying a ser- 
vice in MUS provides the mapping from fragments of 
logical form to fragments of underlying system code. 
Each service has associated with it the server it is part 
of, the input variables, the output variables, the con- 
juncta computed, and an estimate of the relative cost 
in applying it. 

SAMPLE SERVICES: 

Land-avoidance-distance: 
owner: Expert System 1 
inputs: (x y) 
locals: (z w) 
pattern: 
((in-class x vessel) 
(in-class y vessel) 
(in-class z interval) 
(In-class w length-measure) 
(starts-interval z x) 
(ends-interval z y) 
(interval-length z w)) 

outputs: (w) 
method: ((route-distanca (location-of x) 

(location-of y)))) 
cost: 5 

Great-circle-distance: 
owner: Expert System 1 
inputs: (x y) 
locals: (z w) 
pattern: 

((in-class x vessel) 
(in-class y vessel) 
(in-class z Interval) 
(in-class w length-measure) 
(starts-interval z x) 
(ends-interval z y) 
(interval-length z w)) 

outputs: (w) 
method: ((gc-distance (location.of x) 

(location-of y)))) 
cost: 1 

In the example above, there are two competing 
services for computing distance between two ships: 
Great-circle-distance, which simply computes a great 
circle route between two points, and Land-avoidance- 
distance, which computes the distance of an actual 
path avoiding land and sticking to shipping lanes. The 
second is far more accurate when near land; both for 

calculating delays and in estimating fuel costs; 
however, the computation time is greater. 

3.1.3. Clause Lists 
Typically, the applicability of a service is contin- 

gent on several facts, and therefore, several proposi- 
tions must all be true for the service to apply. To 
facilitate matching the requirements of a given service 
against the needs expressed in an utterance, we con- 
vert expressions in WML to an extended disjunctive 
normal form (DNF), i.e., a disjunction of conjunctions. 
We chose DNF because: 

• In the simplest case, an expression in disjunctive 
normal form is simply a conjunction of clauses, a 
particularly easy logical form to cope with, 

• Even when there are disjuncts, each can be in- 
dividually handled as a conjunction of clauses, 
and the results then combined together via union, 
and 

• In a disjunctive normal form, the information 
necessary for a distinct subquery is effectively iso- 
lated in one disjunct. 

For details of the algorithm for converting an inten- 
sional expression to DNF, see [7]; a model-theoretic 
semantics has been defined for the DNF. For the 
sentence, Display the destroyers within 500 miles of 
Vinson, whose WML representation was represented 
earlier, the clause list is as follows: 

((in-class ?a display) 
(object-of ?a ?b) 
(in-class ?b destroyer) 
(in-class ?c interval) 
(in-class ?d interval) 
(equal ?c ?d) 
(starts-interval ?d VINSON) 
(in-class ?s length-measure) 
(interval-length ?d ?s) 
(in-class ?f length-measure) 
(measure-unlt ?f miles) 
(measure-quantity ?f 500) 
(less-than ?e ?f) 
(ends-lnterval ?c ?b)) 

The normal form in this case is the same as the 
standard disjunctive normal form: a simple conjunc- 
tion of clauses. However, there ere oases where ex- 
tensions to disjunctive normal form are used: in par- 
ticular, certain expressions containing embedded sub- 
expressions (such as universal quantifications, car- 
dinality, and some other set-related operators) are left 
in place. In such cases, the embedded subexpres- 
sions are themselves normalized; the result is a 
context object that compactly represents a necessary 
logical constraint but has been normalized as far as 
possible. #S(CONTEXT :OPERATOR FORALL 
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:OPERATOR-VAR var :CLASS-EXP expression 
:CONSTRAINT expression) states that var is univer- 
sally quantified over the CLASS-EXP expression as 
var appears in the CONSTRAINT express/on. As an 
example, consider the query Are all the displayed car- 
tiers c i  ? Its WML expression is given below, followed 
by its normalized representation. 

Note that contexts are defined recursively; thus, 
arbitrary embeddings of operators are allowed. The 
component that analyzes the DNF to find underlying 
application services to carry out the user request calls 
itself recursively to correctly process DNF expressions 
invovling embedded expr~_ ;ons. 

{QUERY 
((INTENSION 

(PRESENT 
(INTENSION 
(FORALL ?JX699 
(u 
(POWER 

(SET-TO-PRED 
(IOTA ?JX702 
(LAMBDA (?JX701) 
(POWER AIRCRAFT-CARRIER) 
(EXISTS ?JX700 DISPLAY 

(OBJECT.OF ?JX700 ?JX701))) 
T)))) 

(OSGP- ENTITY-OVERALL-READINESS-OF 
?JX699 C1))))) 

TiME WORLD)) 

(#s 
(CONTEXT 
:OPERATOR FORALL 
:OPERATOR-VAR ?JX6g9 
:CLASS-EXP 
((IN.CLASS ?JX699 AIRCRAFT.CARRIER) 

(IN.CLASS ?JX700 DISPLAY) 
(OBJECT.OF ?JX700 ?JX699)) 

:CONSTRAINTS 
((OSGP- ENTITY-OVERALL- READINESS-OF 

?JX699 C1 )))) 

3.2. Formulation 
For a request consisting only of a conjunction of 

literals, finding a set of appropriate services may be 
viewed as a kind of set-covering problem. A beam 
search is used to find a low cost cover. Queries 
containing embedded subqueries (e.g., the quantifier 
context in the example above) require recursive calls 
to this search procedure. 

Inherent in the collectio/: of services covering a 
DNF expression is the data flow that combines the 
services into a program to fulfill the DNF request. The 
next step in the formulatior, process is data flow 
analysis to extract the data ~low graph corresponding 
to an abstract program fulfillin~ the request. 

In Figure 1, the data flow graph for Display the 
destroyers within 500 miles of Vinson is pictured. 
Note that the data base (IDB) is called to identify the 
set of all destroyers, their locations, and the location 
of Vinson. An expert system is being called to cal- 
culate the distance between pairs of locations 1 using 
land avoidance routes. A Lisp utility for comparing 
measures is called, followed by the display command 
in an expert system. 

3.3. Execution 
In executing the data flow graph, evaluation at a 

node corresponds to executing the code in the server 
specified. Function composition corresponds to pass- 
ing data between systems, Where more than one 
data flow path enters a node, the natural join over the 
input lists is computed. Aggregating operations (e.g., 
computing the cardinality of a set) correspond to a 
mapping over lists. 

4. Challenging Cases 
Here we present several well-known challeng- 

ing classes of problems in translating from logical 
form to programs. 

4.1. Deriving procedures from descript ions. 
The challenge is to find a compromise between 

arbitrary program synthesis and a useful class of 
program derivation problems. Suppose the user asks 
for the square root of a value, when the system does 
not know the meaning of square root, as in Find the 
square root of the sum of the squares of the residuals. 
Various knowledge acquisition techniques, such as 
KNACQ [15], would allow a user to provide syntactic 
and semantic information for the unknown phrase to 
be defined. Square root could be defined as a func- 
tion that computes the number that when multiplied 
times itseff is the same as the input. However, that is 
a descriptive definition of square root without any in- 
dication of how to compute it. One still must syn- 
thesize a program that computes square root; in fact, 
in early literature on automatic programming and 
rigorous approaches to developing programs, deriving 
a program to compute square root was often used as 
an example problem. 

Rather than expecting the system to perform 
such complex examples of automatic programming, 
we assume the system need not derive programs for 
terms that it does not already know. For the example 

'The distance function takes any physical objects as its arguments 
and looks up their location. 
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above, the system should b e  expected to respond I 
don't know how to compute square root. 

By making that assumption, we know that all 
concepts and relations in the domain model, that is, 
all primitives appearing in WML as input to the MUS 
component, have a translation specified by the ap- 
plications programmer to a composition of underlying 
services. As stated in Section 2, we further restrict 
the goals of the MUS component to synthesize 
programs of a simple structure: acyclic data flow 
graphs of services where one of the services is apply- 
ing a function to every element in a finite list. There- 
fore, the arbitrary program synthesis problem includ- 
ing arbitrary loops and/or recursions is avoided, limit- 
ing the scope of inputs handleable but allowing solu- 
tion of a large class of problems. 

To our knowledge, no NL interface allows ar- 
bitrary program synthesis. Most assume equivalence 
at the abstract program level to synthesis of composi- 
tions of the select, project, and join operations of rela- 
tional algebra. Our component goes beyond previous 
work in that the programs it generates include more 
than just the relational algebra. 

4.2. Side-ef fects.  
It is well-known that generating a program with 

side-effects is substantially harder than generating a 
program that is side-effect free. If there are no side 
effects, transformations of program expressions can 
be freely applied, preserving the value(s) computed. 
Nevertheless, side-effects are critical to many inter- 
face tasks, for example, changing a display, updating 
a data base, and setting a value of a variable. 

Our component produces acyclic data flow 
graphs. The only node that can have side-effects is 
the final node in the graph. This keeps the MUS 
processing simple, while still allowing for side-effects 
at the final stage, such as producing output, updating 
data in the underlying systems, or running an applica- 
tion program having side-effects. All three of those 
cases have been handled in demonstrations of Janus. 

Though this issue has not been discussed in 
other NL publications to our knowledge, we believe 
this restriction to be typical in NL systems. 

4.3. Co l lapse of  information. 
It has long been noted [5] that a complex rela- 

tion may be represented in a boolean field in a data 
base, such as the boolean field of the Navy Blue file 
which for a given vessel was T/F depending on 
whether there was a doctor onboard the vessel. 
There was no information about doctors in the data 
base, except for that field. In a medical data base, a 

similar phenomenon was noticed [11]; patient records 
contained a T/F field depending on whether the 
patient's mother had had melanoma, though there 
was no other information on the patient's mother or 
her case of melanoma. 

The challenge for such fields is mapping from 
the many ways that may occur linguistically to the 
appropriate field without having to write arbitrarily 
many patterns mapping from logical form to the data 
base. Just a few examples of the way the melanoma 
field might be referenced follow: 

Did Smith's mother ever have melanoma ? 
How many patients had a mother suffering from 

melanoma ? 
Was me/anoma diagnosed for any of the patients' 

mothers? 

Our approach to this problem has been to adopt 
disjunctive normal form (clause form) as the basis for 
matching services against requirements in the user 
request. No matter what the form of user request, 
transforming it to disjunctive normal form means that 
the information necessary for a disjunct is effectively 
isolated in one disjunct. The service represented by 
the field corresponding to "patient's mother had 
melanoma" covers two conjoined forms: (MOTHER x 
y) (HAD-MELANOMA y). All of the examples above, 
given appropriate definitions of suffer and diagnose, 
will have the two relations as conjuncts in the disjunc- 
tive normal form for the input, and therefore, will map 
to the required data base service. 

4.4. Hidden jo ins.  
In data bases, a relation in English may require 

a join to be inferred, given the model in the underlying 
system. Suppose that a university data base as- 
sociates an office with every faculty member and a 
phone number with every office. Additionally, some 
faculty members may be associated with a lab facility; 
labs have telphones as well. Then to answer the 
query, What is Dr. Ramehaw's phone number?, the 
relation between faculty members and phone num- 
bers must be determined. There are two possibilities: 
the office phone number or the lab phone number. 

Most approaches treat this as an inference 
problem. It can be visualized as finding a relation 
between two nominal notions faculty member and 
phone number [1,2]. One such path uses the relation 
OFFICE(PERSON, ROOM) followed by the relation 
PHONE(ROOM,PHONE-NUMBER). A general 
heuristic is to use the shortest path. Computing hid- 
den joins complicates the search space in searching 
for a solution among the underlying services, as can 
be seen in the architectures proposed, e.g., [1,4, 9]. 

In contrast to the typical approach where one 
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infers the hidden join as needed, we believe such 
joins are normally anticipatable, and provide support 
in our lexical definition tools (KNACQ) for specifying 
them. In KNACQ [15], a knowledge engineer, data 
base administrator, or other person familiar with the 
domain and with frame representation specifies for 
each frame (concept in KL-ONE terminology) and 
each slot (role in KL-ONE terminology) one or more 
words denoting that concept or role. In addition, the 
KNACQ user identifies role chains (sequences of role 
relations), such as RI(A, B) and R2(B, C), having 
special linguistic representation. In the example 
above, KNACQ would prompt the user to select from 
six possibilities for nominal compounds, possessives, 
and prepositional connectives relating PERSON to 
PHONE-NUMBER. In this way, the search space is 
substantially simplified, since hidden joins have been 

elicited ahead of time as part of the knowledge ac- 
quisition and installation process. 

4.5. Data coerc ion.  
At times, the type required by the underlying 

functions is not directly stated in the input (English) 
expression but must be derived. One procedure may 
produce the measure of an angle in degrees, whereas 
another may require the measure of an angle in 
radians. Differing application systems may assume a 
person is referred to by differing attributes, e.g., by 
social security number in one, but by employee num- 
ber in another. In How far is Vinson from Pear/ 
Harbor?, one must not only infer that the positions of 
Vinson and Pearl Harbor must be looked up, but also 
make sure that the coordinates are of the type re- 
quired by the particular distance function chosen. 

In our approach, we assume that there are ser- 
vices available for translati~,g between each mismatch 
in data type. For the examples above, we assume 
that there is a translation from degrees to radians and 
vice versa; that there is a translation from person 
identified by social security number to person with 
employee number, and vice versa; that there is a 
translation function from ships and ports to their loca- 
tion in latitude and longitude. Such translations may 
already exist in the applications or may be added as a 
new application. If there are n different ways to iden- 
tify the same entity (the measure of an angle, a per- 
son, the position of a vessel or port, etc.), there need 
not be (n*'2)/2 translation functions of course; a 
canonical representation may be chosen if as few as 
2n translation functions are available to provide inter- 
translatability to the canonical form. 

In constructing the data flow graph, we assume 
that the canonical representation is used throughout. 
Then translation functions are inserted on arcs of the 
data flow graph wherever the output/input assump- 
tions are not met by the canonical form. Of the five 

challenging problems, this is the only one we have not 
yet implemented. 

5. Related Work 
Most previous work applying natural language 

interfaces provided access to a single system: e.g., a 
relational data base. Two earlier efforts (at Honeywell 
[4, 9] and at USC/Information Sciences Institute [6]) 

dealt with multiple systems. We will focus on com- 
parison with their work. 

A limitation common to those two approaches is 
the minimal expressiveness of the input language: 
user requests must be expressed as a conjunction of 
simple relations (literals), equivalent to the 
select/project/join operations of a relational algebra. 
This restriction is relaxed in Janus, allowing requests 
to contain negation of elementary predicates, existen- 
tial and universal quantification, cardinality and other 
aggregates, a limited form of disjunction (sufficient for 
the most common cases), and of course simple con- 
junction. Wh-questions (who, what, etc.), commands, 
and yes/no queries are handled, and some classes of 
helpful responses are produced. 

All three efforts employ a search procedure. In 
the Honeywell effort, graph matching is at the heart of 
the search; in the USC/ISI effort, the NIKL classifier 
[10] is at the heart of the search; in our effort, a beam 

search with a cost function is used. 

Only our effort has been tested on applications 
with a potentially large search space (800 services); 
the other efforts have thus far been tested on applica- 
tions with relatively few services. 

6. Experience in Applying the System 
The MUS component has been applied in the 

domain of the Reet Command Center Battle Manage- 
ment Program (FCCBMP), using an internal version of 
the Integrated Database (IDB) -- a relational database 
-- as one underlying resource, and a set of LISP func- 
tions providing mathematical modeling of a Navy 
problem as another. The system includes more than 
800 services. 

An earlier version of the system described here 
was also applied to provide natural language access 
to data in Intellicorp's KEE knowledge-base system, 
to objects representing hypothetical world-states in an 
object-oriented simulation system, and to LISP func- 
tions capable of manipulating this data~ 

We have begun integrating the MUS com- 
ponent with BBN's Spoken Language System HARC. 
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7. Conclusions 
The work offers highly desirable utility along the 

following two dimensions: 

• It frees the user from having to identify for each 
term (word) pieces of program that would carry out 
their meaning. 

• It improves the modularity of the interface, insulat- 
ing the presentation of information, such as table 
i/o, from details of the underlying application(s). 

We have found the general approach depicted 
in Figure 2 quite flexible. The approach was 
developed in work on natural language processing; 
however, it seems to be valuable for other types of I/O 
modalities. Some preliminary work has suggested its 
utility for table input and output in managing data base 
update, data base retrieval, and a directly manipulable 
image of tabular data. Our prototype module 
generates code from forms in the intensional logic; 
then the components originally developed for the 
natural language processor provide the translation 
mechanism to and from intensional logic and under- 
lying systems that actually store the data. 
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