
ZERO MORPHEMES
IN UNIFICATION-BASED COMBINATORY CATEGORIAL GRAMMAR

Chinatsu Aone
The University of Texas at Austin

&
MCC

3500 West Balcones Center Dr.
Austin, TX 78759
(aone@mcc.com)

Kent Wittenburg
MCC

3500 West Balcones Center Dr.
Austin, TX 78759

(wittenburg@mcc.com)

ABSTRACT
In this paper, we report on our use of

zero morphemes in Unification-Based
Combinatory Categorial Grammar. After illus-
trating the benefits of this approach with several
examples, we describe the algorithm for compil-
ing zero morphemes into unary rules, which al-
lows us to use zero morphemes more efficiently
in natural language processing. 1 Then, we dis-
cuss the question of equivalence of a grammar
with these unary rules to the original grammar.
Lastly, we compare our approach to zero mor-
phemes with possible alternatives.

1. Zero Morphemes in Categorial Grammar
In English and in other natural

languages, it is attractive to posit the existence
of morphemes that are invisible on the surface
but have their own syntactic and semantic defini-
tions. In our analyses, they are just like any
other overt morphemes except for having null
strings (i.e. " "), and we call them zero mor-
phemes. Most in Categorial Grammar and relat-
ed forms of unification-based grammars, on the
other hand, take the rule-based approach. That
is, they assume that there are unary rules that
change features or categories of their arguments
(cf. Dowty 1977, Hoeksema 1985, Wittenburg
1986, Wood 1987). Below, we will discuss the
advantages of our zero morpheme approach
over the rule-based approach.

Zero morphemes should be distin-
guished from so-called "gaps" in wh-questions
and relative clauses in that zero morphemes are
not traces or "place holders" of any other overt
morphemes in a given sentence. There are at

1. The work described here is implemented in
Common Lisp and being used in the Lucy
natural language understanding system at
MCC.

188

least two types of zero morphemes: zero mor-
phemes at the morphology level and those at
the syntax level.

A zero morpheme at the morphology
level applies to a free morpheme and forms an
inflected word. Such examples are present
tense zero morpheme (PRES) as in 'I
like+PRES dogs" and a singular zero morpheme
(SG) as in "a dog+SG". These two are the coun-
terparts of a third person singular present tense
morpheme C+s" as in "John like+s dogs" and a
plural morpheme C+s" as in 'two dog+s'~, re-
spectively.

(1) dog +SG
N[num:null] N[num:sg]~N[num:null]

dog +s
N[num:null] N[num:pl]\N[num:null]

Notice that, unlike the rule-based approach, the
declarative and compositional nature of the zero
morpheme approach makes the semantic analy-
sis easier, since each zero morpheme has its
semantic definition in the lexicon and therefore
can contribute its semantics to the whole inter-
pretation just as an overt morpheme does. Also,
the monotonicity of our 'feature adding" ap-
proach, as opposed to "default feature" ap-
proach (e.g., Gazdar 1987), is attractive in com-
positional semantics because it does not have to
retract or override a semantic translation contrib-
uted by a word with a default feature. For exam-
ple, "dog" in both "dog+SG" and "dog+s" contrib-
utes the same translation, and the suffixes
"+SG" and "+s" just add the semantics of num-
ber to their respective head nouns. In addition,
this approach helps reduce redundancy in the
lexicon. For instance, we do not have to define
for each base verb in the lexicon their present-
tense counterparts.

a man REL-MOD the daughter of whom
N (N\N)/S[reI:+] NP/N N (N\N)/NP NP[rel:+]

apply>
N[rel:+]\N

apply<
N[rel:+]

I

apply> ,, NP[rel:+]
LIFT

S[reh+]/(S/NP)
apply>

S[rel:+]
apply>

N\N

John liked
NP (S\NP)/NP

~p~pe- ra i s ing

s/NP compose>

Figure 1: Derivation of "a man the daughter of whom John liked"

Some zero morphemes at the syntax level
are those which may apply to a constituent larg-
er than a single word and change the categories
or features of the constituent. They are like ordi-
nary derivational or inflectional morphemes ex-
cept that their application is not confined within a
word boundary. In English, one example is the
noun compounding zero morpheme (CPD),
which derives a noun modifier from a noun. In
Categorial Grammar, its syntactic type is
(N/N)\N. 2 For instance, a noun compound "dog
food" might have the following derivation.

(2) dog CPD food
N (N/N)\N N

apply<
N/N

N apply>

In knowledge-based or object-oriented
semantics (cf. Hirst 1987); which our LUCY sys-
tem uses, the treatment of compound nouns is
straightforward when we employ a zero mor-
pheme CPD. 3 In LUCY, CPD has a list of trans-
lations in the semantic lexicon, each of which is
a slot relation (a two-place predicate as its syn-
tactic type) in the knowledge base. For exam-
ple, for "dog food" CPD may be translated into
(food-typically-eaten x y), where x must be an in-
stance of class Animal and y that of Food.
Thus, a translation of CPD is equivalent to a

2. CPD is leftward-looking to parallel the defini-
tion of a hyphen as in "four-wheeler".

3. Some compound nouns are considered as
"idiomatic" single lexical entries, and they do
not have a CPD morpheme. (e.g. "elephant
garlic")

189

value bound to the "implicit relation" called nn
that Hobbs and Martin (1987) introduce to re-
solve compound nouns in TACITUS. In our
case, having CPD as a lexical item, we do not
have to introduce such an implicit relation at the
semantics level.

An analogous zero morpheme provides
a natural analysis for relative clauses, deriving a
noun modifier from S. This zero morpheme,
which we call REL-MOD, plays an important role
in an analysis of pied-piping, which seems diffi-
cult for other approaches such as Steedman
(1987, 1988). (See Pollard (1988) for his criti-
cism of Steedman's approach.) Steedman as-
sumes that relative pronouns are type-raised al-
ready in the lexicon and have noun-modifier type
(N\N)/(S/(SINP). In Figure 1, we show a deriva-
tion of a pied-piping relative clause "a man the
daughter of whom John liked " using REL-
MOD.4 s

Other zero morphemes at the syntax
level are used to deal with optional words. We
define a zero morpheme for an invisible
morpheme that is a counterpart of the overt one.
An example is an accusative relative pronoun as
in "a student (who) I met yesterday". Another
example of this kind is '~ou" in imperative

4. We assume that accusative wh-words are of
basic NP type in the lexicon. A unary rule
LIFT, which is similar to type-raising rule,
lifts any NP of basic type with [rel:+] feature
to a higher type NP, characteristic of fronted
phrases. This feature is passed up by way
of unification.

5. We actually use predictive versions of com-
binators in our runtime system (Wittenburg
1987).

X

X/Y y
I unify

A/B

R: X/Y Y ==> X M: A/B

A A

-'=> ~ ""-'> I
A/B B B

Figure 2: Compiling a zero morpheme

sentences. Having a zero morpheme for the
unrealized '~'ou" makes parsing and the
interpretation of imperative sentences
straightforward, s

(3)
IMP IMP-YOU finish dinner

S[mood:imp]/S NP (S\NP)/NP NP
[case:nom]

apply>
S\NP

apply<
S apply>

S
[mood:imp]

Analogous to the treatment of optional
words, VP-ellipsis as in "Mary likes a dog, and
Bill does too" is handled syntactically by defining
a syntax-level zero morpheme for an elided verb
phrase (called VP-ELLIPSIS). During the
discourse process in LUCY, the antecedent of
VP-ELLIPSIS is recovered. 7

(4)
Bill
NP

d o e s VP-ELLIPSIS
S\NP/(S\NP) S\NP

S\NP
S

apply>
apply<

Now to summarize the advantages for
having zero morphemes, first, zero morphemes
like PRES and SG reduce redundancy in the
lexicon. Second, zero morphemes seem to be a
natural way to express words that do not appear

6. Each sentence must have one of the three
mood features -- declarative, interrogative,
and imperative mood. They are added by
zero morphemes DECL, QUES, and IMP,
respectively.

7. See Kameyama and Barnett (1989).
190

on the surface but have their overt counterparts
(e.g., null accusative relative pronouns,
vp-ellipsis). Third, since each zero morpheme
has its own syntax and semantic interpretation in
much the same way as overt morphemes, and
since the semantic interpretations of binary rules
that combine a zero morpheme with its
argument (or functor) are kept as simple as they
are in Categorial Grammar, semantic
interpretations of sentences with zero mor-
phemes are compositional and straightforward.
Typically in the rule-based approach, the
semantic operations of unary rules are more
complicated: they might perform such operations
as introducing or retracting some semantic
primitives that do not exist in the semantic
lexicon. But with our zero morpheme approach,
we can avoid such complication. Lastly, using
zero morpheme REL-MOD makes the analysis
of pied-piping and preposition fronting of relative
clauses in Categorial Grammar possible.

In the following section, we propose an
approach that keeps all these advantages of
zero morphemes while maintaining the efficiency
of the rule approach in terms of parsing.

2. Compiling Zero Morphemes
In natural language processing, simply

proposing zero morphemes at each juncture in a
given input string during parsing would be a
nightmare of inefficiency. However, using the
fact that there are only a few binary rules in
Categorial Grammar and each zero morpheme
can combine with only a subset of these rules
because of its directionality compatibility, we can
pre-compile zero morphemes into equivalent
unary rules and use the latter for parsing. Our
approach is an extension of the predictive com-
binator compilation method discussed in
Wittenburg (1987). The idea is that we first unify
a zero morpheme M with the left or right daugh-

Let M be a zero morpheme, R be a binary rule. For each M in the grammar, do the following:
For each binary rule R in the grammar

if the syntax graph of M unifies with the left daughter of R
then call the unified binary graph R', and

make the right daughter of R' the daughter of a new unary rule R1
make the parent of R' the parent of R1

if the syntax graph of M unifies with the right daughter of R
then call the unified binary graph R'

make the left daughter of R' the daughter of a new unary rule R1
make the parent of R' the parent of RI.

Figure 3: Algorithm for compiling zero morphemes

ter of each binary rule R. If they unify, we create
a specialized version of this binary rule R', main-
taining features of M acquired through unifica-
tion. Then, we derive a unary rule out of this
specialized binary rule and use it in parsing.
Thus, if M is of type NB, R is forward applica-
tion, and M unifies with the left daughter of R,
the compiling procedure is schematized as in
Figure 2.

Now I shall describe the algorithm for
compiling zero morphemes in Figure 3. During
this compiling process, the semantic interpreta-
tion of each resulting unary rule is also calculat-
ed from the interpretation of the binary rule and
that of the zero morpheme. For example, if the
semantics of M is M', given that the semantic in-
terpretation of forward application is ~,fun-
;~arg(fun arg), we get Zarg(M' arg) for the se-
mantic interpretation of the compiled unary rule. 8

We also have a mechanism to merge
two resulting unary rules into a new one. That
is, if a unary rule R1 applies to some category A,
giving A', and then a unary rule R2 applies to A',
giving A", we merge R1 and R2 into a new
unary rule R3, which takes A as its argument
and returns A". For example, after compiling
IMP-rule and IMP-YOU-rule from zero mor-
phemes IMP and IMP-YOU (cf. (3)), we could
merge these two rules into one rule, IMP+IMP-
YOU rule. During parsing, we use the merged
rule and deactivate the original two rules.

3. The Grammar with Compiled zero mor-
phemes

The grammar with the resulting unary
rules has the same generative capacity as the

8. See Wittenburg and Aone (1989) for the de-
tails of Lucy syntax/semantics interface.

191

source grammar with zero morphemes in the
lexicon because these unary rules are originally
derived by only using the zero morphemes and
binary rules in the source grammar. Thus, a
derivation which uses a unary rule can always
be mapped to a derivation in the original gram-
mar, and vice versa. For example, look at the
following example of CPD-RULE vs. zero mor-
pheme CPD:

(5) a. dog food
N N

N/I~' cpd-rule

N
apply>

b. dog CPD food
N (N/N)\N N

N/N apply<
N apply>

Now, if we assume that we use
Categorial Grammar with four binary rules,
namely, apply>, apply<, compose>, and com-
pose<, as Steedman (1987) does, we can pre-
dict, among 8 possibilities (4 rules and the 2
daughters for each rule), the maximum number
of unary rules that we derive from a zero mor-
pheme according to its syntactic type. 9 If a zero
morpheme is of type NB, it unifies with the left
daughters of apply>, apply< and compose> and
with the right daughters of apply> and corn-

9. Zero morphemes do not combine with wh-
word type-raising rule LIFT, which is the only
unary rule in our grammar besides the com-
piled unary rules from zero morphemes.

pose>. Thus, there are 5 possible unary rules
for this type of zero morpheme. If a zero mor-
pheme is of type A\B, there are also 5 possibili-
ties. That is, it unifies with the left daughter of
apply< and compose<, and the right daughters
of apply>, apply< and compose<. If a zero mor-
pheme is of basic type, there are only 2 possibil-
ities; it unifies only with the left daughter of
apply< and the right daughter of apply>.

Furthermore, in our English grammar,
we have been able to constrain the number of
unary rules by pre-specifying for compilation
which rules to unify a given zero morpheme
with. 1° We add such compiler flags in the
definition of each zero morpheme. We can do
this for the morphology-level zero morphemes
because they are never combined with anything
other than their root morphemes by binary rules,
and because we know which side of a root
morpheme a given zero affix appears and what
are the possible syntactic types of the root
morpheme. As for zero morphemes at the
syntax level, we can ignore composition rules
when compiling zero morphemes which are in
islands to "extraction", since these rules are only
necessary in extraction contexts. CPD,
REL-MOD and IMP-YOU are such syntax-level
zero morphemes. Additional facts about English
have allowed us to specify only one binary rule
for each syntax-level zero morpheme in our
English grammar. An example of a zero
morpheme definition is shown below.

(6) (defzeromorpheme PRES
:syntax S[tns:pres]\S[tns :null]
:compile-info (:binary-rule compose<

:daughter R))

4. Comparison in View of Parsing Zero
Morphemes

In this section, we compare our
approach to zero morphemes to alternative
ways from the parsing point of view. Since we
do not know any other comparable approach
which specifically included zero morphemes in
natural language processing, we compare ours
to the possible approaches which are analogous
to those which tried to deal with gaps. For

example, in Bear and Karttunen's (1979)
treatment of wh-question and relative pronoun
gaps in Phrase Structure Grammar, a gap is
proposed at each vertex during parsing if there
is a wh-question word or a relative pronoun in
the stack. We can use an analogous approach
for zero morphemes, but clearly this will be
extremely inefficient. It is more so because 1)
there is no restriction such as that there should
be only one zero morpheme within an S clause,
and 2) the stack is useless because zero mor-
phemes are independent morphemes and are
not "bound" to other morphemes comparable to
wh-words.

Shieber (1985) proposes a more
efficient approach to gaps in the PATR-II
formalism, extending Earley's algorithm by using
restriction to do top-down filtering. While an
approach to zero morphemes similar to
Shieber's gap treatment is possible, we can see
one advantage of ours. That is, our approach
does not depend on what kind of parsing
algorithm we choose. It can be top-down as well
as bottom-up.

5. Conclusion
Hoeksema (1985] argues for the

rule-based approach over the zero morpheme
approach, pointing out that the postulation of
zero morphemes requires certain arbitrary
decisions about their position in the word or in
the sentence. While we admit that such
arbitrariness exists in some zero morphemes we
have defined, we believe the advantages of
positing zero morphemes, as discussed in
Section 1, outweigh this objection. Our
approach combines the linguistic advantages of
the zero morpheme analysis with the efficiency
of a rule-based approach. Our use of zero
morphemes is not restricted to the traditional
zero-affix domain. We use them, for example, to
handle optional words and VP-ellipsis, extending
the coverage of our grammar in a natural way.

ACKNOWLEDGEMENTS
We would like to thank Megumi

Kameyama and Michael O'Leary for their help.

10. In fact, we use more than two kinds of com-
position rules for the compilation of the mor-
phology-level zero morphemes. (e.g. PRES
in (1)) But this does not cause any "rule pro-
liferation" problem for this reason.

192

REFERENCES
Bear, John and Lauri Karttunen. 1979. PSG: A

Simple Phrase Structure Parser. In R. Bley-
Vroman and S. Schmerling (eds.), Texas
LinguisticForurn. No. 15.

Dowty, David. 1979.
Montague Grammar.
Company.

Word Meaning and
D. Reidel Publishing

Gazdar, Gerald. 1987. Linguistic Applications
of Default Inheritance Mechanisms. In P.
Whitelock et al. (eds.), Linguistic Theory and
Computer Applications. Academic Press.

Hirst, Graeme. 1987. Semantic lnterpretation
and the Resolution of Ambiguity. Cambridge
University Press.

Hobbs, Jerry and Paul Martin. 1987. Local
Pragmatics. In Proceedings IJCAk87.

Hoeksema, Jack. 1985. Categoria/
Morphology. Garland Publishing, Inc. New
York & London.

Kameyama, Megumi and Jim Bamett. 1989.
VP Ellipsis with Distributed Knowledge
Sources. MCC Technical Report number
ACT-HI-145-89.

Categorial Grammars and Natural Language
Structures. D. Reidel Publishing Company.

Wittenburg, Kent. 1986. Natural Language
Parsing w i t h Combinatory Categorial
Grammar in a Graph-Unification-Based
Formalism. Doctoral dissertation, The
University of Texas, Austin.

1987. Predictive combina-
tots: A Method for Efficient Processing of
Combinatory Categorial Grammars. In
Proceedings of the 25th Annual Meetings of
the Association for Computational Linguistics.

Wittenburg, Kent and Chinatsu Aone. 1989.
Aspects of a Categorial Syntax/Semantics
Interface. MCC Technical Report number
ACT-HI-143-89.

Wood, Mary. 1987. Paradigmatic Rules for
Categorial Grammars. CCIJUMIST Report,
Centre for Computational Linguistics,
University of Manchester, Institute of Science
and Technology.

Pollard, Carl. 1988. Categorial Grammar and
Phrase Structure Grammar: An Excursion on
the Syntax-Semantics Frontier. In R. Oehrle
et al. (eds.), Categorial Grammars and
Natural Language Structures. D. Reidel
Publishing Company.

Shieber, Stuart. 1985. Using Restriction to
Extend Parsing Algorithms for Complex-
Feature-Based Formalisms. In Proceedings
of the 23rd Annual Meetings of the
Association for Computational Linguistics.
145-152.

1986. An Introduction to
Unification-Based Approaches to Grammar.
CSLI, Stanford University, California.

Steedman, Mark. 1985. Dependency and
Coordination in the Grammar of Dutch and
English. Language. 61:523-568.

1987. Combinatory Grammars
and Parasitic Gaps. Natural Language and
Linguistic Theory. 5:403-439.

Grammars,
1988. Combinators and

In R. Oehrle et al. (eds.),
193

