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We present a new grammatical formalism called Con- 
straint Dependency Grammar  (CDG) in which every 
grammatical rule is given as a constraint on word- 
to-word modifications. CDG parsing is formalized 
as a constraint satisfaction problem over a finite do- 
main so that  efficient constraint-propagation algo- 
rithms can be employed to reduce structural am- 
biguity without generating individual parse trees. 
The weak generative capacity and the computational 
complexity of CDG parsing are also discussed. 

1 I N T R O D U C T I O N  

We are interested in an efficient t reatment of struc- 
tural ambiguity in natural language analysis. It is 
known that  "every-way" ambiguous constructs, such 
as prepositional at tachment in English, have a Cata- 
lan number of ambiguous parses (Church and Patil  
1982), which grows at a faster than exponential rate 
(Knuth 1975). A parser should be provided with 
a disambiguation mechanism that  does not involve 
generating such a combinatorial number of parse 
trees explicitly. 

We have developed a parsing method in which an 
intermediate parsing result is represented as a data  
structure called a constraint network. Every solution 
that satisfies all the constraints simultaneously corre- 
sponds to an individual parse tree. No explicit parse 
trees are generated until ultimately necessary. Pars- 
ing and successive disambiguation are performed by 
adding new constraints to the constraint network. 
Newly added constraints are efficiently propagated 
over the network by Constraint Propagation (Waltz 

1975, Montanari 1976) to remove inconsistent values. 

In this paper, we present the basic ideas of a 
formal grammatical theory called Constraint  Depen- 
dency Grammar  (CDG for short) that makes this 
parsing technique possible. CDG has a reasonable 
time bound in its parsing, while its weak generative 
capacity is strictly greater than that  of Context  Free 
Grammar  (CFG). 

We give the definition of CDG in the next section. 
Then, in Section 3, we describe the parsing method 
based on constraint propagation, using a step-by- 
step example. Formal properties of CDG are dis- 
cussed in Section 4. 
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2 C D G :  D E F I N I T I O N  

Let a sentence s = wlw2  . . .  w,, be a finite string on 
a finite alphabet E. Let R -- { r l , r 2 , . . . , r k }  be a 
finite set of role-iris. Suppose that each word i in a 
sentence s has k-different roles r l ( i ) ,  r2(i) . . . .  , rk(i) .  
Roles are like variables, and each role can have a pair 
<a, d> as its value, where the label a is a member of 
a finite set L = { a l , a 2 , . . . , a t }  and the modifiee d 
is either 1 < d < n or a special symbol n i l .  An 
analysis of the sentence s is obtained by assigning 
appropriate values to the n x k roles (we can regard 
this situation as one in which each word has a frame 
with k slots, as shown in Figure 1). 

An assignment A of a sentence s is a function that 
assigns values to the roles. Given an assignment A, 
the label and the modifiee of a role x are determined. 
We define the following four functions to represent 
the various aspect of the role x, assuming that  x is 
an rj-role of the word i: 



rt-role 

r=-role 

W~ W= W. 

I I [ - - - ]  

I I l -  I 

r.-ro,e I I 1 "  t I I 

Figure 1: Words and their roles. 

• pos(x )~  f the position i 

• r id (x )~  r the role id r j  

• lab(x)d-~ f the label of x 

• mod(x)d-~ f the modifiee of x 

We also define word(i) as the terminal symbol 
occurring at the position i. 1 

An individual g rammar  G = <  ~,  R, L, C > in the 
CDG theory determines a set of possible assignments 
of a given sentence, where 

• ~ is a finite set of terminal  symbols. 

• R is a finite set of role-ids. 

• L is a finite set of labels. 

• C is a constraint that  an assignment A should 
satisfy. 

A constraint C is a logical formula in a form 

Vxlx2...xp : role; PI&P2&.. .&P,~ 

where the wHables  Xl, x2, ..., xp range over the set 
of roles in an assignment A and each subformula P~ 
consists only of the following vocabulary: 

• Variables: x l ,  x2, ..., xp 

• Constants: elements and subsets of 
E U L U RU { n i l ,  l , 2 , . . . }  

• Function symbols: word(), posO, rid(), lab(), 
and modO 

l I n  this paper,  when referring to a word, we purposely use 
the position (1,2,...,n) of the word ra ther  than  the word itself 
(Wl,W2, ,--,Wn), because the same word can occur in many 
different posi t ions in a sentence. For readability, however, we 
sometimes use the notat ion word~os~tion. 

• Predicate symbols: =,  <,  >, and E 

• Logical connectors: &, l, "~, and 

Specifically, we call a subformula P i  a unary con- 
straint when P.i contains only one variable, and a 
binary constraint when Pi contains exactly two vari- 
ables. 

The  semantics of the functions have been defined 
above. The semantics of the predicates and the logi- 
cal connectors are defined as usual, except that  com- 
paring an expression containing n i l  with another  
value by the inequality predicates always yields the 
t ruth  value false.  

These conditions guarantee that ,  given an assign- 
ment A, it is possible to compute whether the values 
of xl ,  x2 . . . .  , xp satisfy C in a constant time, regard- 
less of the sentence length n. 

Def in i t ion  

• The  degree of a g rammar  G is the size k of the 
role-id set R. 

• The  arity of a g rammar  G is the number  of vari- 
ables p in the constraint C. 

Unless otherwise stated, we deal with only ar- 
i t y - 2  cases. 

• A nonnull string s over the alphabet  ~ is gener- 
ated iff there exits an assignment A tha t  satisfies 
the constraint C. 

• L(G) is a language generated by the g r a m m a r  G 
iff L(G) is the set of all sentences generated by 
a g r ammar  G. 

E x a m p l e  

Let us consider G1 = <  E1,R1 ,L1 ,C1  > where 

• = 

• R1 = {governor} 

• n l  = {DET,SUBJ,ROOT} 

• C1 = Vxy : role; P1. 

The formula P1 of the constraint C1 is the con- 
junction of the following four subformulas (an infor- 
mal description is at tached to each constraint): 

GI-1)  word(pos(x))=D ~ ( lab(x)=DgT, 
word(mod(x))=N, pos(x) < rood(x) ) 

"A determiner (D) modifies a noun (N) on the 
right with the label DET." 
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Role Value 
governor( "al" ) 
governor("dog2") 
governor( "runs3" ) 

<DET,2> 
<SUBJ,3> 
<R00T,nil> 

Figure 2: Assignment Satisfying (GI-1) to (G1-4) 

~SUB3 

(G1-2) word(pos(x))=N ~ ( lab(x)=SUBJ, 
word(mod(x))=V, pos(x) < mod(x) ) 

"A noun modifies a verb (V) on the right with 
the label SUBJ." 

(G1-3) word(pos(x))=V ~ ( lab(x)=ROOT, 
mod(x)=nil  ) 

"A verb modifies nothing and its label should 
be ROOT." 

(G1-4) (mod(x)=mod(y), lab(x)=lab(y) ) ~ x=y 

"No two words can modify the same word with 
the same label." 

Analyzing a sentence with G1 means assigning 
a label-modifiee pair to the only role "governor" of 
each word so that the assignment satisfies (GI-1) to 
(G1-4) simultaneously. For example, sentence (1) 
is analyzed as shown in Figure 2 provided that the 
words "a," "dog," and "runs" are given parts-of- 
speech D, N, and V, respectively (the subscript at- 
tached to the words indicates the position of the word 
in the sentence). 

(1) A1 dog2 runs3. 

Thus, sentence (1) is generated by the grammar 
G1. On the other hand, sentences (2) and (3) are 
not generated since there are no proper assignments 
for such sentences. 

(2) A runs. 

(3) Dog dog runs. 

We can graphically represent the parsing result of 
sentence (1) as shown in Figure 3 if we interpret the 
governor role of a word as a pointer to the syntactic 
governor of the word. Thus, the syntactic structure 
produced by a CDG is usually a dependency structure 
(Hays 1964) rather than a phrase structure. 

Figure 3: Dependency tree 

3 P A R S I N G  W I T H  

C O N S T R A I N T  P R O P A G A T I O N  

CDG parsing is done by assigning values to n × k 
roles, whose values are selected from a finite set 
L x {1 ,2 , . . . , n ,  n i l} .  Therefore, CDG parsing can 
be viewed as a constraint satisfaction problem over 
a finite domain. Many interesting artificial intelli- 
gence problems, including graph coloring and scene 
labeling, are classified in this group of problems, and 
much effort has been spent on the development of 
efficient techniques to solve these problems. Con- 
straint propagation (Waltz 1975, Montanari 1976), 
sometimes called filtering, is one such technique. One 
advantage of the filtering algorithm is that it allows 
new constraints to be added easily so that a better 
solution can be obtained when many candidates re- 
main. Usually, CDG parsing is done in the following 
three steps: 

1. Form an initial constraint network using a 
"core" grammar. 

2. Remove local inconsistencies by filtering. 

3. If any ambiguity remains, add new constraints 
and go to Step 2. 

In this section, we will show, through a step-by-step 
example, that the filtering algorithms can be effec- 
tively used to narrow down the structural ambigui- 
ties of CDG parsing. 

The  Example  

We use a PP-attachment example. Consider sen- 
tence (4). Because of the three consecutive preposi- 
tional phrases (PPs), this sentence has many struc- 
tural ambiguities. 

(4) Put the block on the floor on the table in 
the room. 
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Pu._t the block on the floor on the table in the room 
V, NI~ PP3 PP4 PPs 

~'rMO0 

Figure 4: Possible dependency structure 

One of the possible syntactic structures is shown 
in Figure 42 . 

To simplify tile following discussion, we treat  the 
grammatical symbols V, NP, and PP as terminal sym- 
bols (words), since the analysis of the internal struc- 
tures of such phrases is irrelevant to the point be- 
ing made. The correspondence between such simpli- 
fied dependency structures and the equivalent phrase 
structures should be clear. Formally, the input sen- 
tence that  we will parse with CDG is (5). 

(5) V1 NP2 PP3 PP4 PP5 

First, we consider a "core" grammar that  con- 
tains purely syntactic rules only. We define a CDG 
G2a = <  E2, R2, L2, C2 > as follows: 

• E 2  = { V , N P , P P }  

• R2 = {governor} 

• L2 = {ROOT, 0B J, LOC,POSTMOD} 

• C2 = Vxy : role; P2, 

L1 P2P3 L1 P2P3P4 
1 1 1  Rnil 1 1 1 1  Rnil 

{Rn,I}/-A--~ 1 / ( ' ~  {L1P2 p3 p4} 
' ' ' , . , . 2 . 3 . .  

/, 

L1 0 1  1 
P 2 1 1 1 1  

Figure 5: Initial constraint network (the values Rnil, 
L1, P2, ... should be read as <ROOT,nil>, <LOC,I>, 
<POSTMOD,2>, ..., and so on.) 

(G2a-4) word(pos(x))=NP =~ ( word(mod(x))=V, 
lab(x)=OBJ, mod(x) < pos(x) ) 

"An NP modifies a V on the left  with the label 
OBJ." 

(G2a-5) word(pos(x))=V ~ ( mod(x)=nil ,  
lab(x)=KOOT ) 

"A Y modifies nothing with the label ROOT." 

(G2a-6) mod(x) < pos(y) < pos(x) =~ 
mod(x) < mod(y) < pos(x) 

"Modification links do not cross each other." 

where the formula P2 is the conjunction of the 
following unary and binary constraints : 

(G2a-1) word(pos(x))=PP ~ (word(mod(x)) 6 
{PP,NP,V}, rood(x) < pos(x) ) 

"A PP modifies a PP, an NP, or a V on the left." 

(G2a-2) word(pos(x))=PP, word(rood(x)) 6 {PP,NP} 
lab(x)=POSTMOD 

"If a PP modifies a PP or an NP, its label should 
be POSTMOD." 

(G2a-3) word(pos(x) )=PP, word(mod(x) )=V 
lab(x) =LOC 

"If a PP modifies a V, its label should be L0¢." 

2In linguistics, arrows are usually drawn in the opposite 
direction in a dependency diagram: from a governor (modifiee) 
to its dependent  (modifier). In this paper,  however, we draw 
an arrow from a modifier to its modifiee in order to emphasize 
tha t  this  information is contained in a modifier 's role. 

According to the grammar G2a , sentence (5) has 
14 (= Catalan(4)) different syntactic structures. We 
do not generate these syntactic structures one by 
one, since the number of the structures may grow 
more rapidly than exponentially when the sentence 
becomes long. Instead, we build a packed data  struc- 
ture, called a constraint network, that  contains all 
the syntactic structures implicitly. Explicit parse 
trees can be generated whenever necessary, but it 
may take a more than exponential computation time. 

F o r m a t i o n  of  in i t ia l  n e t w o r k  

Figure 5 shows the initial constraint network for sen- 
tence (5). A node in a constraint network corre- 
sponds to a role. Since each word has only one role 
governor in the grammar G2, the constraint network 
has five nodes corresponding to the five words in the 
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sentence. In the figure, the node labeled Vl repre- 
sents the governor role of the word Vl, and so on. A 
node is associated with a set of possible values that  
the role can take as its value, called a domain. The 
domains of the initial constraint network are com- 
puted by examining unary constraints ((G2a-1) to 
(G2a-5) in our example). For example, the modifiee 
of the role of the word Vl must be ROOT and its label 
must be n i l  according to the unary constraint (G2a- 
5), and therefore the domain of the corresponding 
node is a singleton set {<R00T,nil>).  In the figure, 
values are abbreviated by concatenating the initial 
letter of the label and the modifiee, such as Rni l  for 
<R00T,nil>, 01 for <0BJ,I>, and so on. 

An arc in a constraint network represents a bi- 
nary constraint imposed on two roles. Each arc 
is associated with a two-dimensional matrix called 
a constraint matlqx, whose xy-elements are either 
1 or 0. The rows and the columns correspond to 
the possible values of each of the two roles. The 
value 0 indicates that  this particular combination 
of role values violates the binary constraints. A 
constraint matrix is calculated by generating every 
possible pair of values and by checking its validity 
according to the binary constraints. For example, 
the case in which governor(PP3) = <LOC,I> and 
governor(PP4) -- <POSTMOD,2> violates the binary 
constraint (G2a-6), so the L1-P2 element of the con- 
straint matr ix between PPs and PPa is set to zero. 

The reader should not confuse the undirected arcs 
in a constraint network with the directed modifica- 
tion links in a dependency diagram. An arc in a 
constraint network represents the existence of a bi- 
nary constraint between two nodes, and has nothing 
to do with the modifier-modifiee relationships. The 
possible modification relationships are represented as 
the modifiee part  of the domain values in a constraint 
network. 

A constraint network contains all the information 
needed to produce the parsing results. No grammati- 
cal knowledge is necessary to recover parse trees from 
a constraint network. A simple backtrack search 
can generate the 14 parse trees of sentence (5) from 
the constraint network shown in Figure 5 at any 
time. Therefore, we regard a constraint network as 
a packed representation of parsing results. 

F i l t e r i n g  

A constraint network is said to be arc consistent if, 
for any constraint matrix, there are no rows and no 
columns that contain only zeros. A node value cor- 
responding to such a row or a column cannot partici- 
pate in any solution, so it can be abandoned without 
further checking. The filtering algorithm identifies 
such inconsistent values and removes them from the 
domains. Removing a value from one domain may 
make another value in another domain inconsistent, 
so the process is propagated over the network until 
the network becomes arc consistent. 

Filtering does not generate solutions, but may sig- 
nificantly reduce the search space. In our example, 
the constraint network shown in Figure 5 is already 
arc consistent, so nothing can be done by filtering at 
this point. 

A d d i n g  N e w  C o n s t r a i n t s  

To illustrate how we can add new constraints to nar- 
row down the ambiguity, let us introduce additional 
constraints (G2b-1) and (G2b-2), assuming that ap- 
propriate syntactic and/or  semantic features are at- 
tached to each word and that  the function /e(i) is 
provided to access these features. 

(G2b-1) word(pos(x))=PP, on_table E ]e(pos(x)) 
~(:floor e /e(mM(x)) ) 
"A floor is not on a table." 

(G2b-2) lab(x)=LOC, lab(y)=LOC, mod(x)=mod(y), 
ward(mod(x) )--V ~ x=y 
"No verb can take two locatives." 

Note that  these constraints are not purely syntac- 
tic. Any kind of knowledge, syntactic, semantic, or 
even pragmatic, can be applied in CDG parsing as 
long as it is expressed as a unary or binary constraint 
on word-to-word modifications. 

Each value or pair of values is tested against the 
newly added constraints. In the network in Figure 5, 
the value P3 (i.e. <POSTMOD,3>) of the node PP4 (i.e.; 
"on the table (PP4)" modifies "on the floor (PP3)") vi- 
olates the constraint (G2b-1), so we remove P3 from 
the domain of PP4. Accordingly, corresponding rows 
and columns in the four constraint matrices adjacent 
to the node PP4 are removed. The binary constraint 
(G2b-2) affects the elements of the constraint ma- 
trices. For the matrix between the nodes PP3 and 
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I L1 P2 P3 P4 
~ i l i l  1 1 1 

{FInIIi{"UT'D_ 1 / ~ {L1 p2 p3 p4} 
/ " T t  ' ' 

I \  , ,o .oo ,  
/ \ /,.=")':~- / W P2tl 1 0 1 

I L1P2P3P_4 . ~ /  ,,.~. ! L1 i"Z ~/~,. \ 
011'i, 1 '  J_. ~ \/Ftni, l ,  1 /  ~ .__~_. .  

S 
/ {L1,P2} x 

ILl P2 P3 P4 
~ 2  L1 0"0 1 1 

P2 1 1 11 

Figure 6: Modified network 

! L1 I P4 
Rnill 1 Rnill 1 

{ O l } ( . ~ /  ".~ S ~ {L1} 

!p2 ~ 
011 1 

Figure 8: Unambiguous parsing result 

Flnil L1P2P4 Rnill 1 1 1 1 1 

/ 
o,,,, / \ 

1 P2 1 I 

Figure 7: Filtered network 

Since the sentence is still ambiguous, let us con- 
sider another constraint. 

(G2c-1) Iab(x)=POSTMOD, lab(y)=POSTMOD, 
mod(x)=mod(y), on e fe(po~(x)), on 
e fe(pos(y)) ~ x=y 

"No object can be on two distinct objects." 

This sets the P2-P2 element of the matrix PP3-PP4 
to zero. Filtering on this network again results in the 
network shown in Figure 8, which is unambiguous, 
since every node has a singleton domain. Recovering 
the dependency structure (the one in Figure 4) from 
this network is straightforward. 

R e l a t e d  W o r k  

PP4, the element in row L1 (<LOC,I>) and column 
L1 (<LOC, 1>) is set to zero, since both are modifica- 
tions to Vl with the label LOC. Similarly, the L1-L1 
elements of the matrices PP3-PP5 and PP4-PP5 are 
set to zero. The modified network is shown in Fig- 
ure 6, where the updated elements are indicated by 
asterisks. 

Note that the network in Figure 6 is not arc 
consistent. For example, the L1 row of the matrix 
PP3-PP4 consists of all zero elements. The filtering 
algorithm identifies such locally inconsistent values 
and eliminates them until there are no more incon- 
sistent values left. The  resultant network is shown 
in Figure 7. This network implicitly represents the 
remaining four parses of sentence (5). 

Several researchers have proposed variant data  struc- 
tures for representing a set of syntactic structures. 

Chart (Kaplan 1973) and shared, packed for- 
est (Tomita 1987) are packed data structures for 
context-free parsing. In these data  structures, a 
substring that  is recognized as a certain phrase is 
represented as a single edge or node regardless of 
how many different readings are possible for this 
phrase. Since the production rules are context free, 
it is unnecessary to check the internal structure of an 
edge when combining it with another edge to form 
a higher edge. However, this property is true only 
when the grammar is purely context-free. If one in- 
troduces context sensitivity by attaching augmenta- 
tions and controlling the applicability of the produc- 
tion rules, different readings of the same string with 
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the same nonterminal symbol have to be represented 
by separate edges, and this may cause a combinato- 
rial explosion. 

Seo and Simmons (1988) propose a data structure 
called a syntactic graph as a packed representation of 
context-free parsing. A syntactic graph is similar to a 
constraint network in the sense that it is dependency- 
oriented (nodes are words) and that an exclusion ma- 
trix is used to represent the co-occurrence conditions 
between modification links. A syntactic graph is, 
however, built after context-free parsing and is there- 
fore used to represent only context-free parse trees. 
The formal descriptive power of syntactic graphs is 
not known. As will be discussed in Section 4, the 
formal descriptive power of CDG is strictly greater 
than that of CFG and hence, a constraint network 
can represent non-context-free parse trees as well. 

Sugimura et al. (1988) propose the use of a con- 
straint logic program for analyzing modifier-modifiee 
relationships of Japanese. An arbitrary logical for- 
mula can be a constraint, and a constraint solver 
called CIL (Mukai 1985) is responsible for solving the 
constraints. The generative capacity and the compu- 
tational complexity of this formalism are not clear. 

The above-mentioned works seem to have concen- 
trated on the efficient representation of the output of 
a parsing process, and lacked the formalization of a 
structural disambiguation process, that is, they did 
not specify what kind of knowledge can be used in 
what way for structural disambiguation. In CDG 
parsing, any knowledge is applicable to a constraint 
network as long as it can be expressed as a constraint 
between two modifications, and an efficient filtering 
algorithm effectively uses it to reduce structural am- 
biguities. 

4 F O R M A L  P R O P E R T I E S  

Weak Genera t ive  Capaci ty  of  CDG 

Consider the language Lww = {wwlw E (a+b)*}, 
the language of strings that are obtained by con- 
catenating the same arbitrary string over an alpha- 
bet {a,b}. Lww is known to be non-context-free 
(Hopcroft and Ullman 1979), and is frequently men- 
tioned when discussing the non-context-freeness of 
the "respectively" construct (e.g. "A, B, and C do 
D, E, and F, respectively") of various natural lan- 
guages (e.g., Savitch et al. 1987). Although there 
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= (a,  b} 
L = ( l }  
R = (partner} 
C = conjunction of the following subformulas: 

• (word(pos(x))=a ~ word(mod(x))=a) 
& (word(pos(x))=b ~ word(mod(x))=b) 

• mod(x) = pos(y) ~ rood(y) = pos(x) 

• rood(x) ¢ pos(x) & rood(x) • n i l  

• pos(x) < pos(y) < mod(y) 
pos(x) < mod(x) < mod(y) 

• rood(y) < pos(y) < pos(x) 
mod(y) < mod(x) < pos(x) 

Figure 9: Definition of Gww 

~ a a  a b 

Figure 10: Assignment for a sentence of Lww 

is no context-free grammar that generates Lww, the 
grammar Gww = <  E , L , R , C  > shown in Figure 9 
generates it (Maruyama 1990). An assignment given 
to a sentence "aabaab" is shown in Figure 10. 

On the other hand, any context-free language 
can be generated by a degree=2 CDG. This can 
be proved by constructing a constraint dependency 
grammar GCDG from an arbitrary context-free gram- 
mar GCFG in Greibach Normal Form, and by show- 
ing that the two grammars generate exactly the same 
language. Since GcFc is in Greibach Normal Form, 
it is easy to make one-to-one correspondence between 
a word in a sentence and a rule application in a 
phrase-structure tree. The details of the proof are 
given in Maruyama (1990). This, combined with the 
fact that Gww generates Lww, means that the weak 
generative capacity of CDG with degree=2 is strictly 
greater than that of CFG. 

Compu ta t i ona l  complexi ty  of CDG parsing 

Let us consider a constraint dependency grammar 
G = <  E, R, L, C > with arity=2 and degree=k. Let 
n be the length of the input sentence. Consider the 
space complexity of the constraint network first. In 



CDG parsing, every word has k roles, so there are n × 
k nodes in total. A role can have n x l possible values, 
where l is the size of L, so the maximum domain 
size is n x l. Binary constraints may be imposed on 
arbitrary pairs of roles, and therefore the number of 
constraint matrices is at most proportional to (nk) 2. 
Since the size of a constraint matrix is (nl) 2, the 
total space complexity of the constraint network is 
O(12k~n4). Since k and l are grammatical constants, 
it is O(n 4) for the sentence length n. 

As the initial formation of a constraint network 
takes a computation time proportional to the size of 
the constraint network, the time complexity of the 
initial formation of a constraint network is O(n4). 
The complexity of adding new constraints to a con- 
straint network never exceeds the complexity of the 
initial formation of a constraint network, so it is also 
bounded by O(n4). 

The most efficient filtering algorithm developed 
so far runs in O(ea 2,) time, where e is the number 
of arcs and a is the size of the domains in a con- 
straint network (Mohr and Henderson 1986). Since 
the number of arcs is at most O((nk)2), filtering can 
be performed in O((nk)2(nl)2), which is O(n 4) with- 
out grammatical constants. 

Thus, in CDG parsing with arity 2, both the ini- 
tial formation of a constraint network and filtering 
are bounded in O(n 4) time. 

5 C O N C L U S I O N  

We have proposed a formal grammar that allows effi- 
cient structural disambiguation. Grammar rules are 
constraints on word-to-word modifications, and pars- 
ing is done by adding the constraints to a data struc- 
ture called a constraint network. The initial forma- 
tion of a constraint network and the filtering have a 
polynomial time bound whereas the weak generative 
capacity of CDG is strictly greater than that of CFG. 

CDG is actually being used for an interac- 
tive Japanese parser of a Japanese-to-English ma- 
chine translation system for a newspaper domain 
(Maruyama et. al. 1990). A parser for such a wide 
domain should make use of any kind of information 
available to the system, including user-supplied in- 
formation. The parser treats this information as an- 
other set of unary constraints and applies it to the 
constraint network. 
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