
A Calculus for Semantic Composition and Scoping

Fernando C.N. Pereira
Artificial Intelligence Center, SRI International

333 R.avenswood Ave., Menlo Park, CA 94025, USA

Abstract
Certain restrictions on possible scopings of quan-
tified noun phrases in natural language are usually
expressed in terms of formal constraints on bind-
ing at a level of logical form. Such reliance on the
form rather than the content of semantic inter-
pretations goes against the spirit of composition-
ality. I will show that those scoping restrictions
follow from simple and fundamental facts about
functional application and abstraction, and can be
expressed as constraints on the derivation of possi-
ble meanings for sentences rather than constraints
of the alleged forms of those meanings.

1 A n O b v i o u s C o n s t r a i n t ?
Treatments of quantifier scope in Montague gram-
mar (Montague, 1973; Dowty et al., 1981; Cooper,
1983), transformational grammar (Reinhart, 1983;
May, 1985; Helm, 1982; Roberts, 1987) and com-
putational linguistics (Hobbs and Shieber, 1987;
Moran, 1988) have depended implicitly or explic-
itly on a constraint on possible logical forms to
explain why examples 1 such as

(1) * A woman who saw every man disliked
him

are ungrammatical, and why in examples such as

(2) Every man saw a friend of his
(3) Every admirer of a picture of himself is

vain

the every.., noun phrase must have wider scope
than the a... noun phrase if the pronoun in each
example is assumed to be bound by its antecedent.
What exactly counts as bound anaphora varies be-
tween different accounts of the phenomena, but
the rough intuition is that semantically a bound
pronoun plays the role of a variable bound by the
logical form (a quantifier) of its antecedent. Ex-
ample (1) above is then "explained" by noting that

l I n all the examples t ha t follow, the pronoun and its
intended antecedent are italicized. As usual, s tarred exam-
pies are supposed to be u n g r m t i c a L

its logical form would be something like

3W.WOMAN(W)~

(Vm.MAN(rn) ::~ SAW(W, rn))~
DISLIKED(W, m)

but this is "ill-formed" because variable m occurs
as an argument of DISLIKED outside the scope of
its binder Vm. 2 As for Examples (2) and (3),
the argument is similar: wide scope for the log-
ical form of the a... noun phrase would leave an
occurrence of the variable that the logical form of
every.., binds outside the scope of this quantifier.
For lack of an official name in the literature for
this constraint, I will call it here the free-variable
constraint.

In accounts of scoping possibilities based on
quantifier raising or storage (Cooper, 1983; van Ei-
jck, 1985; May, 1985; Hobbs and Shieber, 1987),
the free-variable constraint is enforced either by
keeping track of the set of free variables FREE(q)
in each ralsable (storable) term q and when z E
FREE(q) blocking the raising of q from any context
Bz.t in which z is bound by some binder B, or by
checking after all applications of raising (unstor-
ing) that no variable occurs outside the scope of
its binder.

The argument above is often taken to be so ob-
vions and uncontroversial that it warrants only a
remark in passing, if any (Cooper, 1983; Rein-
hart, 1983; Partee and Bach, 1984; May, 1985; van
Riernsdijk and Williams, 1986; Williams, 1986;
Roberts, 1987), even though it depends on non-
trivial assumptions on the role of logical form in
linguistic theory and semantics.

First of all, and most immediately, there is the
requirement for a logical-form level of representa-
tion, either in the predicate-logic format exempli-
fied above or in some tree format as is usual in
transformational grammar (Helm, 1982; Cooper,
1983; May, 1985; van Riemsdijk and Williams,
1986; Williams, 1986; Roberts, 1987).

2In fact, this is & perfectly good ope~t well-formed for~
nmla and therefore the precise formulation of the constraint
is more delicate than seems to be realized in the li terature.

152

Second, and most relevant to Montague gram-
mar and related approaches, the constraint is for-
mulated in terms of restrictions on formal ob-
jects (logical forms) which in turn are related to
meanings through a denotation relation. How-
ever, compositionaiity as it is commonly under-
stood requires meanings of phrases to be func-
tions of the meanings rather than the forms of
their constituents. This is a problem even in ac-
counts based on quantifier storage (Cooper, 1983;
van Eijck, 1985), which are precisely designed, as
van Eijck puts it, to "avoid all unnecessary ref-
erence to properties of ... formulas" (van Eijck,
1985, p. 214). In fact, van gijck proposes an inter-
eating modification of Cooper storage that avoids
Cooper's reliance on forbidding vacuous abstrac-
tion to block out cases in which a noun phrase is
unstored while a noun phrase contained in it is
still in store. However, this restriction does not
deal with the case I have been discussing.

It is also interesting to observe that a wider class
of examples of forbidden scopings would have to
be considered if raising out of relative clauses were
allowed, for example in

(4) An author who John has read every book
by arrived

In this example, if we did not assume the re-
striction against raising from relative clauses, the
every.., noun phrase could in principle be as-
signed widest scope, but this would be blocked by
the free-variable constraint as shown by the occur-
rence of b free as an argument of BOOK-BY in

Vb.BOOK-BY(b, a) :~
(~a.AUTHOR(a)&

HAS-READ(JOHN, b)&ARRIVED(a))

That is, the alleged constraint against raising from
relatives, for which many counterexamples exist
(Vanlehn, 1978), blocks some derivations in which
otherwise the free-variable constraint would be in-
volved, specifically those associated to syntactic
configurations of the form

[Np," • .N[s-- • • [Np¢- • .X, • • .] • • .] • • •]

where Xi is a pronoun or trace coindexed with
NPI and NPj is a quantified noun phrase. Since
some of the most extensive Montague grammar
fragments in the literature (Dowry et al., 1981;
Cooper, 1983) do not cover the other major source
of the problem, PP complements of noun phrases
(replace S by PP in the configuration above), the
question is effectively avoided in those treatments.

1 5 3

The main goal of this paper is to argue that the
free-variable constraint is actually a consequence
of basic semantic properties that hold in a seman-
tic domain allowing functional application and ab-
straction, and are thus independent of a particular
10gical-form representation. As a corollary, I will
also show that the constraint is bet ter expressed
as a restriction on the derivations of meanings of
sentences from the meanings of their parts rather
than a restriction on logical forms. The result-
ing system is related to the earlier system of con-
ditional interpretation rules developed by Pollack
and Pereira (1988), but avoids that system's use
of formal conditions on the order of assumption
discharge.

2 Cur ry ' s Calculus of Func-
t ional i ty

Work in combinatory logic and the A-calculus is
concerned with the elucidation of the basic notion
of functionality: how to construct functions, and
how to apply functions to their arguments. There
is a very large body of results in this area, of which
I will need only a very small part.
• One of the simplest and most elegant accounts

of functionality, originally introduced by Curry
and Feys (1968) and further elaborated by other
authors (Stenlund, 1972; Lambek, 1980; Howard,
1980) involves the use of a logical calculus to de-
scribe the types of valid functional objects. In a
natural deduction format (Prawitz, 1965), the cal-
culns can be simply given by the two rules in Fig-
ure 1. The first rule states that the result of ap-
plying a function from objects of type A to objects
of type B (a function of type A --* B) to an ob-
ject of type A is an object of type B. The second
rule states that if from an arbitrary object of type
A it is possible to construct an object of type B,
then one has a function from objects of type A
to objects of type B. In this rule and all that fol-
low, the parenthesized formula at the top indicates
the discharge of an assumption introduced in the
derivation of the formula below it. Precise defini-
tions of assumption and assumption discharge are
given below.

The typing rules can be directly connected to
the use of the A-calculus to represent functions by
restating the rules as shown in Figure 2. That is,
if u has type A and v has type A ~ B then v(u)
has type B, and if by assuming that z has type
A we can show that u (possibly containing z) has
type B, then the function represented by Ax.u has
type A ~ B.

A A - - * B

(A)
B

B A....*B

Figure 1: Curry Rules

(x : A)

[app] : u : A v : A--* B [abs]: u : B
v(u) : B Az,u : A - - B

Figure 2: Curry Rules for Type Checking

To understand what inferences are possible with
rules such as the ones in Figure 2, we need a precise
notion of derivation, which is here adapted from
the one given by Prawitz (1965). A derivation
is a tree with each node n labeled by a formula
¢(n) (the conclusion of the node) and by a set
r (n) of formulas giving the =ss.mpiions of $(n).
In addition, a derivation D satisfies the following
conditions:

i. For each leaf node n E D, either ~b(n) is an
axiom, which in our case is a formula giving the
type and interpretation of a lexical item, and
then r (n) is empty, or @(n) is an assumption,
in which case r(.) = { , (.) }

ii. Each nonleaf node n corresponds either to an
application of lapp], in which case it has two
daughters m and m' with ¢(m) - u : A,
, (m ') - - . : A - . B . ÷ (,) = v(u) : B and
r (.) = r (m) u r (m ') , or to an application of
[abs], in which case n has a single daughter m,
and , (m) =- u : B. ~ (,) = Ax.u : A - . B . and
r (.) = r c m) - {~: A}

If n is the root node of a derivation D, we say that
D is a derivation of ¢(n) from the assumptions
r(~).

Notice that condition (ii) above allows empty
abstraction, that is, the application of rule labs]
to some formula u : B even if z : A is not
one of the assumptions of u : B. This is neces-
sary for the Curry calculus, which describes all
typed A-terms, including those with vacuous ab-
straction, such as the polymorphic K combinator
Az.Ay.z : A ~ (B ~ A). However, in the present
work, every abstraction needs to correspond to
an actual functional dependency of the interpre-
tation of a phrase on the interpretation of one of

154

its constituents. Condition (ii) can be easily modi-
fied to block vacuous abstraction by requiring that
z : A e r(m) for the application of the labs] rule
to a derivation node m. 3

The definition of derivation above can be gener-
alized to arbitrary rules with n premises and one
conclusion by defining a rule of inference as a n+l-
place relation on pairs of formulas and assumption
sets. For example, elements of the [app] relation
would have the general form ((u : A, r l) , (v : A
B, r~), {v(u) : B, r, v r~)), while elements of the
[abs] rule without vacuous abstraction would have
the form ({u: B, r) , (Ax.u : A - - B, r - {x : A}))
whenever z : A E r . This definition should be
kept in mind when reading the derived rules of
inference presented informally in the rest of the
paper.

3 Semantic Combinations

and the Curry Calculus

In one approach to the definition of allowable se-
mantic combinations, the possible meanings of a
phrase are exactly those whose type can be de-
rived by the rules of a semantic calculus from ax-
ioms giving the types of the lexical items in the
phrase. However, this is far too liberal in that

3Without this restriction to the abstraction rule, the
types derivable using the rules in Figure 2 are exactly the
consequences of the three axioms A -+ A, A --* (B --~ A)
and (A -* (S -. C)) -* ((A -* S) -* (A -* C)), w~ch
are the polymorphic types of the three combinators I, K
and S that generate all the dosed typed A-calculus terms.
Furthermore, if we interpret -* as implication, these theo-
rems are exactly those of the pure implicational fragment
of intuitlonlstic propositional logic (Curry and Feys, 1968;
Stenlund, 1972; Anderson and Be]nap, 1975). In contrast,
with the restriction we have the weaker system of pure rel-
evant implication R - (Prawitz, 1965; Anderson and Bel-
nap, 1975).

the possible meanings of English phrases do not
depend only on the types involved but also on
the syntactic structure of the phrases. A possible
way out is to encode the relevant syntactic con-
straints in a more elaborate and restrictive system
of types and rules of inference. The prime exam-
ple of a more constrained system is the Lambek
calculus (Lambek, 1958) and its more recent elab-
orations within categorial grammar and semantics
(van Benthem, 1986a; van Benthem, 1986b; Hen-
driks, 1987; Moortgat, 1988). In particular, Hen-
driks (1987) proposes a system for quantifier rais-
ing, which however is too restrictive in its coverage
to account for the phenomena of interest here.

Instead of trying to construct a type system
and type rules such that free application of the
rules starting from appropriate lexical axioms will
generate all and only the possible meanings of a
phrase, I will instead take a more conservative
route related to Montague grammar and early ver-
sions of GPSG (Gazdar, 1982) and use syntactic
analyses to control semantic derivations.

First, a set of derived rules will be used in addi-
tion to the basic rules of application and abstrac-
tion. Semantically, the derived rules will add no
new inferences, since they will merely codify infer-
ences already allowed by the basic rules of the cal-
culus of functionality. However, they provide the
semantic counterparts of certain syntactic rules.

Second, the use of some semantic rules must
be l icensed by a particular syntactic rule and the
premises in the antecedent of the semantic rule
must correspond in a rule-given way to the mean-
ings of the constituents combined by the syntactic
rule. As a simple example using a context-free
syntax, the syntactic rule S - , NP VP might li-
cense the function application rule [app] with A
the type of the meaning of the NP and A --* B
the type of the meaning of the VP.

Third, the domain of types will be enriched with
a few new type constructors, in addition to the
function type constructor --*. From a purely se-
mantic point of view, these type constructors add
no new types, but allow a convenient encoding of
rule applicability constraints motivated by syntac-
tic considerations. This enrichment of the formal
universe of types for syntactic purposes is famil-
iar from Montague grammar (Montague, 1973),
where it is used to distinguish different syntac-
tic realizations of the same semantic type, and
from categorial grammar (Lambek, 1958; Steed-
man, 1987), where it is used to capture syntactic
word-order constraints.

Together, the above refinements allow the syn-

x : trace)

[trace+]. z- trace [trace-]" r: I;
z:e ,~z.r : e --* I;

Figure 3: Rules for Relative Clauses

[pron+] :

(X : pron)

Z : pron [p ron-] : s : A y : B
z : e (Ax . s) (y) : A

Figure 4: Bound Anaphora Rules

tax of language to restrict what potential semantic
combinations are actually realized. Any deriva-
tions will be sound with respect to [app] and [abs],
but many derivations allowed by these rules will
be blocked.

4 D e r i v e d R u l e s
In the rules below, we will use the two basic
types • for individuals and t for propositions,
the function type constructor --* associating to
the right, the formal type constructor qua,at(q),
where q is a quantifier, that is, a value of type
(e --~ t) -* t , and the two formal types pron for
pronoun assumptions and t r a c e for traces in rel-
ative clauses. For simplicity in examples, I will
adopt a "reverse Curried" notation for the mean-
ings of verbs, prepositions and relational nouns.
For example, the meaning of the verb ~o love will
be LOVe. : • ~ • ~ t , with z the lover and y the
loved one in LOVE(y)(z). The assumptions corre-
sponding to lexical items in a derivation will be
appropriately labeled.

4 .1 T r a c e I n t r o d u c t i o n a n d A b -
s t r a c t i o n

The two derived rules in Figure 3 deal with traces
and the meaning of relative clauses. Rule [trace+]
is licensed by the the occurrence of a trace in the
syntax, and rule [trace-] by the construction of a
relative clause from a sentence containing a trace.
Clearly, if n : • --* t can be derived from some as-
sumptions using these rules, then it can be derived
using rule labs] instead.

For an example of use of [trace+] and [trace-],
assume that the meaning of relative pronoun that

is THAT ~ A r . A n . A z . n (x) & r (z) : (e --* t) --* (e - -*

155

[trace] y : 1;race
I

[t r a c e +] Z/" e [l e x i c a l] O W N : • - - * e ~ 1:

l a p p] OWN(y) : e - - * 1; [[e x i c a [] JOHN : e

[app] O W N (y) (J O H N) : ~,
/

[t race- -]) t y . O W N (y) (J O H S) I e --+ l; [[exical] T H A T : (e --+ 1;) --+ (e --+ 1;) ---+ (e ---+ t)

[app] An.,,\z.n(z)~OWN(z)(JOHN): (e -'+ 1;) - '* (e ---* I;) [lexlcal] C A R : e ~ 1;

[app] ~ k z . C A R (Z) ~ O W N (z) (J O H N) " e -'~ 1;

Figure 5: Using Derived Rules

z) ~ (e --* t). Given appropriate syntactic licens-
ing, Figure 5 shows the derivation of a meaning
for car tha~ John o~#ns. Each nonleaf node in the
derivation is labeled with the rule that was used
to derive it, and leaf nodes are labeled accord-
ing to their origin (lexical entries for words in the
phrase or syntactic traces). The assumptions at
each node are not given explicitly, but can be eas-
ily computed by looking in the subtree rooted at
the node for undischarged assumptions.

4 .2 B o u n d A n a p h o r a I n t r o d u c t i o n
a n d E l i m i n a t i o n

Another pair of rules, shown in Figure 4, is re-
sponsible for introducing a pronoun and resolving
it as bound anaphora. The pronoun resolution rule
[pron-] applies only when B is t r a c e or quant(q)
for some quantifier q. Furthermore, the premise
y : B does not belong to an immediate constituent
of the phrase licensing the rule, but rather to some
undischarged assumption of s : A, which will re-
main undischarged.

These rules deal only with the construction
of the meaning of phrases containing bound
anaphora. In a more detailed granunar, the li-
censing of both rules would be further restricted
by linguistic constraints on coreference - - for in-

stance, those usually associated with c-command
(Reinhart, 1983), which seem to need access to
syntactic information (Williams, 1986). In partic-
ular, the rules as given do not by themselves en-
force any constraints on the possible antecedents
of reflexives.

The soundness of the rules can be seen by noting
that the schematic derivation

(z : pron)
z.'e

s : A y:B
: A

to a special case of the schematic corresponds
derivation

2 : e)

s : A
y : e Az.s : e ---. A

(A x . s) C y) : A

The example derivation in Figure 7, which will be
explianed in more detail later, shows the applica-
tion of the anaphora rules in deriving an interpre-
tation for example sentence (2).

156

[quant+] : q: (e --* 10 --* t z : quant(q)
~ g : e

[quant--] :

(= : q u a n t (~))
s : t

q(A=.s) : t

Figure 6: Quantifier Rules

4 . 3 Q u a n t i f i e r R a i s i n g

The rules discussed earlier provide some of the
auxiliary machinery required to illustrate the free-
variable constraint. However, the main burden of
enforcing the constraint falls on the rules responsi-
ble for quantifier raising, and therefore I will cover
in somewhat greater detail the derivation of those
rules from the basic rules of functionality.

I will follow here the standard view (Montague,
1973; Barwise and Cooper, 1981) that natural-
language determiners have meanings of type (e --*
t) --* (e --* 10 ---+ ¢. For example, the mean-
ing of every might be Ar.As.Vz.r(z) ~ s(z), and
the meaning of the noun phrase every man will be
As.Vz.MAN(z) =~ s(z). To interpret the combina-
tion of a quantified noun phrase with the phrase
containing it that forms its scope, we apply the
meaning of the noun phrase to a property s de-
rived from the meaning of the scope. The pur-
pose of devices such as quantifying-in in Montague
grammar, Cooper storage or quantifier raising in
transformational grammar is to determine a scope
for each noun phrase in a sentence. From a se-
mantic point of view, the combination of a noun
phrase with its scope, most directly expressed by
Montague's quantifying-in rules, 4 corresponds to
the following schematic derivation in the basic cal-
culus (rules lapp] and labs] only):

(= : e)

: 'G

Az.s : e ---, l; q : (e ---, l:) ---, t
q (t = . s) : ~ •

where the assumption z : • is introduced in the
derivation at a position corresponding to the oc-
currence of the noun phrase with meaning q in
the sentence. In Montague grammar, this corre-
spondence is enforced by using a notion of syn-
tactic combination that does not respect the syn-

4I!1 gmaered, quantifyilMg-in has to apply not only t o
proposition-type scopes but ahto to property-type scopes
(meAnings of common-noun phrases and verb-phrases). Ex-
tending the argument tha t foUows to those cases offers no
difficulties.

157

tactic structure of sentences with quantified noun
phrases. Cooper storage was in part developed
to cure this deficiency, and the derived rules pre-
sented below address the same problem.

Now, the free-variable constraint is involved in
situations in which the quantifier q itself depends
on assumptions that must be discharged. The rel-
evant incomplete schematic derivation (again in
terms of [app] and labs] only) is

(a) (z : e) (b) Y: •

s : t q : (e - - , t) --+ t (5)
~ x . s : e-.-+ t ?

q (A z . s) : t
?

Given that the assumption y : • has not been dis-
charged in the derivation of q : (e ---, ~) ---, t,
that is, y : • is an undischarged assumption of
q : (e ---, t) -* t, the question is how to com-
plete the whole derivation. If the assumption were
discharged before q had been combined with its
scope, the result would be the semantic object
Ay.q : • --, (e --, t) ---, t , which is of the wrong
type to be combined by lapp] with the scope Az.s.
Therefore, there is no choice but to discharge (b)
after q is combined with its scope. Put in an-
other way, q cannot be raised outside the scope
of abstraction for the variable y occurring free in
q," which is exactly what is going on in Example
(4) ('An author who John has read every book by
arrived'). A correct schematic derivation is then

(a) (= : 0)
: (b) (V: 0)

8 : t

Az., : • - . t ~ : (e ~ t) ----+ t
q (~ z . s) : ¢

u : A
Ay.u : e--+ A

In the schematic derivations above, nothing en-
sures the association between the syntactic posi-

EVERY MAN

EVERY(MAN) (a) ~n: quant(EVERY(MAN)) (b) h :pron

[quant-I-] rrt : e FRIEND-OF [pron-I-] h : e

SAw(1)()
I

[quant--] A(FRIEND-OF(h))(Af.SAW(f)(m))

[pron--] A (FRIEND-OF (Ira)) (~f.SAW (f) (rn))

I
[quant--] EVERY(MAN)(Am.A (FRIEND-OF(m))(Af.SAW (f)(m)))

Most interpretation types and the inference rule label on uses of [app] have been omitted for simplicity.

Figure 7: Derivation Involving Anaphora and Quantification

tion of the quantified noun phrase and the intro-
duction of assumption (a). To do this, we need
the the derived rules in Figure 6. Rule [qusnt-t-]
is licensed by a quantified noun phrase. Rule
[qusnt-] is not keyed to any particular syntactic
construction, but instead may be applied when-
ever its premises are satisfied. It is clear that any
use of [quant+] and [quant--] in a derivation

z : e

s : t
q(Ax.s) :

can be justified by translating it into an instance
of the schematic derivation (5).

The situation relevant to the free-variable con-
straint arises when q in [quant+] depends on as-
sumptions. It is straightforward to see that the

158

constraint on a sound derivation according to the
basic rules discussed earlier in this section turns
now into the constraint that an assumption of the
form z : quant(q) must be discharged before any
of the assumptions on which q depends. Thus, the
free-variable constraint is reduced to a constraint
on derivations imposed by the basic theory of func-
tionality, dispensing with a logical-form represen-
tation of the constraint. Figure 7 shows a deriva-
tion for the only possible scoping of sentence (2)
when erery man is selected as the antecedent of
his. To allow for the selected coreference, the pro-
noun assumption must be discharged before the
quantifier assumption (a) for every man. Further-
more, the constraint on dependent assumptions
requires that the quantifier assumption (c) for a
friend of his be discharged before the pronoun as-
sumption (b) on which it depends. It then follows
that assumption (c) will be discharged before as-
sumption (a), forcing wide scope for every man.

5 Discussion

The approach to semantic interpretation outlined
above avoids the need for manipulations of log-
ical forms in deriving the possible meanings of
quantified sentences. It also avoids the need for
such devices as distinguished variables (Gazdar,
1982; Cooper, 1983) to deal with trace abstrac-
tion. Instead, specialized versions of the basic rule
of functional abstraction are used. To my knowl-
edge, the only other approaches to these problems
that do not depend on formal operations on log-
ical forms are those based on specialized logics
of type change, usually restrictions of the Curry
or Lambek systems (van Benthem, 1986a; Hen-
driks, 1987; Moortgat, 1988). In those accounts,
a phrase P with meaning p of type T is consid-
ered to have also alternative meaning t¢ of type
T', with the corresponding combination possibil-
ities, if p' : T' follows from p : T in the chosen
logic. The central problem in this approach is to
design a calculus that will cover all the actual se-
mantic alternatives (for instance, all the possible
quantifier scopings) without introducing spurious
interpretations. For quantifier raising, the system
of Hendriks (1987) seems the most promising so
far, but it is at present too restrictive to support
raising from noun-phrase complements.

An important question I have finessed here is
that of the compositionality of the proposed se-
mantic calculus. It is clear that the application of
semantic rules is governed only by the existence of
appropriate syntactic licensing and by the avail-
ability of premises of the appropriate types. In
other words, no rule is sensitive to the form of any
of the meanings appearing in its premises. How-
ever, there may be some doubt as to the status
of the basic abstraction rule and those derived
from it. After all, the use of A-abstraction in the
consequent of those rules seems to imply the con-
straint that the abstracted object should formally
be a variable. However, this is only superficially
the case. I have used the formal operation of A-
abstraction to represent functional abstraction in
this paper, but functional abstraction itself is in-
dependent of its formal representation in the A-
calculus. This can be shown either by using other
notations for functions and abstraction, such as
that of de Bruijn's (Barendregt, 1984; Huet, 1986),
or by expressing the semantic derivation rules in A-
Prolog (Miller and Nadathur, 1986) following ex-
isting presentations of natural deduction systems
(Felty and Miller, 1988).

Acknowledgments
This research was supported by a contract with
the Nippon Telephone and Telegraph Corp. and
by a gift from the Systems Development Founda-
tion as part of a coordinated research effort with
the Center for the Study of Language and Informa-
tion, Stanford University. I thank Mary Dalrym-
pie and Stuart Shieber for their helpful discussions
regarding this work.

Bibliography
Alan Ross Anderson and Nuel D. Belnap, Jr.

1975. Entailment: the Logic of Relevance
and Necessity, Volume L Princeton University
Press, Princeton, New Jersey.

Hank P. Barendregt. 1984. The Lambda Calcu-
lus: its Syntaz and Semantics. North-Holland,
Amsterdam, Holland.

.Ion Barwise and Robin Cooper. 1981. General-
ized quantifiers and natural language. Linguis-
tics and Philosophy, 4:159-219.

Robin Cooper. 1983. Quantification and Syntac-
tic Theory. D. Reidel, Dordrecht, Netherlands.

Haskell B. Curry and Robert Feys. 1968. Com-
binatory Logic, Volume L Studies in Logic
and the Foundations of Mathematics. North-
Holland, Amsterdam, Holland. Second print-
ing.

David R. Dowty, Robert E. Wall, and Stanley Pe-
ters. 1981. Introduction to Montague Seman-
tics, Volume 11 of Synthese Language Library.
D. Reidel, Dordrecht, Holland.

Amy Felty and Dale Miller. 1988. Specifying theo-
rem provers in a higher-order logic programming
language. Technical Report MS-CIS-88-12, De-
partment of Computer and Information Science,
University of Pennsylvania, Philadelphia, Penn-
sylvania.

Gerald Gazdar. 1982. Phrase structure grammar.
In P. Jacobson and G.K. Pullum, editors, The
Nature of Syntactic Representation, pages 131-
186. D. Reidel, Dordrecht, Holland.

Irene R. Heim. 1982. The Semantics of Defi-
nite and Indefinite Noun Phrases. Ph.D. thesis,
Department of Linguistics, University of Mas-
sachusetts, Amherst, Massachusetts (Septem-
ber).

Herman Hendriks. 1987. Type change in seman-
tics: the scope of quantification and coordina-
tion. In Ewan Klein and Johan van Benthem,

159

editors, Catego.mes, Polymorphism and Unifica-
tion, pages 95-120. Centre for Cognitive Sci-
ence, University of Edinburgh, Edinburgh, Scot-
land.

Jerry R. Hobbs and Stuart M. Shieber. 1987.
An algorithm for generating quantifier scopings.
Computational Linguistics, 13:47-63.

W.A. Howard. 1980. The formulae-as-types no-
tion of construction. In J.P. Seldin and J.R.
Hindley, editors, To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and For-
malism, pages 479-490. Academic Press, Lon-
don, England.

Gdrard Huet. 1986. Formal structures for compu-
tation and deduction. First edition of the lec-
ture notes of a course given in the Computer Sci-
ence Department of Carnegie-Mellon University
during the Spring of 1986 (May).

Joachim Lambek. 1958. The mathematics of
sentence structure. American Mathematical
Monthly, 65:154-170.

Joachim Lambek. 1980. From A-calculus to carte-
sian closed categories. In J.P. Seldin and J.R.
Hindley, editors, To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and For-
realism, pages 375-402. Academic Press, Lon-
don, England.

Robert May. 1985. Logical Form: its Struc.
ture and Derivation, Volume 12 of Linguistic
Inquiry Monographs. MIT Press, Cambridge,
Massachusetts.

Dale A. Miller and Gopalan Nadathur. 1986.
Higher-order logic programming. In Ehud
Shapiro, editor, Third International Confer-
ence on Logic Programming, Berlin, Germany.
Springer-Verlag.

Richard Montague. 1973. The proper treatment
of quantification in ordinary English. In Rich-
mond H. Thomason, editor, Formal Philosphy.

Yale University Press.

Michael Moortgat. 1988. Categorial Investiga-
tions: Logical and Linguistic Aspects of the
Lambek Calculus. Ph.D. thesis, University of
Amsterdam, Amsterdam, Holland (October).

Douglas B. Moran. 1988. Quantifier scoping in
the SRI Core Language Engine. In $6th Annual

• Meeting of the Association for Computational
Linguistics, pages 33-47, Morristown, New Jer-
sey. Association for Computational Linguistics.

Barbara Partee and Emmon Bach. 1984. Quan-
tification, pronouns and VP anaphora. In

160

J.A.G. Groenendijk, T.M.V. Janssen, and
M.B.J. Stokhof, editors, Truth, Interpretation
and Information, pages 99-130. Forts, Dor-
drecht, Holland.

Martha E. Pollack and Fernando C.N. Pereira.
1988. An integrated framework for semantic
and pragmatic interpretation. In P6th Annual
Meeting of the Association for Computational
Linguistics, pages 75-86, Morristown, New Jer-
sey. Association for Computational Linguistics.

Dug Prawitz. 1965. Natural Deduction: A Proof-
Theoretical Study. Almqvist and Wiksell, Upp-
sala, Sweden.

Tanya Reinhart. 1983. Anaphora and Semantic
Interpretation. Croom Helm, London, England,
corrected and revised printing, 1987 edition.

Craige Roberts. 1987. Modal Subordination,
Anaphora and Distributivity. Ph.D. thesis, De-
partment of Linguistics, University of Mas-
sachusetts, Amherst, Massachusetts (February).

Mark Steedman. 1987. Combinatory grammars
and parasitic gaps. Natural Language and Lin-
guistic Theory, 5(3):403-439.

SSren Stenlund. 1972. Combinators, A-Terms and
Proof Theory. D. Reidel, Dordrecht, Holland.

Johan van Benthem. 1986a. Categorial grammar
and lambda calculus. In D. Skordev, editor,
Mathematical Logic and its Application, pages
39-60: Plenum Press, New York, New York.

Johan van Benthem. 1986b. Essays in Logical
Semantics, Volume 29 of Studies in Linguistics
and Philosophy. D. Reidel, Dordreeht, Holland.

Jan van Eijek. 1985. Aspects of Quantification in
Natural Language. Ph.D. thesis, University of
Groningen, Groningen, Holland (February).

Henk van Riemedijk and Edwin Williams. 1986.
Introduction to the Theory of Grammar, Vol-
ume 12 of Current Studies in Linguistics. MIT
Press, Cambridge, Massachusetts.

Kurt A. Vanlehn. 1978. Determining the scope
of English quantifiers. Master's thesis, M.I.T.
(June).

Edwin Williams. 1986. A reassignment of the
functions of LF. Linguistic Inquiry, 17(2):265-
299.

