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Computerist: ... But, great Scott, what about structure? You can’t just bang that lot into a machine

without structure. Half a gigabyte of sequential file ...

Lexicographer: Oh, we know all about structure. Take this entry for example. You see here italics
as the typical ambiguous structural element marker, being aﬁparemly used as an undefined

phrase-entry lemma, but in fact bein

the subordinate entry

eadword address preceding the

small-cap cross-reference headword address which is nested within the gloss to a defined phrase
entry, itself nested within a subordinate (bold lower-case letter) sense section in the second branch

of a forked multiple part of speech main entry

. Now that’s typical of the kind of structural re-

lationship that must be made crystal-clear in the eventual database.

from “Taking the Words out of His Mouth” —
Edmund Weiner on computerising the Oxford English Dictionary

ABSTRACT

We identify two complementary processes in the
conversion of machine-readable dictionaries into
lexical databases: recovery of the diction
structure from the typographical markings whic
persist on the dictionary distribution tapes and
embody the publishers’ notational conventions;
followed by making explicit all of the codified and
ellided information packed into individual entries.
We discuss notational conventions and tape for-
mats, outline structural properties of dictionaries,
observe a ran%e of representational phenomena
particularly relevant to dictionary parsing, and
derive a set of minimal requirements for a dic-
tionary grammar formalism. We present a gen-
eral purpose dictionary entry parser which uses a
formal notation designed to describe the structure
of entries and performs a mapping from the flat
character stream on the tape to a highly struc-
tured and fully instantiated representation of the
dictionary. e demonstrate the power of the
formalism by drawing examples from a range of
dictionary sources which have been processed and
converted into lexical databases.

1. INTRODUCTION

Machine-readable dictionaries (MRD'’s) are typi-
cally available in the form of publishers’
typesetting tapes, and consequently are repres-
ented by a flat character streamn where lexical data
proper is heavily interspersed with ?pecial (con-
trol) characters. These map to the font changes
and other notational conventions used in the
printed form of the dictionary and designed to
Fack, and present in a codified compact visual
ormat, as much lexical data as possible.

To make maximal use of MRD’s, it is necessary
to make their data, as well as structure, fully ex-

91

(The Guardian, London, March, 1985)

licit, in a data base format that lends itself to
exible querying. However, since none of the
lexical data base (LDB) creation efforts to date
fully addresses both of these issues, they fail to
offer a general framework for processing the wide
range of dictionary resources available in
machine-readable form. As one extreme, the
conversion of an MRD into an LDB may be
carried out by a ‘one-off’ program — such as, for
example, used for the Lorgman Dictionary of
Contemporary English (LDOCE) and described
in Boguraev and Briscoe, 1989. While the re-
sulting LDB is quite explicit and complete with
respect to the data in the source, all knowledge
of the dictionary structure is embodied in the
conversion program. On the other hand, more
modular architectures consisting of a parser and
a grammar — best exemplified by Kazman’s
§1986) analysis of the Oxford English Dictionary
OED) — do not deliver the structurally rich and
explicit LDB ideally required for easy and un-
constrained access to the source data.

The majority of computational lexicography
projects, 1n fact, fall in the first of the categories
above, in that they typically concentrate on the
conversion of a single dictionary into an LDB:
examples here include the work by e.g. Ahlswede
et al, 1986, on The Webster's Seventh New
Collegiate Dictionary; Fox et al., 1988, on The
Collins English Dictionary; Calzolari and Picchi,
1988, on Il Nuovo Dizionario ltaliano Garzanti;
van der Steen, 1982, and Nakamura, 1988, on
LDOCE. Even work based on multiple diction-
aries (e.g. in bilingual context: see Calzolari and
Picchi, 1986) appear to have used specialized
programs for each dictionary source. In addition,
not an uncommon property of the LDB’s cited
above is their incompleteness with respect to the
original source: there is a tendency to extract, in
a pre-processing phase, only some fragments (e.g.



part of speech information or definition fields)
while ignoring others (e.g. etymology, pronun-
ciation or usage notes).

We have built a Dictionary Entry Parser (DEP)
together with grammars for several different dic-
tionaries. Our goal has been to create a general
mechanism for converting to a common LDB
format a wide range of MRD’s demonstrating a
wide range of phenomena. In contrast to the
OED project, where the data in the dictionary is
only tagged to indicate its structural character-
istics, we identify two processes which are crucial
for the ‘unfolding’, or making explicit, the struc-
ture of an MRD: identification of the structural
markers, followed by their interpretation in con-
text resulting in detailed parse trees for individual
entries. Furthermore, unlike the tagging of the
OED, carried out in several passes over the data
and using different grammars (in order to cope
with the highly complex, idiosyncratic and am-
biguous nature of dictionary entries), we employ
a parsing engine exploiting unification and back-
tracking, and using a single grammar consisting
of three different sets of rules. The advantages
of handling the structural complexities of MRD
sources and deriving corresponding LDB’s in one
operation become clear below.

While DEP has been described in general terms
before (Byrd et al.,, 1987; Neff et al., 1988), this
paper draws on our experience in parsing the
Collins German-English | Collins English-German
(CGE/CEG) and LDOCE dictionaries, which
represent two very different types of machine-
readable sources vis-a-vis format of the
typesetting tapes and notational conventions ex-
ploited by the lexicographers. We examine more
closely some of the phenomena encountered in
these dictionaries, trace their implications for
MRD-to-LDB pa.rsm% show how they motivate
the design of the DEP grammar formalism, and
discuss treatment of typical entry configurations.

2. STRUCTURAL PROPERTIES OF MRD’S

The structure of dictionary entries is mostly im-
plicit in the font codes and other special charac-
ters controllmf%lr:hc layout of an entry on the
printed page; hermore, data is typically com-

acted to save space in print, and 1t is common
for different fields within an entry to employ rad-
ically different compaction schemes and
abbreviatory devices. For example, the notation
T5a,b,3 stands for the LDOCE grammar codes
T5a;T5b;T3 (Boguraev and Briscoe, 1989, pres-
ent a detailed description of the grammar coding
system in this dictionary), and many adverbs are
stored as run-ons of the adjectives, using the
abbreviatory convention ~ly }the same conven-
tion applies to certain types of affixation in gen-
eral: ~er, ~less, ~ness, etc.). In CGE, German
compounds with a common first element appear
grouped together under it:

Kinder-: ~chor m children’s choir; ~dorf ns children’s
village; ~ehe f child marriage.
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Dictionaries often factor out common substrings
in data fields as in the following LDOCE and
CEG entries:

in.cu.ba.tor ... a machine for a keeping eggs warm until
they HATCH b keeping alive babies that are too small
to live and breathe in ordinary air

Figure 1. Definition-initial common fragment

Bankrott m <e)s, - bankruptcy;, (fig) breakdown,
collapse; (moralisch) bankruptcy. ~ machen to
become or go bankrupt; den ~ anmelden or ansagen or
erkliren to declare oneself bankrupt.

Figure 2. Definition-final common fragment
Furthermore, a variety of conventions exists for
making text fragments perform more than one
function (the capitalization of “HATCH?” above.
for instance, signals a close conceptual link with
the word being defined). Data of this sort is not
very useful to an LDB user without explicit ex-
pansion and recovery of compacted headwords
and fragments of entries. Parsing a dictionary to
create an LDB that can be easly queried by a
user or a g;ogrgm therefore implies not only tag-
ging the data in the entry, but also recovering
ellided information, both in form and content.

There are two broad types of machine-readable
source, each requiring a different strategy for re-
covery of implicit structure and content of dic-
tionary entries. On the one hand tapes may
consist of a character stream with no expliat
structure markings (as OED and the Collins bi-
linguals exemplify); all of their structure is implied
in the font changes and the overall syntax of the
entry. On the other hand, sources may employ
mixed representation, incorporating both global
record delimiters and local structure encoded in
font change codes and/or special character se-
quences (LDOCE and Webster's Seventh).

Ideally, all MRD’s should be mapped onto LDB
structures of the same type, accessible with a sin-
gle query language that preserves the user’s intui-
tion about the structure of lexical data (Neff et
al., 1988; Tompa, 1986). Dictionary entries can
be naturally represented as shallow hierarchies
with a variable number of instances of certain
items at each level, e.g. multiple homqi?hs
within an entry or multiple senses wit a
homograph. e usual inheritance mechanisms
associated with a hierarchical organisation of data
not only ensure compactness of representation,
but also fit lexical intuitions. The figures overleaf
show sample entries from CGE and LDOCE and
their LDB forms with explicitly ‘unfolded’ struc-
ture.

Within the taxonomy of normal forms (NF) de-
fined by relational data base theory, dictionary
entries are ‘unnormalized relations’ in which at-
tributes can contain other relations, rather than
simple scalar values; LDB's, therefore, cannot be
correctly viewed as relational data bases (see Neff
et al., 1988). Other kinds of hierarchically struc-
tured data similarly fall outside of the relational



title [...] n (a) Titel m (also Sport); (of chapter)
Uberschrift f; ( Film) Untertitel m; (form of address)
Anrede /. what ~ do you give a bishop? wie redet or
spricht man einen Bischof an? (b) (Jur) (right)
(Rechts)anspruch (ro auf + acc), Titel (spec) m;
(document) Eigentumsurkunde /.

entry
?-hdn: title

+-superhom

+=proNUNCc: ...
+-Fom
+=-poOs: n
+-sens
+~sensnum: a
+~-tran_group
+=tran
+-word: Titel
+-gender: m
+-domain: a/so Sport

+~tran_group
+-usage_note: of chapter
+=tran )
+-word: Uberschrift
+-gender: f

+-tran_group
+-domain: Fiim
+=-tran

+-word: Untertitel

+-gender: m

+-tran_group
+~usage_note: form of address
+=-tran

+-word: Anrede

+-gender: f

+-collocat
+=-SOUrce: what ~ do you give a bishop?
+-targ
+-target
+=-phrase: wie redet /or/ spricht
man einen Bischof an?

+-sans
+-sensmum: b
+~domain: Jur
+=tran_growp
+~usage_note: rignt
+=-tran
| #-word: Rechtsanspruch
| +-word: Anspruch
| +-complemant
| | +-engcomp: to
| | +-gercomp: auf + acc
} +-gender: m
+=tran
+-word: Tite/
+-style: spec
+-gender: m

+=tran_group
+-usage_note: document
+=-tran
+=word: Eigentumsurkunde

+-gender: f

Figure 3. LDB for a CEG entry

NF mould; indeed recently there have been ef-
forts to design a generalized data model which
treats flat relations, lists, and hierarchical struc-
tures uniformly (Dadam ez al., 1986). Our LDB
format and Lexical Query Language (LQL) sup-
port the hierarchical model for dictionary data;
the output of the parser, similar to the examples
in Figure 3 and Figure 4, is compacted, encoded,
and loaded into an LDB.
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nuisance /njusans || ‘mw-/ 7 1 a person or animal that
annoys or causes trouble, PEST: Don't make a
nuisance of yourself: sit down and be quiet! 2 an action
or state of affairs which causes trouble, offence, or
unpleasantness: What a nuisance! I've forgotten my
ticket 3 Commit no nuisance (as a notice in a public
place) Do not use this place as a a lavatory b a TIP*

entry
+=-hdw: nuisance

+=-superhom
+-print_form: nuisance
+-pronunc
| +-primary
I +-pron_string: ’'nju:sfns || ‘nu.-
T-syneﬂt: n

+-sense_def
+-s@nse_no: 17
+-defn
)] +-implicit_xrf
| 1 +-to: pest
| +-def_string: a person or animal that
annoys or causes trouble;
pest
+-example
+-a@x_string: Don’t make a nuisance of
yourseif: sit down and
be quiet!
+-sense_def
+-sense_no: 2
+~defn
| +-def_string: an action or state of affairs
| which causes trouble, offence,
| or unpleasantness
+-axample
+-@x_string: what a nuisance!
I've forgotten my ticket

+-sense_def
+~s@nNse_no: 3
+=defn
+=-hdw rase: Commit no nuisance
+=qualifier: asanotice in a public place

+-sub_defn
| *+-seq no: a
| +-de
1 +~def_string: Do not use this place
| as a lavatory
+-sub_defn
+-s@q_no: b
+~de
+-implicit_xrf
] +=-to: tip
| +-hom_no: ¢
+-def_string: Do not use this place
as atip
Figure 4. LDB for an LDOCE entry

3. DEP GRAMMAR FORMALISM

The choice of the hierarchical model for the rep-
resentation of the LDB entries (and thus the
output of DEP) has consequences for the parsing
mechanism. For us, parsing involves determining
the structure of all the data, retrieving imphcit
information to make it explicit, reconstructing
ellided information, and filling a (recursive) tem-
plate, without any data loss. is contrasts with
a strategy that fills slots in predefined (and finite)
sets of records for a relational system, often dis-
carding information that does not fit.

In order to meet these needs, the formalism for
dictionary entry grammars must meet at least
three criteria, in addition to being simply a nota-
tional device capable of describing any particular



dictionary format. Below we outline the basic
requirements for such a formalism.

3.1 Effects of context

The grammar formalism should be capable of
handling ‘mildly context sensitive’ input streams,
as structuraily identical items may have widely
differing functions depending on both local and
%lobal contexts. For exa.mtple, parts of speech,
teld labels, paraphrases of cultural items, and
many other dictionary fragments all appear in the
CEG in italics, but their context defines their
identity and, consequently, their interpretation.
Thus, in the example entry in Figure 3 above,
m, (also Sport), (O}J chapter), and (spec) acquire
the very different labels of pos, domain,
usage_note, and style. In addition, to distin-
Fuish between domain labels, style labels, dialect
abels, and usage notes, the rules must be able to
test candidate elements against a closed set of
items. Situations like this, involving subsidiary
application of auxiliary procedures (e.§. string
matching, or dictionary lookup required for an
example below), require that the rules be allowed
to selectively invoke external functions.

The assignment of labels discussed above is based
on what we will refer to in the rest of this paper
as global context. In procedural terms, this is
defined as the expectations of a particular gram-
mar fragment, reflected in the names of the asso-
ciated rules, which will be activated on a given
path through the grammar. Global context is a
dynamic notion, best thought of as a ‘snapshot’
of the state of the parser at any point of process-
ing an entry. In contrast, local context is defined
by finite-length patterns of input tokens, and has
the effect of 1dent1fyingFtypographic ‘clues’ to the
structure of an entry. Finally, immediate context
reflects very local character patterns which tend
to drive the initial segmentation of the ‘raw’ tape
character stream and its fragmentation into
structure- and information-carrying tokens.

These three notions underlie our approach to
structural analysis of dictionaries and are funda-
mental to the grammar formalism design.

3.2 Structure manipulation

The formalism should allow operations on the
(partial) structures delivered during parsing, and
not as separate tree transformations once proc-
essing 1s complete. This is needed, for instance,
in order to handle a variety of scoping phenom-
ena (discussed in section 5 below), factor out
items common to more than one fragment within
the same entry, and duplicate (sub-)trees as com-
plete LDB representations are being fleshed out.
Consider the CEG entry for “abutment”:

{_abutment [..] n (Archir) Flugel- or Wangenmauer /. |

Here, as well as in “title” (Figure 3), a copy of
the dgendex' marker common to both translations
needs to migrate back to the first tran. In addi-
tion, a copy of the common second compound
element -mauer also needs to migrate (note that
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entry
+=hdw: abutment

+=-superhon
+=-pronunc:
’-
+-pos: n
+-domain: Archit
+-sans
+-tran_grouwp
+-tran
| +-word: Fiigeimauer
| +-gender: f
+=-tran
+=-word: Wangenmauer
+~-gender: f

identifying this needs a separate noun compound
parser augmented with dictionary lookup).

An example of structure duplication is illustrated
by our treatment of (implicit) cross-references in
LDOCE, where a link getween two closely re-
lated words is indicated by having one of them
typeset in small capitals embedded 1n a definition
of the other (e.g. “PEST” and “TIP” in the defi-
nitions of “nuisance” in Figure 4). The dual
purpose such words serve requires them to appear
on at least two different nodes in the final LDB
structure: def_string and implicit_xrf. In or-
der to perform the required transformations, the
Erammar formalism must provide an explicit
andle on partial structures, as they are being
built by the parser, together with operations
which can manipulate them — both in terms of
structure decomposition and node migration.

In general, the formalism must be able to deal
with discontinuous constituents, a problem not
dissimilar to the problems of discontinuous con-
stituents in natural language parsing; however in
dictionaries like the ones we discuss the phe-
nomena seem less regular (if discontinuous con-
stituents can be regarded as regular at all).

3.3 Graceful failure

The nature of the information contained in dic-
tionaries is such that certain fields within entries
do not use any conventions or formal systems to
present their data. For instance, the “USAGE”
notes in LDOCE can be arbitrarily complex and
unstructured fragments, combining straight text
with a variety of notational devices (e.g. font
changes, item highlighting and notes segmenta-
tion) in such a way that no principled structure
may be imposed on them. Consider, for example,
the annotation of “loan”: :

Voo esp. AmE 1o give (someone) the use of,
lend ........ USAGE It is perfectly good AmE to use
loan in the meaning of lend: He loaned me ten dollars.
The word is often used in BrE, esp. in the meaning ‘to
lend formally for a long period: He loaned his
collection of pictures to the public GALLERY but many
people do not like it to be used simply in the meaning
of lend in BrE...

Notwithstanding its complexity, we would still
like to be able to process the complete entry, re-
covenng as much as we can from the regularly
encoded information and only ‘skipping’ over its
truly unparseable fragment(s). Consequently, the
formalism and the underlying processing frame-



work should incorporate a suitable mechanism
for explicitly handling such data, systematically
occurnng in dictionanes.

The notion of graceful failure is, in fact, best re-
ed as ‘selective parsing’. Such a mechanism
as the additional benefit of allowing the incre-
mental development of dictionary grammars with
(eventually) complete coverage, and arbitrary
depth of analysis, of the source data: a particular
grammar might choose, for instance, to treat ev-
erything but the headword, part of speech, and
pronunciation as ‘junk’, and concentrate on
elaborate ming of the pronunciation fields,
while still being able to accept all input without
having to assign any structure to most of it.

4. OVERVIEW OF DEP

DEP uses as input a collection of ‘raw’
typesetting images of entries from a dictionary
(1.e. a typesetting tape with ‘begin-end’ bounda-
ries of entries explicitly marked) and, by consuit-
ing an externally supplied grammar specific for
that particular dictionary, produces explicit struc-
tural representations for the individual entries,
which are either displayed or loaded into an LDB.
The systet;lzi consists of a rule ccimpiler, a parsing
engine, a dictionary entry template generator, an
ng loader, and various development facilities,
all in a PROLOG shell. User-wntten PROLOG
functions and primitives are easily added to the
system. The formalism and rule compiler use the
Modular Logic Grammars of McCord (1987) as
a point of departure, but they have been sub-
stantially modified and extended to reflect the re-
quirements of parsing dictionary entries.

The compiler accepts three different kinds of rules

corresponding to the three phases of dictionary

entry analysis: tokenization, retokenization, and

ﬁiarsi{xg proper. Below we present informally
ghlights of the grammar formalism.

4.1 Tokenization

Unlike in sentence parsing, where tokenization
(or lexical analysis) 1s driven entirely by blanks
and punctuation, the DEP ar writer ex-
plicitly defines token delimiters and token substi-
tutions. Tokenization rules sgedfy a one-to-one
mapping from a character substring to a rewrite
token; the mapping is applied whenever the
specified substring is encountered in the original
typesetting tape character stream, and is only
sensitive to immediate context. Delimiters are
usually font change codes and other special char-
acters or symbols; substitutions are atoms (e.g.
ital_correction, field_sep) Or structured terms
(e.g. fonttitalic), swp("1")). Tokenization
breaks the source character stream into a mixture
of tokens and strings; the former embody the
notational conventions emploged by the printed
dictionary, and are used by the parser to assign
structure to an entry; the latter the textual
(lexical) content of the dictionary. Some sample
rules for the LDOCE machine-readable source,
marking the beginning and end of font changes,
or making explicit special print symbols, are
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shown below (to facilitate readability, (*aB) re-
presents the hexadecimal symbol x'aB*).
(Beatnt amall caps)))
in .
E Et £ o0 L o o ARy s e 3 3

%#641", tal_correction].
delim("{%80}", hyphen_mark).

Immediate context, as well as local string rewrite,

" can be specified by more elaborate tokenization

rules, in which two additional arguments sgecify
strings to be ‘glued’ to the strings on the left an
right of the token delimiter, respectively. For
CEGQG, for instance, we have

Selin(nsuacts  Roatibaldiie
delim(*“>ub<", font(roman)).
Tokenization operates recursively on the string
fragments formed by an active rule; thus, apph-
cation of the first two rules above to the string
ook, >ud< yyy* results in the following token
list: "ooc" . pd . fontibold) . “yyy".

4.2 Retokenization

Longer-range (but still local) context sensitivity
is implemented via retokenization, the effect of
which is the ‘normalization’ of the token lst.
Retokenization rules conform to a general rewrite
format — a pattern on the left-hand side defines
a context as a sequence of (explicit or variable
place holder) tokens, in which the token list
should be adjusted as indicated by the right-hand
side-—andcanbeusedtoperﬁc’)rmarangeof
cleaning up tasks before parsing proper.

Streamlining the token list. Tokens without in-
formation- or structure-bearing content; such as
associated with the codes for 1talic correction or
thin space, are removed:

ihl_eorr.et'ion : 4Seg <=> +Seg.

Sulperﬂuous font control characters can be simply
deleted, when they follow or precede certain
data-carrying tokens which also incorporate
typesetting information (such as a homograph
superscript symbol or a pronunciation marker
indicating the beginning of the scope of a pho-
netic font):

ron_mark : font{phonetic) <=> pron mark.
gontTXl : sup(N) <z=> gt.p(N).

(Re)adjusting the token list. New tokens can be
introduced in place of certain token sequences:

bra : fonfl)italic) <=>

in(restriction).
font( roman Ket <=>

(restriction).

Reconstruction of string segments. Where the
initial (blind) tokenization has produced spurious
fragmentation, string segments can be suitably
reconstructed. For instance, a hyphen-delimited
sequence of syllables in place of the print form
of a headword, created by tokenization on
hyphen_mark), can be ‘glued’ back as follows:
+Syl_1 : hyphen_mark : +Syl 2 :
o BERRL L |

This rule demonstrates a characteristic property
of the DEP formalism, discussed in more detail



later: arbitrary Prolog predicates can be invoked
to e.g. constrain rule application or manipulate
strings. Thus, the rule only aﬁphes to string to-
kens surrounding a hyphen character; it manu-
factures, by string concatenation, a new segment
which replaces the triggering pattern.

Further segmentation. Often strings need to be
split, with new tokens inserted between the
pieces, to correct infelicities in the tapes, or to
insert markers between recognizably distinct con-
tiguous segments that appear in the same font.
e rule below implements the CGE/CEG con-
vention that a swung dash is an imdplicit switch
to bold if the current font is not bold already.
font(X) : $t~X=hold) ~: $E : $stringplE) :
$conca ~" 3

(A,B,E) : (" %#,8)
<=> font(X) : +A : font(bold) : +B.

Dealing with irregular input. Rules that rear-
range tokens are often needed to correct errors in
the tapes. In CEG/CGE, parentheses surround-
ing italic items often appear (erroneously) in a
roman font. A suite of rules detaches the stray
parentheses from the surrounding tokens, moves
them around the font marker, and glues them to
the item to which they belong. :
+E : Sstringp(E) : Sconcat(™) “,E1,E})
<=> ") : JE]1. /% datach »/
font(F) : )¢
<=> ) : petoken(font(F)), /% move ¥/
+E : $stringp(E) : )" : Sconcat(E,")",El)
<=> +El. /% glus #/
retoken invokes retokenization recursively on the
sublist beginning with font(f) and including all
tokens to its right. In principle, the three rules
can be subsumed by a sm%e one; in practice,
separate rules also ‘catch’ other types of errone-
ous or noisy input.

Although retokenization is conceptually a sepa-
rate process, it is_interleaved in practice with
tokenization, bringing improvements in perform-
ance. Upon completion, the tape stream corre-
sponding, for instance, to the LDOCE entry

autistic otistik, ad/ suffering from AUTISME:
autistic child:behaviour — ~ally adv [Wad]

F<autistic<F<>au{%80) tis{#80)ticP<C:"tIst
IkH<ad2<s<0000<D<suffor;ng from(xCAlautis
m{%CB){%8A) : (#46)autistic children/behavi
our{#64}R<01<R<-~ally<R<><adv<ia4<

is converted into the following token list:

w

head_ma . "autistic"
fld_sep pf_marker . Yayu=-tis-tic"
pron_marke . "C:"4¢IstIK"
pos_ma “ady”

rkKer .
fld_sep . scod_marker . "0000“
marker . "suffering from"
on in{small caps}). “autism”
. inleamp) . "autistic |
JShild/behaviour”

on_sarker .

inlderiv) « "autistically”

(deriv) . fld_sep « “adv"

d_sep . "Wad" . fld_sep .
4.3 Parsing

Parsing proper makes use of unification and
backtracking to handle identification of segments
by context, and is heavily augmented with some
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non-trivial manipulation of (partial) trees, as im-
plicit and/or ellided information packed in the
entries is g recovered and reorganized. Pars-
ing is a top-down depth-first operation, and only
the first successful parse is used. This strategy,
augmented by a ‘junk collection’ mechanism
(discussed below) to recover from parsing failures,
tumns out to be adequate for handling all of the
phenomena encountered while assigning struc-
tural descriptions to dictionary entries.

Dictionary grammars follow the basic notational
conventions of logic grammars; however, we use
additional operators tailored to the structure ma-
nipulation requirements of dictionary parsing. In
particular, the right-hand side of grammar rules
admits the use of four different types of operators,
designed to deal with roken list consumption, to-
ken list manipulation, structure assignment, and
(local) tree transformations. These operators
suitably modify the expansions of grammar rules;
ultimately, all rules are compiled into Prolog.

Token consumption. Tokens are removed from
the token list by the + and - operators; + also as-
signs them as terminal nodes under the head of
the invoking rule. Typically, delimiters intro-
duced by tokenization (and retokenization) are
removed once they serve their primary function
of identifying local context; string segments of the
token list are assigned labels and migrate to ap-
propriate places in the final structural represen-
tation of an entry. A simple rule for the part of
speech fields in CEG (Figure 3) would be:

pos 23> -font(italic) : +Seg.

A structured term stpos, “n".nil) is built as a
result of the rule consuming, for instance, the to-
ken "n*, Rule names are associated with attri-
butes in the LDB representation for 2 dictionary
entry; structures built by rules are pairs of the
form s(name, Value), where value is a list of one
or more elements (strings or further structures
‘returned’ by recursively invoked rules).

Token list manipulation. Adjustment of the to-
ken list may be required in, for instance, simple
cases of recovering ellided information or reor-
dering tokens in the input stream. This is
achieved by the ins and insl operators, which
respectively insert single, or sequences of, tokens
into the token list at the current position; and the
++ operator, which inserts tokens (or arbitrary
tree fragments) directly into the structure under
construction. Assuming a global variable, Head,
bound to the headword of the current entry, and
the ability to invoke a Prolog string concat-
enation function from within a rule (via the ¢
operator; see below), abbreviated morphological
derivations stored as run-ons might be recovered

by:
run_on 32> =runon_mark :x-fonﬂbold) : -Seg @

$isa(X, suffix) .
Seoneg{(ﬂnd. X, Deriv)
++Deriv.

(isa is separately defined to test for membership
of a closed class of suffixes.)



Structure assignment. The ++ operator can only
assign arbitrary structures directly to the node in
the tree which is currently under construction. A
more general mechanism for retaining structures
for future use is provided by allowing variables to
be (optionally) associated with grammar rules: in
this way the grammar writer can obtain an ex-
plicit handle on tree fragments, in contrast to the
default situation where each rule implicitly
‘returns’ the structure it constructs to its caller.
The following rule, for example, provides a skel-
eton treatment to the situation exemplified in
Figure 4, where a definition-initial substring is
common to more than one sub-definition:

defs 22> - s $stringp(Seg) :
s\szgostSQQ).

subdefs(X) ==> subdef(X) : opt(subdefsi(X)).

subdef(X) ==> -font(bold) :

sd_lettar : ~-font(roman) :

$concat(X DefString) :
S Batstringy . bl tringns

==> : 3 " "y,
SFItNng 33 1383 | NI e
The defs rule removes the definition-initial string
segment and passes:it on to the repeatedly in-
voked subdefs. This manufactures the complete
definition string by concatenating the common
initial segment, available as an argument
instantiated two levels higher, with the continua-
tion string specific to any given sub-definition.

Tree transformations. The ability to refer, by
name, to fragments of the tree being constructed
by an active grammar rule, allows arbitrary tree
transformations using the complementary opera-
tors -% and +%. They can only be applied to
non-terminal ar rules, and require the ex-
plicit specification of a place-holder variable as a
rule argument; this is bound to the structure
constructed by the rule. The effect of these op-
erators on the tree fragments constructed by the
rules they modify is to prevent their incorporation
into the local tree (in the case of -2), to explicitly
splice it in (in the case of +#), or simply to capture
it (#). The use of this mechanism in conjunction
with the structure naming facility allows both
permanent deletion of nodes, as well as their
practically unconstrained migration between, and
within, different levels of grammar (thus imple-
menting node raising and reordering). It is also

ssible to write a rule which builds no structure
the utility of such rules, in particular for con-
trolling token consumption and junk collection,
is discussed in section J3).

Node-raising is illustrated by the ar frag-
ment below, which might be used to deal wit
certain collocation phenomena. Sometimes dic-
tionaries choose to explain a word in the course
of defining another related word by arbitrarily in-
serting mini-entries in their definitions:

lachory.mal 1zkrimal adj [Wa5] of or concerning tears
of the organ (lachrymal gland/'... ../) of the body that
produces them
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The potentially complex structure associated with
the embedded entry specification does not belon
to the definition string, and should be factore
out as a separate node moved to a higher level of
the tree, or even used to create a new tree entirely.
The rule for parsing the definition fields of an
entry makes a provision for embedded entries; the
structure built as an embedded_entry is bound to
the struc argument in the defn rule. The -z op-
erator prevents the embedded_entry node from
being incorporated as a_daughter to defn; how-
ever, by unification, it begins its migration
‘upwards’ through the tree, till 1t is ‘caught’ by the
entry rule several levels higher and inserted (via
+) in its logically appropriate place.

entry ==> m(é gron : ’p?s : code :

+Zembedded_entry( Embedded).

defn(Struc) ==> -Sagl : $stringp(Segl) :
-zavizaeddgd¥e(\fry:£§gtﬁ) :
~Sag2 : $s¥ringp(s
Scotmt(Se?l Sggz:eg
De Sinng) :
++DefString.

embedded_entry ==> -bra : ........ : -Ket.

Capturing generalizations / execution control.
The expressive power of the system is further en-
hanced by allowing optionality (via the opt oper-
ator), alternations (1) and conditional constructs
in the gre:mar rules; the latter are useful both for
more cor::;-:uct rule specification and to control
backtracking while %arsm%. Rule application
may be constrained by arbitrary tests (invoked,
as Prolog predicates, via a $ operator), and a
string operator is available for samphng local
context. The mechanism of escaping to Prolog,
the motivation for which we discuss below, can
also be invoked when arbitrary manipulation of
lexical data — ranging from e.g. simple string
processing to complex morphological analysis —
1s required during parsing.

Tree structures. Additional control over the
shape of dictionary entry trees is provided b
having two types of non-terminal nodes: we
and strong ones. The difference is in the explicit
presence or absence of nodes, corresponding to
the rule names, in the final tree: a structure trag-
ment manufactured by a weak non-terminal is
effectively ‘spliced’ into the higher level structure,
without an intermediate level of naming. One
common use of such a device is the ‘flattening’
of branching constructions, typically built by re-
cursive rules: the declaration

strong_nonterminals (defs . subdef . nil).

when applied to the sub-definitions fragment
above, would lead to the creation of a group of
sister subdef nodes, immediately dominated by a
defs node. Another use of the distinction be-
tween weak and strong non-terminals is the ef-
fective mapping from typographically identical
entry segments to agpropnately named structure
fragments, with global context driving the name
assignment. Thus, assuming a weak label rule
which captures the label string for further testing,
analysis of the example labels discussed in 3.1
could be achieved as follows (also see Figure 3):



label(X) ==> -hegin{restriction) : X :
: —and

$stri (X} : (restriction).
tran ==> opt ( in | stxlo | dial |
usage_note : word.
style 3=> label(X) : $isa(X, styl_lab).
domain a=> label(X) : $isa(X, domn_lab).
dial ==> label(X) : $isa(¥X, dial_lab).
usage_note ==> label(X).

Such a mechanism captures generalities in
typogrigrzgc conventions employed across any
given dictionary, and yet preserves the distinct
name spaces required for a meaningful ‘unfolding’
of a dictionary entry structure.

5. RANGE OF PHENOMENA TO HANDLE

Below we describe some typical phenomena en-
countered in the dictionaries we have parsed and
discuss their treatment.

5.1 Messy token lists: controlling token
consumption
The unsystematic encoding of font changes be-
fore, as well as after, punctuation marks (com-
mas, semicolons, parentheses) causes blind
tokenization to remove punctuation marks from
the data to which they are visually and concef-
tually attached. As already discussed (see 4.2),
most errors of this nature can be corrected by
retokenization. Similarly, the confusing effects
of another pervasive error, namely the occurrence
of consecuti.c font changes, can be avoided b
having a retokenization rule simply remove
but the last one. In ggnegal, context sensitivity is
handled by (re)adjusting the token list;
retokenization, however, is only sensitive to local
context. Since global context cannot be deter-
mined unequivocally till parsing, the grammar
writer is given complete control over the con-
sumption and addition of tokens as parsing pro-
ceeds from left to right — this allows for
motivated recovery of ellisions, as well as dis-
carding of tokens in local transformations.

For instance, spurious occurrences of a font
marker before a print symbol such as an opening
f)aremhesis, which is not affected by a font dec-
‘ laration, clearly cannot be removed by a
retokenization rule

font(roman) : bra <=> bra.

(The marker may be genuinely closing a font
segment prior to a different entry fragment which
commences with, e.g., a left parenthesis). Instead,
a grammar rule anticipating a bra token within its
scope can readjust the token list using either of:

. ==> ,,, : -~font(roman) : -bra : ins(bra).

==> ... : -font({roman) : string(bra.x),

(The string operator tests for a token list with
bra as its first element.)

5.2 The Peter—1 principle: scoping phenomena

Consider the entry for “Bankrott” in Figure 2.
Translations sharing the label (fig) (“breakdown,
collapse”) are grouped together with commas and
separated from other lists with semicolons. The
restriction (context or label) precedes the list and
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can be said to scope ‘right’ to the next semicolon.
We ilace the right-scoping labels or context un-
der the (semicolon-delimited) tran_group as sister
nodes to the multiple (comma-delimited) tran
nodes (see also the representation of “title” in
Figure 3). Two principles are at work here:
maintaining implicit evidence of synonymy
among terms in the target language responds to
the “do not discard anything” philosophy; placing
common data items as high as possible in the tree
the ‘Peter-minus-1 principle’) is in the spirit of

lickinger et al. (1985), and implements the
notion of placing a terminal node at the highest
position in the tree where its value is valid in
combination with the values at or below its sister
nodes. The latter principle also motivates sets of
rules like

entry ==> ,,, pron ... : homograph ... .
homograph ==> ... pron ... .

used to account for entries in English where the
pronungciation differs for different homographs.

5.3 Tribal memory: rule variables

Some compaction or notational conventions in
dictionaries require a mechanism for a rule to re-
member (part of) its ancestry or know its sister’s
descendants. Consider the problem of determin-
inﬁ the scope of gender or labels immediately
following variants of the headword:

Advokaturbiire nr (Sw), Advokaturskanziei [ (Aus)
lawyer’s office.

Tippfréulein nr (inf), Tippse f -, -0 (pej) typist.
Alchemie (esp Aus) , Alchimie f alchemy.

The first two entries show forms differing, re-
spectively, in dialect and gender, and register and

der. The third illustrates other combinations.

e rule accounting for labels after a variant must
know whether items of like type have already
been found after the headword, since items before
the variant belong to the headword, different
items of identical type following both belong in-
dividually, and all the rest are common to both.
This ‘tribal’ memory is implemented using rule
variables:

entry ==> ... ( t(dial : $(N=dial)) |
(N=nodial) ) :
oo t Optisubhead(N)) ... .
subhead(N) ==> ... opt( $(N=nodial) :
optidial) ) : ... .

In addition to enforcing rule constraints via
unification, rule arguments also act as ‘channels’
for node raising and as a mechanism for control-
ling rule behaviour depending on invocation
context.

This latter need stems from a pervasive phenom-
enon in dictionaries: the notational conventions
for a logical unit within an entry persist across
different contexts, and the sub-grammar for such
a unit should be aware of the environment it is
activated in. Implicit cross-references in LDOCE
are consistently introduced by font(small_caps),
independent of whether the running text is a de-
finition (roman font), example (italic), or an em-



bedded phrase or idiom (bold); by enforcing the
return to the font active before the invocation of
implicit_xrf, we allow the analysis of cross-
references to be shared:

implicit_xrf(X) =2=> -font( in(small s))
e - HE I:’.gfmt()().—ap

df_txt ==> ... : implicit_xrf({roman)
ex_txt ==> ... : implicit_xrfl(italic)
id_txt ==> ... : implicit_xrf(bold)

ese o

DY

5.4 Unpacking, duplication and movement of
structures: node migration

The whole range of phenomena requiring explicit
manipulation of entry fragment trees is handled
by the mechanisms for node raising, reordering,
and deletion. Qur analysis of implicit cross-
references in LDOCE factors them out as sepa-
rate structural units participating in the make-up
of a word sense definition, as well as reconstructs
a ‘text image’ of the definition text, with just the
orthograighy of the cross-reference item ‘spliced

in’ (see Figure 4).

defn z==> def_s (D_String) :
d.f:s:??ng'ﬂ)_st?gng ).

def_segs(Str_1) ==> def nugget( ) :
‘ g‘*-goss.'.?s.":%-“ !

ol
$concat(Seg,Str_0,Str_1).

def_nugget(Ptr) ==> Zimplicit_xrf
(s{implicit_xrf,
s(to, Ptr.nil).Rest)).
def_nugget{Seg) ==> -Seg : $stringp(Seg).

def_string(Def)

The rules build a definition string from any se-
quence of substrings or lexical items used as
cross-references: by invoking the appropriate
def_nugget rule, the simple segments are retained
only for splicing the complete definition text;
cross-reference pointers are extracted from the
structural regresentanon of an implicit cross-
reference; and implicit_xrf nodes are propagated
up to a sister go;:tion to the def_string. The
string image is built incrementally (by string con-
catenation, as the individual def_nuggets are
parsed); ultimately the def_string rule simply
incorporates it into the structure for defn. -
claring defn, def_string and implicit_xrf to be
strong non-terminals ultimately results in a defn
structure similar to the one illustrated in
Figure 4.

Copl)'ipg and lateral migration of common gender
labels in CEG translations, exemplified by “title”
(Figure 3) and ‘“‘abutment” (section 3.2), makes
a different use of the +x operator. To capture the
leftward scope of gender labels, in contrast to
common (right-scoping) context labels, we create,
for each noun translation (tran), a gender node
with an empty value. The comma-delimited tran
nodes are collected by a recursive weak non-
terminal trans rule.

=> ++Def.

trans ==> tran(G) : opt( -cm : trans(G) ).
tran(6) ==> ... wo ces 3
optl -/gender(G) ) : +Zgender(G).

The (conditional) removal of gender in the sec-
ond rule followed by (obligatory) insertion of a
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gender node captures the gender if present and
‘digs a hole’ for it if absent. Unification on the
last iteration of trans fills the holes.

Noun compound fragments, as in “abutment”
can be copied and migrated forward or backward
using the same mechanism. Since we have not
implemented the noun compound 1t?arsmg mech-
anism required for identification of segments to
be copied, we have temporized by naming the
fragments needing partners alt_pfx or alt_sfx.

5.5 Conflated lexical entries: homograph
unpacking

We have implemented a mechanism to allow
creation of additional entries out of a single one,
for example from orthographic, dialect. or
morpholoEca.l variants of the original headword.
Some CGE examples were given in sections 2 and
5.3 above. To handle these, the rules build the
second entry inside the main one and manufac-
ture cross reference information for both main
form and variant, in_anticipation of the imple-
mentation of a splitting mechanism. Examples
of other types appear in both CGE and CEG:

vampire [...] n ({it) Vampir, Blutsauger (old) m; (fig)
Vampir m. ~ bat Vampir, Blutsauger (old) m.

wader [...] n (a) (Orn) Watvogel m. (b) ~s p/ (boots)
Watstiefel pi.

house in cpds Haus-; ~ arrest n Hausarrest n; ~ boat
n Hausboot nr, ~ bound adj ans Haus gefesselt; ....

house: ~hunt vi auf Haussuche sein; they have started
~hunting sie haben angefangen, nach einem Haus zu
suchen; ~hunting n Haussuche 7; ....

The conventions for morphological variants, used
heavﬂn; in e.g. LDOCE and Webster’'s Seventh,
are different and would require a different mech-
anism. We have not yet developed a generalized
rule mechanism for ordering any kind of split;
indeed we do not know if it 1s possible, given the
wide variation in seemingly ad Aoc conventions
for ‘sneaking in’ loﬁ?\fa}ly se%arate entries into re-
lated headword definitions: the case of “lachrymal
gland” in 4.3 is just one instance of this phe-
nomena; below we list some more conceptually
similar, but notationally different, examples,
demonstrating the embedding of homographs in
the vanant, run-on, word-sense and example
fields of LDOCE.

daddy long.legs 'dwedi ‘lonlegz also (/m/) crane fly — n
... a type of flying insect with long legs

ac.rimo.ny ... n bitterness, as of manner or language
— -pious ‘@kri'maunias/ adj: an acrimonious quarrel —
-niously aav

crash! ... v ... 6 infm! aiso gatecrash — to join (a party)
without having been invited ...

folk et.y.mol.o.gy ;. ...... 7 the changing of strange or
foreign words so that they become like quite common
ones: some people say sparrowgrass instead of
ASPARAGUS: that is an example of folk etymology




5.6 Notational promiscuity: selective
tokenization

Often distinctly different data items appear con-
tx%\ous in the same font: the grammar codes of
LDOCE (section 2) are just one example. Such
run-together :EFnents_clearly need their own
tokenization rules, which can only be ag%ied
when they are located during parsing. us,
commas and parentheses take on special meaning
in the string “X(to be)l,7”, indicating, respec-
tively, ellision of data and optionality of phrase.
This is a different interpretation from e.g. alter-
nation (consider the meaning of “adj, noun”) or
the enclosing of italic labels in parentheses (Fig-
ure 3). Submission of a string token to further
tokemization is best done by invoking a special
pu?ose pattern matching module; thus we avoid
global (and blind) tokemzation on common (and
ambiguogl% characters such as punctuation
marks. e functionality required for selective
tokenization is provided by a parse primitive;
below we demonstrate the construction of a list
of sister syncat nodes from a segment like "n,
v> adj", repetitively invoking parse to break a
string into two substrings separated by a comma:

syncats ==> -Seg Sstrin?l&?l H
$parse(Hd." .Rast.nil, Seg) :
insl(}tld.kesﬁnil)si) ’

s H syncats ).
syncat ==> ¢§2§.: Oios:(Sog; partofspeech).

5.7 Parsing failures: junk collection

The systematic irregularity of dictionary data (see
section 3.3) is only one problem when parsing
dictionary entries. Parsing failures in general are
common during ar development; more
specifically, they mught anise due to the format of
an entry segment being beyond (easy) capturing
within the ar formahsm, or requiring non-
trivial external functionality (such as compound
word parsing or noun/verb phrase analysis).
Typically, external procedures operate on a newly
constructed string token which represents a
‘packed’ unruly token list. Alternatively, if no
ormat need be assigned to the input, the gram-
mar should be able to ‘skip over’ the tokens in the
list, collecting them under a ‘junk’ node.

If data loss is not an issue for a specific applica-
tion, there is no need even to collect tokens from
irregular token lists; a simple rule to skip over
USAGE fields might be written as

usage == H
use_field ==; ??gf*m‘il’:f‘éiﬂﬁeld) :
optluse_field).

(Rules like these, building no structure, are espe-
cially convenient when extensive reorganization
of the token list is required — typically in cases
of grammar-driven token reordering or token de-
letion without token consumption.)

In order to achieve skipping over unparseable in-
put without data loss, we have implemented a
collective rule class. The structure built by such
rules the (transitive) concatenation of all the
character strings in daughter segments. Coping
with gross irregularities is achieved by picking up
any number of tokens and ‘packing’ them to-
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%ether. This strategy is illustrated by a grammar
or phrases conjoined with italic ‘or’ in example
sentences and/or their translations (see Figure 3).
The italic conjunction is surrounded by slashes in
the resulting collected string as an audit trail. The
extra argument to conj enforces, following the
strategy outlined in section 5.3, rule application
only 1n the correct font context.

st nonterminals (source . targ . nil).
collectives {conj . nil).

source ==> conj(bold).

targ =2> conj{roman).

conj(X) ==> -font(X) : +

: ~fontlital) :
”ll /l. s ’Ilorll : ”ll/ L1 s
-font(X) : +Seg.

Finally, for the most complex cases of truly ir-
regular input, a mechanism exists for constraxmns
junk collection to operate only as a last resort an,
ol;ﬂy at the point at which parsing can go no fur-
ther.

5.8 Augmenting the power of the formalism:

escape to Prolog
Several of the mechanisms described above, such
as contextual control of token consumption (sec-
tion 5.1), explicit structure handling (5.4), or se-
lective tokenization 55.6), are implemented as

. separate Prolog modules. Invoking such external

functionality from the grammar rules allows the
natural integration of the form- and content-
recovery procedures into the top-down process
of dictionary entry analysis. The utility of this
device should be clear from the examples so far.

Such escape to the underlying implementation
language goes against the grain of recent devel-
opments of declarative grammar formalisms (the
procedural ramifications of, for instance, being
able to call arbitrary LISP functions from the arcs
of an ATN grammar have been discussed at
length: see, for instance, the opening chapters in
Whatelock et al., 1987). However, we feel justi-
fied in augmenting the formalism in such a way,
as we are dealing with input which is different in
nature from, and on occasions possibly more
complex than, straight natural language. Unho-
mogeneous mixtures of heavily formal notations
and annotations in totally free format, inter-
spersed with (occasionally incomplete) fragments
of natural lan%uage phrases, can easily defeat any
attempts at ‘clean’ parsing. Since the DEP sys-
tem is designed to deal with an open-ended set
of dictionanes, it must be able to confront a sim-
ilarly open-ended set of notational conventions
and abbreviatory devices. Furthermore. dealing
in full with some of these notations requires ac-
cess to mechanisms and theories well beyond the
power of any grammar formalism: consider, for
mnstance, what 1s involved in analyzing pronun-
ciation fields in a dictionary, where alternative
pronunciation patterns are marked only for
syllable(s) which differ from the primary pronun-
ciation (as in arch.bish.op: /aifbifsp || ar-/);
where the pronunciation strinﬁ itself 1s not
marked for syllable structure; and where the as-
signment of syllable boundanes is far from trivial
(as 1n fas.cist: /fafast/)!



6. CURRENT STATUS
The run-time environment of DEP includes

grammar debugging utilities, and a number of

options. All facilities have been implemented,

except where noted. We have very detailed

ars for CGE (Barsinbg 98% of the entries),

EG (95%), and LDOCE (93%); less detailed

gram.rnars for Webster's Seventh (98%), and both

alves of the Collins French Dictionary (approxi-
mately 90%).

The Dictionary Entry Parser is an integral part
of a larger system designed to recover dictionary
structure to an arbitrary depth of detail, convert
the resulting trees into LDB records, and make
the data available to end users via a flexible and
powerful lexical query language (LQL). Indeed,
we have built LDB’s for ictionaries we have
parsed; further development of LQL and the ex-
. ploitation of the LDB’s via query for a number
of lexical studies are separate projects.

Finally, we note that, in the light of recent efforts
to develop an interchange standard for (English
mono-lingual) dictionaries (Amsler and Tompa,
1988), DEP acquires additional relevance, since
it can be used, given a suitable annotation of the
grammar rules for the machine-readable source,
to transduce a typesetting tape into an inter-
changeable dictionary source, available to a larger
user community.
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