
A N E A R . L E Y - T Y P E PAR.SING A L G O R . I T H M
FOR. T R . E E A D J O I N I N G G R _ k M M A R . S *

Yves S c h a b e s a n d A r a v i n d K. Jo sh i

Department of Computer and Information Science
University of Pennsylvania

Philadelphia PA 19104-6389 USA
schabes~liac.cis.upenn.edu joshi~cis.upenn.edu

ABSTR.ACT

We will describe an Earley-type parser for Tree
Adjoining Grammars (TAGs). Although a CKY-
type parser for TAGs has been developed earlier
(Vijay-Shanker and :Icshi, 1985), this i s the first
practical parser for TAGs because as is well known
for CFGs, the average behavior of Earley-type
parsers is superior to that of CKY-type parsers.
The core of the algorithm is described. Then we
discuss modifications of the parsing algorithm that
can parse extensions of TAGs such as constraints
on adjunction, substitution, and feature structures
for TAGs. We show how with the use of substi-
tution in TAGs the system is able to parse di-
rectly CFGs and TAGs. The system parses unifi-
cation formalisms that have a CFG skeleton and
also those with a TAG skeleton. Thus it also al-
lows us to embed the essential aspects of PATR-II.

1 I n t r o d u c t i o n

Although formal properties of Tree Adjoining
Grammars (TAGs) have been investigated (Vijay-
Shanker, 1987)--for example, there is an O(ns)-
time CKY-like algorithm for TAGs (Vijay-Shanker
and Joshi, 1985)--so far there has been no at-
tempt to develop an Earley-type parser for TAGs.
This paper presents an Earley parser for TAGs
and discusses modifications to the parsing algo-
r i thm that make it possible to handle extensions
of TAGs such as constraints on adjunction, sub-

*This work i s partially supported by ARO grant
DAA29-84-9-007, DARPA grant N0014-85-K0018, NSF
grants MCS-82-191169 and DCR-84-10413. The authors
would like to express their gratitude to Vijay-Shankc~r for
his helpful comments relating to the core of the algorithm,
Richard Billington and Andrew Chalnlck for their graphi-
cal TAG editor which we integrated in our system and for
their programming advice. Tb,m~ are also due to Anne
Abeill~ and Ellen Hays.

stitution, and feature structure representation for
TAGs.

TAGs were first introduced by Joshi, Levy and
Takahashi (1975) and Joshi (1983). We describe
very briefly the Tree Adjoining Grammar formal-
ism. For more details we refer the reader to Joshi
(1983), Kroch and Joshi (1985) or Vijay-Shanker
(1987).

Def in i t ion 1 (Tree A d j o i n i n g G r a m m a r) :
A TAG is a 5-tuple G -- (VN, VT,S,I,A) where
VN is a finite set of non-terminal symbols, VT is
a finite set of terminals, S is a distinguished non-
terminal, I is a finite set of trees called in i t ia l
t r e e s and A is a finite set of trees called a u x i l i a r y
t rees . The trees in I U A are called e l e m e n t a r y
t rees .

I n i t i a l t r e e s (see left tree in Figure 1) are char-
acterized as follows: internal nodes are labeled by
non-terminals; leaf nodes are labeled by either ter-
minal symbols or the empty string.

S

Li~minill$

x / x \
tofnflnld$ J Ltef rntnll|$

Figure h Schematic initial and auxiliary trees

A u x i l i a r y t r e e s (see right tree in Figure 1)
are characterized as follows: internal nodes are la-
beled by non-terminals; leaf nodes are labeled by
a terminal or by the empty string except for ex-
actly one node (called the foo t node) labeled by
a non-terminal; furthermore the label of the foot
node is the same as the label of the root node.

We now define a composition operation called
ad jo in ing or a d j u n c t i o n which builds a new tree
from an auxiliary tree/9 and a tree ~ (~ is any tree,

2 $ 8

initial, auxiliary or tree derived by adjunction).
The resulting tree is called a der ived tree. Let
c~ be a tree containing a node n labeled by X and
let fl be an auxiliary tree whose root node is also
labeled by X. Then the adjunction of fl to a at
node n will be the tree 7 shown in Figure 2. The
resulting tree, 7, is built as follows:
* The sub-tree of a dominated by n, call it t, is
excised, leaving a copy of n behind.
• The auxiliary tree fl is attached at n and its root
node is identified with n.
• The sub-tree t is attached to the foot node of #
and the root node n of t is identified with the foot
node of ft.

$

%,
(ct} (1~)

$

Figure 2: The mechanism of adjunction

Then define the t r ee set of a TAG G, T(G) to
be the set of all derived trees starting from initial
trees in I. Furthermore, the s t r ing l anguage
generated by a TAG, L(G), is defined to be the
set of all terminal strings of the trees in T(G).

TAGs factor recursion and dependencies by ex-
tending the domain of locality. They offer novel
ways to encode the syntax of natural language
grammars as discussed in Kroch and Joshi (1985)
and Abeill~ (1988).

In 1985, Vijay-Shanker and Joshi introduced a
CKY-like algorithm for TAGs. They therefore es-
tablished O(n 6) time as an upper bound for pars-
ing TAGs. The algorithm was implemented, but
in our opinion the result was more theoretical than
practical for several reasons. First the algorithm
assumes that elementary trees are binary branch-
ing and that there are no empty categories on the
frontiers of the elementary trees. Second, since it
works on nodes that have been isolated from the
tree they belong to, it isolates them from their
domain of locality. However all important linguis-
tic and computational properties of TAGs follow
from this extended domain of locality. And most
importantly, although it runs in O(n 6) worst time,
it also runs in O(n s) best time. As a consequence,
the CKY algorithm is in practice very slow.

Since the average time complexity of Earley's
parser depends on the grammar and in practice

runs much better than its worst time complex-
ity, we decided to try to adapt Earley's parser
for CFGs to TAGs. Earley's algorithm for CFGs
(Earley, 1970, Aho and Ullman, 1973) is a bottom-
up parser which uses top-down information. It
manipulates states of the form A -* a.fl[i] while
using three processors: the predictor, the comple-
tot and the scanner. The algorithm for CFGs runs
in O(IGl2n s) time and in O(IGI n2) space in all
cases, and parses unambiguous grammars in O(n 2)
time (n being the length of the input, IGI the size
of the grammar).

Given a context-free grammar in any form and
an input string al " ' a n , Earley's parser for CFGs
maintains the following invariant:
The state A --* a./3[i] is in states set Skiff

S ::b 6A'r, 6 :ba l " "ai and a ~ ai+l ""ak
The correctness of the algorithm is a corollary of
this invariant.

Finding a Earley-type parser for TAGs was a
difficult task because it was not clear how to
parse TAGs bottom up using top-down informa-
tion while scanning the input string from left to
right. In order to construct an Earley-type parser
for TAGs, we will extend the notions of dotted
rules and states to trees. Anticipating the proof
of correctness and soundness of our algorithm, we
will state an invariant similar to Earley's original
invariant. Then we present the algorithm and its
main extensions.

2 D o t t e d symbols , d o t t e d
trees, tree traversal

The full algorithm is explained in the next section.
This section introduces preliminary concepts that
will be used by the algorithm. We first show how
dotted rules can be extended to trees. Then we
introduce a tree traversal that the algorithm will
mimic in order to scan the input from left to right.

We define a d o t t e d symbo l as a symbol asso-
ciated with a dot above or below and either to the
left or to the right of it. The four positions of the
dot are annotated by In, lb, ra, rb (resp. left above,
left below, right above, right below): laura

lb ~ r b •

Then we define a d o t t e d t ree as a tree with
exactly one dotted symbol.

Given a dotted tree with the dot above and to
the left of the root, we define a tree traversal of a
dotted tree as follows (see Figure 3):

259

START " '~ f END

i 'A,; o

E F G H I

2.1 2.2 2.3 &1 3.2

Figure 3: Example of a tree traversal

• if the dot is at position la of an internal node,
we move the dot down to position lb,
• if the dot is at position lb of an internal node,
we move to position la of its leftmost child,
• if the dot is a t position la of a leaf, we move the
dot to the right to position ra of the leaf,
• if the dot is at position rb of a node, we move
the dot up to position ra of the same node,
• if the dot is at position ra of a node, there are
two cases:

- if the node has a right sibling, then move the
dot to the right sibling at position la.

- if the node does not have a right sibling, then
move the dot to its parent at position rb.

This traversal will enable us to scan the frontier
of an elementary tree from left to right while try-
ing to recognize possible adjunctions between the
above and below positions of the dot.

3 The a lgor i thm

We define an appropriate da ta structure for the
algorithm. We explain how to interpret the struc-
tures tha t the parser produces. Then we describe
the algorithm itself.

3.1 D a t a s t r u c t u r e s

The algorithm uses two basic da ta structures:
state and states set.

A s t a t e s se t S is defined as a set of states. The
states sets will be indexed by an integer: Si with
i E N. The presence of any state in states set i
will mean tha t the input string al...al has been
recognized.

Any tree ~ will be considered as a function from
tree addresses to symbols of the grammar (termi-
nal and non-terminal symbols): if z is a valid ad-
dress in a , then a (z) is the symbol at address z

in the tree a .

D e f i n i t i o n 2 A s t a t e s is defined as a 10-tuple,
[a, dot, side,pos, l, f t , fr , star, t~, b~] where:
• a: is the name of the dot ted tree.
• dot: is the address of the dot in the tree a .
• side: is the side of the symbol the dot is on;

side E {left, right}.
• pos: is the position of the dot;

pos E {above, below}.
• star. is an address in a . The corresponding node
in a is called the starred node.
• ! (left), ft (foot left), f r (foot right), t~ (top left
of starred node), b~ (bo t tom left of starred node)
are indices of positions in the input string ranging
over [O,n], n being the length of the input string.
They will be explained further below.

3.2 Invar iant of the a l g o r i t h m

The states s in a states set Si have a common prop-
erty. The following section describes this invariant
in order to give an intuitive interpretation of what
the algorithm does. This invariant is similar to
Earley's invariant.

Before explaining the main characterization of
the algorithm, we need to define the set of nodes
on which an adjunction is allowed for a given state.

D e f i n i t i o n 3 The set of nodes 7~(s) on which an
adjunction is possible for a given state
s - [a, dot, side, pos, l, f h f i , s t a r , t~,b~], is de-
fined as the union of the following sets of nodes
in a :
• the set of nodes tha t have been traversed on the
left and right sides, i.e., the four positions of the
dot have been traversed;
• the set of nodes on the path from the root node
to the starred node, root node and starred node
included. Note tha t if there is no star this set is
empty.

D e f i n i t i o n 4 (Lef t p a r t o f a d o t t e d t r e e)
The left part of a dot ted tree is the union of the
set of nodes in the tree tha t have been traversed
on the left and right sides and the set of nodes
that have been traversed on the left side only.

We will first give an intuitive interpretation of
the ten components of a state, and then give the
necessary and sufficient conditions for membership
of a state in a states set.

We interpret informally a state
s = [~, dot, side, pos, l, f~, f i , star, t~, b~] in the fol-
lowing way (see Figure 4):

260

"' 7
C ~

^"

Tit!,
al ... all atl+l ah'

Figure 4: Meaning of s E Si

• l is an index in the input string indicating where
the tree derived from a begins.
• ft is an index in the input string corresponding
to the point just before the foot node (if any) in
the tree derived from a.
• f i is an index in the input string corresponding
to the point just after the foot node (if any) in the
tree derived from a.The pair fi and f i will mean
that the foot node subsumes the string al,+,...ay,.
• star:, is the address in a of the deepest node that
subsumes the dot on which an adjunction has been
partially recognized. If there is no adjunction in
the tree a along the path from the root to the dot-
ted node, star is unbound.
• t~ is an index in the input string corresponding
to the point in the tree where the adjunction on
the starred node was m a d e . If star is unbound,
then t~ is also unbound.
• b~ is an index in the input string corresponding
to the point in the tree just before the foot node of
the tree adjoined at the starred node. The pair t~
and b~ will mean that the string as far as the foot
node of the auxiliary tree adjoined at the starred
node matches the substring alT+l...ab7 of the in-
put string. If star is unbound, then b~ is also
unbound.
• s E Si means that the recognized part of the dot-
ted tree a, which is the left part of it, is consistent
with the input string from al to aa and from at to
aI, and from ay. to ai, or from a I to al and from az
to al when the foot node is not in the recognized
part of the tree.

We are now ready to characterize the member-
ship of s in S~:

I n v a r i a n t 1
A state s = [a, dot, side,pos, l, fh fr , star, t~, b~] is
in Si if and only if there is a derived tree from an
initial tree such that (see Figure 4):
1. The tree a is part of the derivation.
2. The tree derived from a in the derivation tree,
~, has adjunctions only on nodes in 7~(s).
3. The part of the tree to the left of the dot in the
tree derived spans the string al ... ai.
4. The tree derived from a, E, has a yield that
starts just after ah ends at ay, before the foot node
(if ay, is defined), and starts after the foot node
just after ay, (if aI, is defined).
5. If there are adjunctions on the path from the
dotted node to the root of a , then star is the ad-
dress of the deepest adjunction on that path and
the auxiliary tree adjoined at that node star has
a yield that starts just after a,~ and stops at its
foot node at ab t.

The proof of this invariant has as corollaries the
soundness, completeness, and therefore the cor-
rectness of the algorithm.

3 . 3 T h e r e c o g n i z e r

The Earley-type recognizer for TAGs follows:

Let G be a TAG.
Let al...a, be the input string.

program recognizer
b e g ~
So = { [a, O, left, above, 0 -]

]a is an initial tree }
For i := 0 to n d o

begin

Process the states of Si, performing one of

the following seven operations on each state

s = [c~, dot, side,pos, l, f , , fr , star, t~, b~]
until no more states can be added:

I. Sc-~er

2. Move dot down

S . M o v e d o t up
4. Left Predictor
5. Left Completor
6. Right Predictor
7. Right Completor

If Si+1 is empty and i < n, return rejection.
en~

If there is in S. a state
s = [a , O , right, above,O , -]
such that ~ is an initial tree
then return acceptance.

end.

261

The algorithm is a general recognizer for TAGs.
Unlike the CKY algorithm, it requires no condi-
tion on the grammar: the trees can be binary or
not, the elementary (initial or auxiliary) trees can
have the empty string as frontier. I t is an off-line
algorithm: it needs to know the length n of the
input string. However we will see later tha t it can
very easily be modified to an on-line algorithm by
the use of an end-marker in the input string.

We now describe one by one the seven processes.
The current states set is presumed to be S / a n d the
state to be processed is

s = [a, dot, side, pos, l, fZ, fr , star, tT].
Only one of the seven processes can be applied
to a given state. The side, the position, and the
address of the dot determine the unique process
that can be applied to the given state.

D e f i n i t i o n 5 (Adjunct (a , address)) Given
a TAG G, define Adjunc t (a , address) as the set
of auxiliary trees tha t can be adjoined in the ele-
mentary tree ct at the node n which has the given
address. In a TAG without any constraints on
adjunction, if n is a non-terminal node, this set
consists of all auxiliary trees tha t are rooted by a
node with same label as the label of n.

3 .3 .1 S c a n n e r

The scanner scans the input string. Suppose that
the dot is to the left of and above a terminal sym-
bol (see Figure 5). Then if the terminal symbol
matches the next input token, the program should
record tha t a new token has been recognized and
try to recognize the rest of the tree.

Therefore "the scanner applies to
s = [a, dot, le f t , above, 1, f t , L , star, t[, b[]

such t h a t ,',(dot) i s a t e r m i n a l symbol and
~(dot) = ~+I or ~(dot) is the empey symbol

• Case 1: a(dot) = ai+l
The s c a n n e r adds
[~, dot, right, above, 1, f , , f i , star, t[, b[] "co
SI+I •

• Case 2: a(dot) =

The s c a n n e r adds
[tr, dot, right, above, l, f t , fr , star, t[, b[] t o
S,.

3.3.2 - M o v e D o t D o w n

Move dot down (See Figure 6), moves the dot
down, f rom position lb of the dot ted node to posi-

C~e 1:a = a i ÷ ~

[1£1/T, tl*~l*]
C ~ l e 2." i m E

~toSi+l
[1~1~,d',b1"]

Bjl~,tl'.bl']

Figure 5: Scanner

[l,fl,fr,tl*,bi*] [l.flJr,tl*~ol*]

Figure 6: Move dot down

tion la of its leftmost child.

It t h e r e f o r e applies ¢o
s = [~, d~ , l e f t , below, l, ~ , f , , star, t[, b[]

s u c h t h a t ~ h e n o d e w h e r e t h e d o~ i s has a

l e f ~ m o s t c h i l d a t a d d r e s s u .

I t adds [a, u, l e f t , above, I, ~ , re, star, t[, b~] t o
S,.

3.3.3 M o v e D o t U p

Move dot up (See Figure 7), moves the dot "up",
f rom position ra of the dot ted node to position la
of its right sibling if it has a right sibling, other-
wise to position rb of its parent.

It therefore applies to
s = [a, dot, ~gh t , above, l, ~ , f i , star, t[, b[]

such t h a t t h e node on which t h e do t i s
has a p a r e n t n o d e .

• Case 1: the node where the dot is
has a right sibling at address r.
I t adds [ct, r, le f t , above, l, fz, fr , star, t~ , b~]
~o S,.

• Case 2: t h e node where t h e dot i s i s
~he rightmost child of the parent

node p .

It adds
[~, p, right, below, l, f , , re, star, t~, bT] to S , .

262

[l~lJr, tl*,bl*]

a d d ~ m S /

[l,fl,f~',tl *,bl*]

Clme 92 X ii thv r loh l rn~ child

[l.fl,fi ' , tl ' ,bl '] [l.fl,fr, t l*.bl ']

Figure 7: Move dot up

3.3.4 Lef t P r e d i c t o r

Suppose tha t there is a dot to the left of and above
a non-terminal symbol A (see Figure 8). Then the
algorithm takes two paths in parallel: it makes a
prediction of adjunction on the node labeled by
A and tries to recognize the adjunction (stepl)
and it also considers the case where no adjunction
has been done (step2). These operations are per-
formed by the Lef t P r e d i c t o r .

It applies t o
s = [~, dot, le f t , above, 1, h , f r , aar , t~, b~]

such that ~(dot) is a non-terminal.

• Step I. It adds the states

(LS,0,1eft , above, i -]
[B E A d j u n a (~ , dot) } t o Si .

• S t e p 2.

- - Case 1: t h e do t is n o t on t h e
f o o t node .
I t adds t h e s t a t e
[~, dot, le f t , below, 1, ~ , f i , star, t~ , b~]
t o S,.

- - Case 2: t h e do t i s on t h e f o o t
n o d e . N e c e s s a r i l y , s i n c e t h e
f o o t node has n o t been a l r e a d y
t r a v e r s e d , ~ and fr are
unspecified.
It adds the state
[~, dot, le f t , below, l, i, - , star, t~ , b~] t o
S,.

3.3.5 Lef t C o m p l e t e r

Suppose that the auxiliary that we left-predicted
has been recognized as far as its foot (see Fig-
ure 9). Then the algorithm should try to recognize

[I. n. fr. tl.. bl.] ~, (i.-.-.-.-] J

[1, fl, fr, tl" ,bl*] [1, ft. fr, tl", bl*]

£---'A
[l.-.-.tl-~l.] [ki.-.tt.~l']

Figure 8: Left Predictor

[r , f l ' , f r ' , t l * ' , b l* ']

[l . i .- . t l*,bl*] [r , f l ' , f r ' , l . i]

Figure 9: Left completer

what was pushed under the foot node. (A star in
the original tree will signal tha t an adjunction has
been made and half recognized.) This operation
is performed by the L e f t C o m p l e t e r .

It applies to

s = [a, dot, le f t , below, l, i, - , star, t~, b~]
such t h a t t h e do t i s on t h e f o o t node.
For a l l

I I I t I ,n St s = L 8, dot , l e f t , above, l , f ; , f~, s t a r , t t , bt] i n
Sz such t h a t a E Adjunct(B, dot')

Case I: dot' is on the foot node of

B. Then necessary, f[and f~ are
unbound.
I t adds t h e s t a t e
LS, dot ' , le f t , below, l ' , i , - , d o t ' , l , ~ to S , .

Case 2: dot ~ i s no t on t h e f o o t node
o f B.
I t adds t h e s t a t e
~ , dot', le f t , below, l', f[, f : , dot', l, ~ to S, .

263

Case l

[tl*,bl*,-,tl*',bl*']

~ * ~ 1 " 1
/--.--. A .=..=~
[tI* ,bl" ,l,tl*',bl*']

Case 2

aldd to~Z.

p.~.tl*.bl*]

Figure I0: Right Predictor

3 .3 .6 R i g h t P r e d i c t o r

Suppose that there is a dot to the right of and be-
low a node A (see Figure I0). If there has been
an adjunction made on A (case I), the program
should try to recognize the right part of the aux-
iliary tree adjoined at A. However if there was no
adjunction on A (case 2), then the dot should be
moved up. Note that the star will tell us if an ad-
junction has been made or not. These operations
are performed by the Right predictor.

The r i g h t p r e d i c t o r a p p l i e s t o
s = [a, dot, right, below, l, fz, f r , star, tT, bT]

• Case 1: dot = star
For all s t a t e s

, t $;
s = [/3, dot', le f t , below, t~, bT, - , s tar ~-, t t , b t].
in Sb 7 such t h a t ~ ¢ Adjunc t (a , dot) ,
i t adds t h e s t a t e
L O, dot', right, below,tT, * " *' *' bz , , , s t a r ' , t z ,b I] t o
s,.

• Case 2: dot ~ star
It adds t h e s t a t e
[a, dot, right, above, l, f l , f r , star, tT , bT] to
S,.

3.3.7 R i g h t Completor

Suppose that the dot is to the right ot and above
the root of an auxiliary tree (see Figure 11). Then
the adjunction has been totally recognized and the
program should try to recognize the rest of the tree
in which the auxiliary tree has been adjoined. This
operation is performed by the Right Completor.

[l',fl',fr',tl *'.bl *']

[I,fl,t~e,-I

~ a d d t d to$i

[l',.~',~'r',tl*'.bl *']

Figure 11: Right Completor

It applies to

s = [a, 0, right, above, l, fz, L, -, -, -]
For all states
s! = [/3, dot', left, above, l', f[, fir, star' , t~', b~']
inS,
and for all states
LS, dot',right, below, t',T,,~,dot',Z, fd in aS,

such that a E Adjunct(E, dot')
I t adds
Lff , dot', right, above, l',-~l , 7~r, star' , t; ' , 6;'] to
S,.
Nh ere 7 = f , i f f i s bound in s t a t e s t ,
and f can have any v a l u e , i f f i s unbound
i n s t a t e e l .

3.4 Handl ing constraints on adjunc-
t ion

In a TAG, one can, for each node of an elementary
tree, specify one of the following three constraints
on adjunction (Joshi, 1987):
• Null adjunction (NA): disallow any adjunc-
tion on the given node.
• Obligatory adjunction (OA): an auxiliary
tree must be adjoined on the given node.
• Selective adjunction (SA(T)): a set T of aux-
iliary trees that can be adjoined on the given node
is specified.

The algorithm can be very easily modified to
handle those constraints. First, the function
Adjunct (a , address) must be modified as follows:
• Adjunct (a , address) = ~, if there is N A on the
node.
• A ~ u n c t (a , address) as previously defined, if
there is O A on the node.
• Adjunc t (a , address) = T, if there is S A (T) on
the node.
Second, step 2 of the left predictor must be done

264

S~pl

0

s °
, . . i • ' s " d 3

I ~ o 2.3

(p)

Figure 12: L = {a'~bnec"~ln >__ O}

make ma,~ tt~t no ,.,'~
i~ po mblo on tl~ root o f ~n inifi"~ ~m~

S.

I / \ - . / ' \

$ Z

Figure 13: Use of end marker in TAG

only if there is no obligatory adjunction on the
node at address dot in the tree a.

3.5 An example

We give one example that illustrates how the rec-
ognizer works. The grammar used for the exam-
ple generates the language L = {a"b"ecndn]n >
0}. The input string given to the recognizer
is: aabbeccdd. The grammar is shown in Fig-
ure 12. The states sets are shown in Figure 14.
Next to each state we have printed in paren-
theses the name of the processor that was ap-
plied to the state. The input is recognized since
[a, O, right, above, 0 -] is in states set
sg.

3.6 Remarks

Use of move dot up and move dot down
Move dot down and move dot up can be eliminated
in the algorithm by merging the original dot and
the position it is moved to. However for explana-
tory purposes we chose to use these two processors
in this paper.

Off-llne vs on-line
The algorithm given is an off-line recognizer. It
can be very easily modified to work on line by
adding an end marker to all initial trees in the
grammar (see Figure 13).

Extracting a parse
The algorithm that we describe in section 3.3 is a
recognizer. However, if we include pointers from
a state to the other states which caused it to he

placed in the states set, the recognizer can be mod-
ified to produce all parses of the input string.

3.7 Correctness

The correctness of the parser has been proven and
is fully reported in Schahes and Joshi (1988). It
consists of the proof of the invariant given in sec-
tion 3.2. Our proof is similar in its concept to the
proof of the correctness of Earley's parser given in
Aho and Ullman 1973. The "ofily if" part of the
invariant is proved by induction on the number of
states that have been added so far to all states sets.
The "if" part is'proved by induction on a defined
rank of a state. The soundness (the algorithm rec-
oguizes only valid strings) and the completeness (if
a string is valid, then the algorithm will recognize
it) are corollaries of this invariant.

3.8 Implementation

The parser has been implemented on Symbolics
Lisp machines in Flavors. More details of the
actual implementation can be found in Schabes
mad Joshi (1988). The current implementation
has an O(IGlZn 9) worst case time complexity and
O(IGln 6) worst case space complexity. We have
not as yet been able to reduce the worst case time
complexity to O([G[Zn6). We are currently at-
tempting to reduce this bound. However, the main
purpose of constructing an Parley-type parser is to
improve the average complexity, which is crucial in
practice.

4 E x t e n s i o n s

We describe how substitution is defined in a TAG.
We discuss the consequences of introducing substi-
tution in TAGs. Then we show how substitution
can be parsed. We extend the parser to deal with
feature structures for TAGs. Finally the relation-
ship with PATR-II is discussed.

4.1 Introducing substitution in
TAGs

TAGs use adjunction as their basic composition
operation. It is well known that Tree Adjoining
Languages (TALs) are mildly context-sensitive.
TALs properly contain context-free languages. It
is also possible to encode a context-free grammar
with auxiliary trees using adjunction only. How-
ever, although the languages correspond, the pos-
sible encoding does not reflect directly the original

265

So

.$1

$2

$a

S4

S5

S6

$7

ss

s9

[a, O, le f t , above, 0 -] (left predictor)
[¢~, O, le f t , below, O, - , - , - , - , -~ (move dot down)
[~! Zp le f t , ahoy% 01 - - , - - r - - , - - , - - 2 (scanner)

1, right, abo~e, 0, --, - , --, --, -] (move dot up)
2, le f t , below, 0, --, --, --, --, -] (move dot down)

[~, 2.1, left, above, O, - , - , - , - , -] (scanner)
z, l e / t t . b o v e , Z, , , , ,-] ~sc~ner)

l e f t ° h a . 2 - - , - - - i (l e f t
[/~, 2, lef t , below, 1 -] (move dot down)

O, left, below, 2, --, --, - , --, --] (move dot down)
[~', 1, right, above, 1, - t --1--, --,--] ~move dot up)
[0, 2.2, le f t , below, 1, 3, - - , - - , - - , - -] ~left completor)
[/~, 2.1, right, above, I, --, --, --, --, --] (move dot up)

[~, O, le f t , above, 0, - -] (left predictor)
f/J, O, le f t , below, 0, - , - , - , - , -] (move dot down) -] ~scanner) [ct, 11 le~t l aboo% 0 r -1 --I --P - , (left predictor) ,[~, 2, l e f t , above, O, - , - , - , - ,
[13, O, le f t , above, 1, - , - , - , - , -] (left predictor)
[0, O, left, below, 1, - , --, --, - , --] (move dot down)

[/~, 2.1, le f t , aboue, 1, --, --, - , - , -] (scanner)
[B, 1, le f t , above, 2, - , --, --, - , --] (scanner)
[/~, 2, lef t , above, 1, --, - , --, --, -] (left predictor)

[0, 2, le f t , below, 0, - , - , 2, 1,3] (move dot down)
[~, 2.2, le f t , above, 1, - , - , - , - , -] (left predictor)

[p, 2.1, le/ t , abate, O, - , - , 211, a I (scanne 0
[o, 1, lef t , above, O, --, --, O, O, 4] (manner)
[~, 2.2, f e l l abo~e, O, - , - , 2, 1, 3] (left predictor)
[~, 2.2, le) ' t , below, O, 4, --, 2, 1,3] (le f t completor)
[0, 2.3, l e f t , abooe, O, 4, 5, 2 ,1 ,3] (scanner)
[~, 2.2, right, above, 0, 4, 5, 2, 1, 3] (move dot up)
[a~ 1, right, above t O r --t --w 01014] (move dot up)
[0, 2.2, right, above, 1, 3, 6, - , - , -] (move dot up)
[~, 2.3, le f t , above, 1, 3, 6, --, - , -] (scanner)
[~, 2.2, right, below, 1~ 3~ 6~ -~ - r -] (right predictor r case 2)
[0, 2, right, below, 1,3, 6 , - - , - , - -] (right predictor, case 2)
B I 3, l e p , above, 1,3, 6, - I --I--1 (scanner)
~, O, r ight, below, I , 3, 6, --, --, -] (right predictor, case 2)

[~, 3, le f t , above, 0, 4, 5, --, --, --] (scanner)
(move dot up) [~1 21 f ish '1 oh°re10, 41 51 --, --I -- (right predictor, case 2) [~, O, right, below, O, 4, 5, - , - ,

[~, O, rlqht l above, O, 4, 5, --, --, --] (right completor)

[a, 0, lef t , beio~, 0, --, --, 0, 0, 4] (move dot down)
[0, 2.1, right, above, 0, --, --, 2, 1,3] (move dot up)

[[3, 2.2, right, below, 0, 4, 5, 2,1,3] (right predictor, case 2)
[a, 0, right, below, O, - , - , O, O, 4] (right predictor, case 1)

[0, 2.8, right, above, 0, 4, 5, 2, 1, 3] (move dot up)
LS, 2, right, below, O, 4, 5, 2,1,3] (right predictor, case 1)

[0, 2, right, above, 1,3, 6, --, --, --] (move dot up)

I B r 2.31 right I above, 113, 61 --I --~--] (move dot up)
/3, O, right, above, I, 3, 6, --, --, --] (right completor)

[0, 3, right, abo~e, 1,3, 6, --, --, --] (move dot up)

[o, O, right, above, O, --, --, --, - , -] (end test)
[~, 3, r i g h t , above, O, 4, 5, - , --, --] (move dot up)

Figure 14: States sets for the input aabbeccdd

/\
Figure 15: Mechanism of substitution

context free grammar since this encoding uses ad-
junction.

Substitution is the basic operation used in CFG.
A CFG can be viewed as a tree rewriting system.
It uses substitution as basic operation and it con-
sists of a set of one-level trees. Substitution is a
less powerful operation than adjunction.

However, recent linguistic work in TAG gram-
mar development (Abeilld, 1988) showed the need
for substitution in TAGs as an additional opera-
tion for obtaining appropriate structural descrip-
tions in certain cases such as verbs taking two sen-
tential arguments (e.g. "John equates solving this
problem with doing the impossible") or compound
categories. It has also been shown to be useful
for lexical insertion (Schabes, Abeind and Joshi,
1988). It should be emphasized that the intro-
duction of substitution in TAGs does not increase
their generative capacity. Neither is it a step back
from the original idea of TAGs.

D e f i n i t i o n 6 (S u b s t i t u t i o n in T A G) We de-

$ VP NP

Figure 16: Writing a CFG in TAG

fine substitution in TAGs to take place on specified
nodes on the frontiers of elementary trees. When
a node is marked to be substituted, no adjunction
can take place on that node. Furthermore, sub-
stitution is always mandatory. Only trees derived
from initial trees rooted by a node of the same la-
bel can be substituted on a substitution node. The
resulting tree is obtained by replacing the node by
the tree derived from the initial tree. Substitution
is illustrated in Figure 15.

We conventionally mark substitution nodes by
a down arrow (1).

As a consequence, we can now encode directly
a CFG in a TAG with substitution. The resulting
TAG has only one-level initial trees and uses only
substitution. An example is shown in Figure 16.

4.2 Parsing subst i tu t ion

The parser can be extended very easily to handle
substitution. We use Earley's original predictor
and completor to handle substitution.

266

[I, f l , f t . fl*, bl*,subs~?] ~ . [i,-.-,-.-.W~e]

Figure 17: Substitution Predictor

The left predictor is restricted to apply to nodes
to which adjunction can be applied.

A flag subst? is added to the states. When set,
it indicates that the tree (initial) has been pre-
dicted for substitution. We use the index ! (as
in Earley's original parser) to know where it has
been predicted for substitution. When the initial
tree that has been predicted for substitution has
been totally recognized, we complete the state as
Earley's original parser does.

A s t a t e s is now an l l - t u p l e
• [~, dot, side,poe, l, f l , fr , star, t~, b~, subst?]:

where subst? is a boolean that indicates whether
the tree has been predicted for substitution. The
other components have not been changed.

We add two more processors to the parser.

S u b s t i t u t i o n P r e d i c t o r

Suppose that there is a dot to the left of and above
a non-terminal symbol on the frontier A that is
marked for substitution (see Figure 17). Then the
algorithm predicts for substitution all initial trees
rooted by A and tries to recognize the initial tree.
This operation is performed by the s u b s t i t u t i o n
p r e d i c t o r .

It applies t o
s - [~, dot, le f t , above, l, f l, f r , star, t~ i b~ , subst?]
such that a(dot) is a non-terminal on the

frontier of ~ .hieh is marked for

subst itut ion:

It adds the states

{[fl, O, le f t , above, i, - , - , - , - , - , true]
]/~ i s an L n i t i a l tree s . t . # (O) -- or(dot)}

to Si.

S u b s t i t u t i o n C o m p l e t o r

Suppose that the initial tree that we predicted for
substitution has been recognized (see Figure 18).
Then the algorithm should try to recognize the
rest of the tree in which we predicted a substitu-
tion. This operation is performed by the subs t i -
t u t i o n c o m p l e t o r .

[i'.fl',fr',tl*'.bl*',subst?']

_ .

[I.fl,fr.-.-,=uel [r,fl',fr',tl*',bl *',subst?']

Figure 18: Substitution completor

It applies to

s=[a,O, rioht,above, l, , , , , ,true]

For all states s =

[/3, dot', le f t , a~-v~o e,- l',jt,jr,star'," " t~', b~', subst?']
i n Sa s . t . #(dot') i s marked f o r
s u b s t i t u t i o n and l~(dot) = a(O).
I t adds the following stats to Si:
[/3, dot', right, above, 1', f[, f~, star' , t~' , b~ ', subst?'] .

C o m p l e x i t y

The introduction of the substitution predictor and
the substitution completor does not increase the
complexity of the overall TAG parser.

I f we encode a CFG with substitution in TAG,
the parser behaves in O(IGl~n s) worst case time
and O([GIn 2) worst case space like Earley's orig-
inal parser. This comes from the fact that when
there are no auxiliary trees and when only substi-
tution is used, the indices f t , f i , t~ ,b~ of a state
will never be set. The algorithm will use only the
substitution predictor and the substitution eom-
pletor. Thus, it behaves exactly like Earley's orig-
inal parser on CFGs.

4.3 Pars ing f ea ture s t ruc tures for
T A G s

The definition of feature structures for TAGs and
their semantics was proposed by Vijay-Shanker
(1987) and Vijay-Shanker and Joshi (1988). We
first explain briefly how they work in TAGs and
show how we have implemented them. We in-
troduce in a TAG framework a language simi-
lar to PATR-II which was investigated by Shieber
(Shieber, 1984 and 1986). We then show how one
can embed the essential aspects of PATR-II in this
system.

267

t br t U u "

m

br

f t f

..- I, Ubr

Figure 19: Updating of features

A
NP Vp (a)

I / \
PRO V PP

/ \
to go to the movies

S.top::gtsnsed> = +
S,bottom::<tensed> = V.boRom::<tensed>
V.bottom::<tensed> = -

F e a t u r e s t r u c t u r e s in T A G s

As defined by Vijay-Shanker (1987) and Vijay-
Shanker and 30shi(1988), to each adjunction node
in an elementary tree two feature structures are at-
tached: a top and a bottom feature structure. The
top feature corresponds to a top view in the tree
from the node. The bottom feature corresponds
to the bottom view. When the derivation is com-
pleted, the top and bot tom features of all nodes
are unified. If the top and bottom features of a
node do not unify, then a tree must be adjoined
at that node.

This definition can be trivially extended to sub-
stitution nodes. To each substitution node we at-
tach two identical feature structures (top and bot-
tom).

The updating of features in case of adjunction
is shown in Figure 19.

Uni f ica t ion equa t ions

As in PATR-II, we express with unification equa-
tions dependencies between DAGs in an elemen-
tary tree. The system therefore consists of a TAG
and a set of unification equations on the DAGs
associated with nodes in elementary trees.

An example of the use of unification equations
in TAGs is given in Figure 20. Note that the top
and bottom features of node S in (~ can not be uni-
fied. This forces an adjunction to be performed on
S. Thus, the following sentence is not accepted:

* t o go 1;o 1;he m o v i e s .
The auxillm-y tree 81 can be adjoined at S in or:

J o h n wan1;s 1;o go 1;o 1;he m o v i e s .
But since the bottom feature of S has tensed value
- in c~ and since the bottom feature of S has
tensed value -4- in/32, /31 can not be adjoined at
node S in a:

"Bob 1;hinks 1;o g o I;o 1;he movies.
But/~2 can be adjoined in 81, which itself can be
adjoined in a:
Bob th inks John wan1;s 1;o go I;o 1;he

$

A
NP VP ([~1)

A / \
John V S 1

I
wltnu

S.top: :<tensed> . +
S.bottorn::<lensed=, . V .bo l l om: :< tensed>
S _ l . b o n o m : : < t e n s e d > . , V . b o t t o m : : < t e n s e d - S l >
V .bo t l om : :< tensed .S l> ,. -
V.boRom::<tensed> . +

S

A
NP VP QB2)

A / \
Bob V S I

l
~ k s

S.top::<tensed> . +
S.bot tom::<tensed> . V.bo t lom: :< tensed>
S 1 .bot tom: :< lensed> . V . b o t t o m : : < l e n s e d - S l >
V .bonom: :< tensed -S l> . +
V.bonom: :< lensed> ,. ÷

Figure 20: Example of unification equations

m o v i e s .

We refer the reader to Abeill6 (1988) and to
Schabes, Abeill6 and 3oshi (1988) for further ex-
planation of the use of unification equations and
substitution in TAGs.

268

Pa r s ing and the re la t ionsh ip wi th P A T r t - I I

By adding to each state the set of DAGs cor-
responding to the top and bottom features of
each node, and by making sure that the unifica-
tion equations are satisfied, we have extended the
parser to parse TAGs with feature structures.

Since we introduced substitution and since we
are able to encode a CFG directly, the system
has the main functionalities of PATtt-II. The sys-
tem parses unification formalisms that have a CFG
skeleton and a TAG skeleton.

5 C o n c l u s i o n

We described an Earley-type parser for TAGs. We
extended it to deal with substitution and feature
structures for TAGs. By doing this, we have built
a system that parses unification formalisms that
have a CFG skeleton and also those that have a
TAG skeleton. The system is being used for Tree
Adjoining Grammar development (AbeiU~, 1988).
This work has led us to a new general parsing
strategy (Schabes, Abeill~ and Joshi, 1988) which
allows us to construct a two-stage parser. In the
first stage a subset of the elementary trees is ex-
tracted and in the second stage the sentence is
parsed with respect to this subset. This strategy
significantly improves performance, especially as
the grammar size increases.

R e f e r e n c e s

Abeill~, Anne, 1988. A Computational Grammar for
French in TAG. In Proceeding of the 12 th International
Conference on Computational Linguistics.

Aho, A. V. and Ullman, J. D., 1973. Theory of
Parsing, Translation and Compiling. Vol I: Parsing.
Prentice-Hall, Englewood Cliffs, NJ.

Earley, J., 1970. An Efficient Context-Free Parsing
Algorithm. Commun. ACM 13(2):94-102.

Joshi, Aravind K., 1985. How Much Context-
Sensitivity is Necessary for Characterizing Structural
Descriptions - - Tree Adjoining Grammars. In Dowry,
D.; Karttunen, L.; and Zwicky, A. (editors), Natural
Language Process ing- Theoretical, Computational
and Psychological Perspectives. Cambridge University
Press, New York. Originally presented in 1983.

2oshi, Aravind K., 1987. An Introduction to Tree Ad-
joining Grammars. In Manaster-Ramer, A. (editor),
Mathematics of Language. John Benjamins, Amster-
dam.

Joshi, A. K.; Levy, L. S.; and Takahashi, M., 1975.
T~ee Adjunct GraJnmars. J. Comput. Syst. Sci. 10(1).

Kroch, A. and Joshi, A. K., 1985. Linguistic Relevance
of Tree Adjoining Grammars. Technical Report MS-
CIS-85-18, Department of Computer and Information
Science, University of Pennsylvaain.

Schabes, Yves and Joahi, Aravind K., 1988. An
Earley.type Parser for Tree Adjoining Grammars.
Technical Report, Department of Computer and In-
formation Science, University of Pennsylvania.

Schabes, Yves; Abeill~, Anne; and Joshi, Aravind K,
1988. New Parsing Strategies for Tree Adjoining
Grammars. In Proceedings of the 12 th International
Conference on Computational Linguistics.

Shieber, Stuart M., 1984. The Design of a Computer
Language for Linguistic Information. In 22 ~ Meet-
ing of the Association for Computational Linguistics,
pages 362-366.

Shieber, Stuart M., 1986. An Introduction to Unifi-
cation.Based Approaches to Grammar. Center for the
Study of Language and Information, Stanford, cA.

Vijay-Shanker, K., 1987. A Study of Tree Adjoining
Grammars. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania.

Vijay-Shanker, K. and Joshi, A. K., 1985. Some Com-
putational Properties of Tree Adjoining Grammars.
In 23 rd Meeting of the Association for Computational
Linguistics, pages 82-93.

Vijay-Shanker, K. and Joshi, A.K., 1988. Feature
Structure Based Tree Adjoining Grammars. In Pro-
ceedings of the 12 ta International Conference on Com-
putational Linguistic&

269

