
Graph-structured Stack and Natural Language Parsing
Masaru Tomlta

Center for Machine Translation
and

Computer Science Department
Camegie-MeUon University

Pittsburgh, PA 15213

Abstract

A general device for handling nondeterminism in stack
operations is described. The device, called a
Graph-structured Stack, can eliminate duplication of
operations throughout the nondeterministic processes.
This paper then applies the graph-structured stack to
various natural language parsing methods, including
ATN, LR parsing, categodal grammar and principle-
based parsing. The relationship between the graph-
structured stack and a chart in chart parsing is also
discussed.

1. Introduction
A stack plays an important role in natural language

parsing. It is the stack which gives a parser context-
free (rather than regular) power by permitting
recursions. Most parsing systems make explicit use
of the stack. Augmented Transition Network (ATN)
[10] employs a stack for keeping track of retum

addresses when it visits a sub-network. Shift-reduce
parsing uses a stack as a pdmary device; sentences
are parsed only by pushing an element onto the stack
or by reducing t h e stack in accordance with
grammatical rules. Implementation of pdnciple-based
parsing [9, 1, 4] and categodal grammar [2] also often
requires a stack for stodng partial parses already builL
Those parsing systems usually introduce backtracking
or pseudo parallelism to handle nondeterminism,
taking exponential time in the worst case.

This paper describes a general device, a
graph-structured stack. The graph-structured stack
was originally introduced in Tomita's generalized LR
parsing algorithm [7, 8]. This paper applies the graph-
structured stack to various other parsing methods.
Using the graph-structured stack, a system is
guaranteed not to replicate the same work and can

run in polynomial time. This is true for all of the
parsing systems mentioned above; ATN, shift-reduce
parsing, principle-based parsing, and perhaps any
other parsing systems which employ a stack.

The next section describes the graph-structure
stack itself. Sections 3, 4, 5 and 6 then describe the
use of the graph-structured stack in shift-reduce LR
parsing, ATN, Categorlal Grammars, and principle-
based parsing, respectively. Section 7 discusses the
relationship between the graph-structured stack and
chart [5], demonstrating that chart parsing may be
viewed as a special case of shift-reduce parsing with
a graph-structured stack.

2. The Graph-structured Stack
In this section, we describe three key notions of the

graph-structured stack: splitting, combining and local
ambiguity packing.

• 2.1. SpUtt lng
When a stack must be reduced (or popped) in more

than one way, the top of the stack is split. Suppose
that the stack is in the following state. The left-most
element, A, is the bottom of the stack, and the right-
most element, E, is the top of the stack. In a graph-
structured stack, there can be more than one top,
whereas there can be only one bottom.

, - - - n - - - C - - - D - - - Z

Suppose that the stack must be reduced in the
following three different ways.

F < - - D]~
G < - - D IB
H < - - C D 1

Then after the three reduce actions, the stack looks

249

like:

A - - - B l o m

\
\

\

- - i F

/
/

C G

l f l

2.2. Combin ing
When an element needs to be shifted (pushed)

onto two or more tops of the stack, it is done only
once by combining the tops of the stack. For
example, if "1" is to be shifted to F, G and H in the
above example, then the stack will look like:

/ - - r - - \
/ \

/ \
A --- B --- C G Z

\ /
\ /

\ a - - /

2.3. Local Ambigu i ty Packing
If two or more branches of the stack turned out to

be Identical, then they represent local ambiguity; the
Identical state of stack has been obtained in two or
more different ways. They are merged and treated as
a single branch. Suppose we have two rules:

J<--F Z
J<-- G Z

After applying these two rules to the example above,
the stack will look like:

A - - - a c - - - o
\
\
\-- x --- z

The branch of the stack, "A-B-C-J', has been
obtained in two ways, but they are merged and only
one is shown in the stack.

3. Graph-structured Stack and
Shift-reduce LR Parsing
In shift-reduce parsing, an input sentence is parsed

from left to dght. The parser has a stack, and there
are two basic operations (actions) on the stack: shift
and reduce. The shift action pushes the next word in

the input sentence onto the top of the stack. The
reduce action reduces top elements of the stack
according to a context-free phrase structure rule in the
grammar.

One of the most efficient shift-reduce parsing
algorithms is LR parsing. The LR parsing algodthm
pre-compiles a grammar into a parsing table; at run
time, shift and reduce actions operating on the stack
are deterministically guided by the parsing table. No
backtracking or search is involved, and the algodthm
runs in linear time. This standard LR parsing
algorithm, however, can deal with only a small subset
of context-free grammars called LR grammars, which
are often sufficient for programming languages but
cleady not for natural languages. If, for example, a
grammar is ambiguous, then its LR table would have
multiple entries, and hence deterministic parsing
would no longer be possible.

Figures 3-1 and 3-2 show an example of a non-LR
grammar and its LR table. Grammar symbols starting
with " represent pre-terminals. Entdes "sh n" in the
actton table (the left part of the table) Indicate that the
action is to "shift one word from input buffer onto the
stack, and go to state n'. Entries "re n" Indicate that
the action is to "reduce constituents on the stack using
rule n'. The entry "acc" stands for the action "accept',
and blank spaces represent "error'. The goto table
(the dght part of the table) decides to which state the
parser .should g o after a reduce action. The LR
parsing algorithm pushes state numbers (as well as
constituents) onto the stack; the state number on the
top of the stack Indicates the current state. The exact
definition and operation of the LR parser can be found
in Aho and UIIman [3].

We can see that there are two multiple entries in
the action table; on the rows of state 11 and 12 at the
column labeled "prep'. Roughly speaking, this is the
situation where the parser encounters a preposition of
a PP right after a NP. If this PP does not modify the
NP, then the parser can go ahead to reduce the NP to
a higher nonterminal such as PP or VP, using rule 6
or 7, respectively (re6 and re7 in the multiple entries).
If, on the other hand, the PP does modify the NP, then

2 5 0

(1) S --> NP VP
(2) S --> S PP
(3) NP --> *n
(4) NP --> *det *n
(5) NP --> NP PP
(6) PP --> *prep NP
(7) VP --> *v NP

Figure 3-1: An Example Ambiguous Grammar

State *det *n *v *prep $ NP PP VP S

0
1
2
3
4
5
6

8
9

I0
11
12

sh3 sh4

shl0

sh3 sh4
sh3 sh4

sh7

re3

2 1
sh6 acc 5
sh6 9 8

re3 re3
re2 re2

11
12

re1 re1
re5 re5 re5
re4 re4 re4
re6 re6, sh6 re6 9

re7,sh6 re7 9

Figure 3-2: LR Parsing Table with Multiple Entries
(dedved from the grammar in fig 3-1) .

I s . 1 \
I \

I s, I \ \
I \ \

I I =re 12 \ \
I I \ \

o ~ - - m , - - 2 - - - v - - - ' / ~ - - ~ e - - 1 2 - - ~ p - - - 6 ~ - - m , - - 1 1 - - - p - - - 6 - - - a e - ~ 1 1 - - ~ p - - - 6

\ s I \ - . I \ ~-e I I
\ I

\ - , - - ~re 6 I

Flgure 3-3: A Graph-structured Stack

251

the parser must wait (sh6) until the PP is completed
so it can build a higher NP using rule 5.

With a graph-structured stack, these non-
deterministic phenomena can be handled efficiently in
polynomial time. Figure 3-3 shows the graph-
structured stack right after shifting the word "with" in
the sentence "1 saw a man on the bed in the
apartment with a telescope." Further description of
the generalized LR parsing algorithm may be found in
Tomita [7, 8].

4. Graph-structured Stack and ATN
An ATN parser employs a stack for saving local

registers and a state number when it visits a
subnetwork recursively. In general, an ATN is
nondeterministic, and the graph-structured stack is
viable as may be seen in the following example.
Consider the simple ATN, shown in figure 4-1, for the
sentence "1 saw a man with a telescope."

After parsing "1 saw", the parser is in state $3 and
about to visit the NP subnetwork, pushing the current
environment (the current state symbol and all
registers) onto the stack. After parsing "a man', the
stack is as shown in figure 4-2 (the top of the stack
represents the current environment).

Now, we are faced with a nondeterministic choice:
whether to retum from the NP network (as state NP3
is final), or to continue to stay in the NP network,
expecting PP post nominals. In the case of returning
from NP, the top element (the current environment) is
popped from the stack and the second element of the
stack is reactivated as the current environment. The
DO register is assigned with the result from the NP
network, and the current state becomes $4.

At this moment, two processes (one in state NP3
and the other in state $4) are alive
nondeterministically, and both of them are looking for
a PP. When "with" is parsed, both processes visit the
PP network, pushing the current environment onto the
stack. Since both processes are to visit the same
network PP, the current environment is pushed only
once to both NP3 and $4, and the rest of the PP is

parsed only once as shown in figure 4-3.

Eventually, both processes get to the final state $4,
and two sets of registers are produced as its final
results (figure 4-4).

5. Graph-structured Stack and categorial
grammar
Parsers based on categodal grammar can be

implemented as shift-reduce parsers with a stack.
Unlike phrase-structure rule based parsers,
information about how to reduce constituents is
encoded in the complex category symbol of each
constituent with functor and argument features.
Basically, the parser parses a sentence strictly from
left to dght, shiffing words one-by-one onto the stack.
In doing so, two elements from the top of the stack are
Inspected to see whether they can be reduced. The
two elements can be reduced in the following cases:

• x/ 'z x -> x (Forward Functional
Application)

• Y x \ x -> x (Backward Functional
Application)

• x / x x / z -> x / z (Forward Functional
Composition)

• x\z x/x -> x\z (Backward
Functional Composition)

When it reduces a stack, it does so non-destnJctively;
that is, the original stack is kept alive even after the
reduce action. An example categodal grammar is
presented in figure 5-1.

z
s a w (s\~e)/,~
• ~I~
nusn N
w ~ t h (. r~ \~) /m, , ((s\m,) \ (s\m,))/m,
• I ~ / N
t e l e s c o p e N

Figure 5-1: An Example Categodal Grammar

The category, (S\NP), represents a verb phrase, as
it becomes S if there is an NP on its left. The
categories, (NP~NP) and (S\NP)\(S\NP), represent a
prepositional phrase, as it becomes a noun phrase or
a verb phrase if there is a noun phrase or a verb
phrase on its left, respectively. Thus, a preposition
such as "with" has two complex categodas as in the

252

PP
/ \

v ~ / I
(S l) > (S2) > (S3) > [S4] < /

PP
/ \

d e t n / J
(NP1) > (HP2) > [NP3] < /

\
\ p : o n

\ > [. rP4]

p NP
(PP1) > (PIP2) > [PP3]

SI-NP-S2
52-v-53

S3-NP-S4
S4-PP-S4
NPI-det-NP2
NP2-n-NP3
NP3-PP-NP3
NPI-pEon-NP4
PPI-p-PP2
PP2-NP-PP3

A : Sub:) < - - *
C: (Sub j - v e : b - a g : e e m e n t)
A : M Y < - - *
A: D O < - - *
A :]~:x:[8 <=m *
A: D e t < - - *
A : H e a d < - - .
A : Qua1 < - - *
A : H e a d < - - *
A : P r e p < - - *
A : P:el~:)b:) < - - *

[] : f i n a l s t a t e s
() : n o n - f i n a l s t a t e s

F i g u r e 4-1: A S imple ATN for "1 saw a man with a te lescope"

b o t t o ~ S3 N~3
[Sub :) : Z [D e t : a
MV: H e a d :

[=oa t : : s e a [=oat= : man
t e n s e : p a s t]] Hum: 8 A n g l e]]

F igu re 4-2: Graph-structured Stack in ATN Parsing "1 saw a man"

b o t t o m
\

\
\

\ .
\

\
\

S3 NP3
[Sub :) : X [D e t : a

] ~ : H e a d : man]
[= o a t : s e e
t e n s e : p a s t]]

S4
[S u b :) : z
MV: [¢ o o t : see

t e n s e : p a s t]
DO: [D e t : a

H e a d : m a n]]

PP2
[Pr~p: w i t h]

/
/ .

/
/

/

F igu re 4-3: Graph-structured Stack in ATN Parsing "1 saw a man with a"

]NrP2
[D e t : a]

253

b o t t ~ s4
[sub:) : z
MV: [= g o t : see

1Cerise : p a s t]
IX): [De t : a

Head: man]
Mods: [P=ep : w i t h

P:epOb:): [De t : a
Head: t : e l e s c o p e]]]

(sub::): z

MV: [=oo'c : see
t e n s e : p a s t]

IX): [De t : e
Head: man]
Qua1: [P=ep : w i t h

P : e p O b j : [D e t : a
]Bead: t e l e s c o p e]]]

Figure 4-4: Graph-structured Stack in ATN Parsing "1 saw a man with a telescope"

/ - . (s \ ~ m) / ~
/

Figure 5-1: Graph-structured Stack in CG parsing
"1 saw a"

/ (S\Ne) /H \
/ \

b o t t o m m~ (s \ ~) I n ~ / a
\ \ \
\ \ \ m~
\ \
\ \, s\~
\
\ s

Figure 5-2: Graph-structured Stack in CG parsing "1 saw a man"

/ (sXsP)/s \
/ \

b o t t o ~ - - - ~ - - - (s \ ~) / l c e - - - mP/m - - - H - - \
\ \ \ \ / - - (m P \ ~) INs

\ \ \ we \ I

\ \ I ((s \mP) / (s \Ne)) INs
\ \, s\~m --I
\ /
\ s ---I

Figure 5-3: Graph-structured Stack in CG parsing "1 saw a man with"

254

example above. Nondeterminism in this formalism
can be similarly handled with the graph-structured
stack. After parsing "1 saw a', there is only one way to
reduce the stack; (S\NP)/NP and NP/N into
(S\NP)/N with Forward Functional Composition. The
graph-structured stack at this moment is shown in
figure 5-1.

After parsing "man', a sequence of reductions takes
place, as shown in figure 5-2. Note that S\NP is
obtained in two ways (S\NP)/N N --> S\NP and
(S\NP)/NP NP --> S\NP), but packed into one node

with Local Ambiguity Packing described in section 2.3.

The preposition "with" has two complex categories;
both of them are pushed onto the graph-structured
stack, as in figure 5-3.

This example demonstrates that Categodal
Grammars can be implemented as shift-reduce
parsing with a graph-structured stack, it Is interesting
that this algorithm is almost equivalent to "lazy chart
parsing" descdbed in Paraschi and Steedman [6].
The relationship between the graph-structured stack
and a chart in chad parsing is discussed in section 7.

6. Graph-structured Stack and
Principle-based Parsing

Pdnciple-based parsers, such as one based on the
GB theory, also use a stack to temporarily store partial
trees. These parsers may be seen as shift-reduce
parsers, as follows. Basically, the parser parses a
sentence strictly from left to dght, shifting a word onto
the stack one-by-one. In doing so, two elements from
the top of the stack are always inspected to see
whether there are any ways to combine them with one
of the pdnciplas, such as augment attachment,
specifier attachment and pre- and post-head adjunct
attachment (remember, there are no outside phrase
structure rules in principle-based parsing).

Sometimes these principles conflict and there is
more than one way to combine constituents. In that
case, the graph-structure stack is viable to handle
nondeterminism without repetition of work. Although
we do not present an example, the implementation of

pdnciple-based parsing with a graph-structured stack
is very similar to the Implementation of Categodal
Grammars with a graph-structured stack. Only the
difference is that, in categodal grammars, Information
about when and how to reduce two constItuents on
the top of the graph-structured stack is explicitely
encoded in category symbols, while in principle-based
parsing, it is defined implicitely as a set of pdnciplas.

7. Graph-structured Stack and Chart
Some parsing methods, such as chart parsing, do

not explicitly use a stack. It Is Interesting to
investigate the relationship between such parsing
methods and the graph-structured stack, and this
section discusses the correlation of the chart and the
graph-structured stack. We show that chad parsing
may be simulated as an exhaustive version of shift-
reduce parsing with the graph-structured stack, as
described Informally below.

1. Push the next word onto the graph-
structured stack.

2. Non-destructively reduce the graph-
structured stack in all possible ways with
all applicable grammar rules; repeat
until no further reduce action is
applicable.

3. Go to 1.

A snapshot of the graph-structured stack in the
exhaustive shift-reduce parsers after parsing "1 saw a
man on the bed in the apartment with" is presented in
figure 7-1 (slightly simplified, ignodng determiners, for
example). A snapshot of a chart parser alter parsing
the same fragment of the sentence is also shown in
figure 7-2 (again, slightly simplified). It is clear that the
graph-structured stack in figure 7-1 and the chart in
figure 7-2 are essentially the same; in fact they are
topologically Identical if we ignore the word boundary
symbols, "*', in figure 7-2. It is also easy to observe
that the exhaustive version of shitt-reduce parsing is
essentially a version of chart parsing which parses a
sentence from left to dght.

255

/ s \
/ \

/ s \ \
/ \ \

I I ~ \ \
/ I \ \

b o t t ~ ~ v ~ p ~ p ~ p
\ \ I\ I

\ s \ , I \ ~ I
\ /

\ ~ . I

F i g u r e 7 . 1 : A Graph-st ructured Stack in a n Exhaus t ive Sh i f t -Reduce Parser
"1 s a w a m a n on the bed in the apar tment with"

/IIIIIIIIIlllIl~' .IIIIIIIIIIIIIIl II~

I \
I s . \ \

I \ \
I I m , \ \

I I \ \
- - - - ~ - - - * - - - . - - - ' - - - I q P - - - * - - - p - - - ' - - - N P - - - * - - - p - - - * - - - W e - - - * - - - p - - - *
\ \ I \ I
\ s \ I \ ,we I

\ I
\ m~ I

" Z " " l a W " " a I " "On" " t h l ~ d " " 4 n " " t h e a p t " " w 4 t h "

F i g u r e 7 .2 : Char t in Char t Pars ing
"1 s a w a m a n on the bed in the a p a r t m e n t with"

256

8. Summary
The graph-structured stack was introduced in the

Generalized LR parsing algorithm [7, 8] to handle
nondeterminism in LR parsing. This paper extended
the general idea to several other parsing methods:
ATN, principle-based parsing and categodal grammar.
We suggest considering the graph-structure stack for
any problems which employ a stack
nondeterministically. It would be interesting to see
whether such problems are found outside the area of
natural language parsing.

[9]

[lO]

Wehdi, E.
A Government-Binding Parser for French.
Working Paper 48, Institut pour les Etudes

Semantiquas et Cognitives, Unlversite de
Geneve, 1984.

Woods, W. A.
Transition Network Grammars for Natural

Language Analysis.
CACM 13:pp.591-606, 1970.

9. Bibliography
[I] Abney, S. and J. Cole.

A Govemment-Blnding Parser.
In Proceedings of the North Eastern Linguistic

Society. XVI, 1985.

[2] Ades, A. E. and Steedman, M. J.
On the Order of Words.
Linguistics and Philosophy 4(4):517-558,

1982.

[3] Aho, A. V. and UIIman, J. D.
Principles of Compiler Design.
Addison Wesley, 1977.

[4] Barton, G. E. Jr.
Toward a Principle-Based Parser.
A.I. Memo 788, MITAI Lab, 1984.

[5] Kay, M.
The MIND System.
Natural Language Processing.

' Algodthmics Press, New York, 1973, pages
pp.155-188.

[6] Pareschi, R. and Steedman, M.
A Lazy Way to Chart-Parse with Categodal

Grammars.
25th Annual Meeting of the Association for

Computational Linguistics :81-88, 1987.

[7] Tomita, M.
Efficient Parsing for Natural Language.
Kluwer Academic Publishers, Boston, MA,

1985.

[8] Tomita, M.
An Efficient Augmented-Context-Free Parsing

Algorithm.
Computational Linguistics 13(1-2):31-46,

January-June, 1987.

257

