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A b s t r a c t  

A grammatical description often applies to a linguistic object 
only when that object has certain features. Such conditional 
descriptions can be indirectly modeled in Kay's Functional 
Unification Grammar (FUG) using functional descriptions 
that are embedded within disjunctive alternatives. An ex- 
tension to FUG is proposed that allows for a direct represen- 
tation of conditional descriptions. This extension has been 
used to model the input conditions on the systems of systemic 
grammar. Conditional descriptions are formally defined in 
terms of logical implication and negation. This formal defi- 
nition enables the use of conditional descriptions as a general 
notational extension to any of the unification-based gram° 
mar representation systems currently used in computational 
linguistics. 

1 I n t r o d u c t i o n  

Functional Unification Grammar [Kay79] (FUG) and other 
grammatical formalisms that use feature structures and uni- 
fication provide a general basis for the declarative representa- 
tion of natural language grammars. In order to utilize some 
of the computational tools available with unification gram- 
mars, we have developed a mapping from sVstelnic ¢ram- 
mars [Hall76] into FUG notation. This mapping has been 
used as the first step in creating a general parsing method 
for systemic grammars [Kas87a]. The experience of trans- 
lating systemic grammars into FUG has shown several ways 
in which the notational resources of FUG may be improved. 
In particular, FUG has limited notational resources for ex- 
pressing conditional information. In this paper we describe 
how FUG has been enhanced by the addition of conditional 
descriptions, building on research that has already been re- 
ported [Kas87a,Kas86,Kas87b]. 

Conditional information is stated explicitly in systemic 
grammars by the input conditions of systems that specify 
when a system must be used. Consider, for example, the two 
systems (MoodType and Indicatlve'l~ype) x shown in Figure 1. 
The input condition for the MoodType system is the feature 

IThis example is extracted from Nigel [Mann83], a large sys- 
temic grammar of English that has been developed in text gener- 
ation research at USC/ISI. 

C/auae, and the input condition for the IndicatlveType sys- 
tem ls the feature Indicative. Because the features of a sys- 
temic grammar are normally introduced by a unique system, 
these input conditions actually express a bidirectional type 
of logical implication: 

I. If a constituent has the feature(s) specified by a sys- 
tem's input condition, then exactly one of the alterna- 
tives described by that system must also be yard for 
the constituent; 

2. If a constituent has one of the feature alternatives de- 
scribed by a system, then it must also have the fea- 
ture(s) specified by that system's input condition. 

Thus the input condition of the Irtd/cative~pe system ex- 
presses the following implications: 

1. If a clause ha~s the feature Indic,~tive, then it must also 
have exactly one of the alternatives from the Zndica- 
tive23,/pe system (either Declarative or Interrogative). 

2. If a clause has one of the feature alternatives described 
by the Indicativs~3ype system (either Declarative o r /n -  
terrooaties), then it must also have the feature Indiea- 
ties. 

While it is theoretically correct to regard the two directions of 
implication as exact converses of each other, there is a subtle 
difference between them. The consequent of the first type of 
implication is the description of the entire system, including 
systemic features and their realizations. 2 The antecedent of 
the second type of implication can be safely abbreviated by 
the systemic features without their realizations, because the 
presence of a systemic feature implies that its realizations 
also hold. We will return to this distinction when we provide 
a formal definition of conditional descriptions in Section 2. 

For simple input conditions, the first type of implication 
can be expressed in FUG, as it was originally formulated by 
Kay [Kay79], by embedding the description of one system in- 
side the description of another. For example, we can capture 
this implication for the IndicativeType system by embedding 
it within the description of the Indicative alternative of the 

2A realization is a statement of structural properties that are 
required by a feature, such as the statement that SUBJECT pre- 
cedes FINITE for the feature declarative. 
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RANK 
~ -Clause MOOD 

TYPE 

~ Imperative 
NONFINITIVE!Stem 

LIn INDICATIVE 
dlcatlve TYPE 
SUBJECT:Nominative 

Dseclarative 
UBJECT ^ FINITE 

Llnterrogatlve 

Figure 1: The  MoodType  and  Indicat iveType Systems 

Rank = Clause 
MoodType = Imperative 
NONFI~ITIVE---- [ Form = Stem ] J 
MoodType -- Indicative ] 
SUBJECT ----" [ Case = Nominative ] 

L f F IndicatlveType = Declarative 1 
~ pattern = ( . . .  SUBJECT F I N I T E . . . )  j 

J L ~ IndicativeType ----- Interrogative ] 
. 3 IndicatlveType ~ [ MoodType -- Indicative ] " 

Figure 2: The MoodType  and  Indlcat iveType Systems in F U G  

MoodType system, as shown in Figure 2. Note that the sec- 
ond type of implication expressed by systemic input condi- 
tions has not been expressed by embedding one functional 
description inside another. To express the second type of lm- 
plicatlon, we have used a different notational device, called a 
feature existence condition; it will be defined in Section 2.4. 

Not all systems have simple input conditions consisting 
of single features. Those input conditious which are com- 
plex boolea~u expressions over features cannot be expressed 
directly by embedding. Consider the BenefactiveVolce s sys- 
tem shown in Figure 3 as an example. Its input condition is 
the conjunction of two features, Agentive and Benefactive. 

One way to express a system with a complex input con- 
dition in FUG is to use a disjunction with two alternatives, 
as shown in Figure 4. The first alternative corresponds to 
what happens when the Benef~ctiveVoice system is entered; 
the second alternative corresponds to what happens when the 
BenefactlveVoice system is not entered. The first alternative 
also includes the features of the input condition. The second 
alternative includes the features of the negated input condi- 
tion. Notice that the input condition and its negation must 
both be stated explicltly, unlike in systemic notation. If the 
negation of the input condition was not included in the sec- 
ond alternative, it would be possible to use this alternative 

3The BenefactivcVoice system iJ also extracted from the Nigel 
grammar [Mann83]. It describes the active and passive voice op- 
tions that are possible in clauses that have both an agent and 
a beneficiary. The active/passive distinction is not primitive in 
systemic grammars of English. Instead, it is decomposed into sev- 
eral cases depending on which participant roles are present in the 
clause. In this case the subject of a passive clause may be conflated 
with either beneficiary or medium. 

even when the input condition for the system holds. Thus 
the description of the system would not always be used when 
it should be. Note that this method of encoding systemic in- 
put conditions presupposes an adequate treatment of negated 
features." A formal definition of negation will be developed 
in Section 2.3. 

While it is formally possible to encode complex input con- 
ditione by disjunction and ne~ t ion ,  such encoding IS not al- 
together satisfactory: It  should not be necessary to state the 
negated input condition explicitly, since it can always be de- 
rived automatically from the unne&-~ted condition. It is also 
rather inefficient to mix the features of the input condition 
with the other features of the system. The features of the in- 
put condition contain exactly the information that is needed 
to choose between the two alternatives of the disjunction (Le., 
to choose whether the system is entered or not). It would be 
more efficient and less verbose to have a notation in which 
the features of the input condition are distlnguished from 
the other features of the system, and in which the negation 
of the input condition does not need to be stated explicitly. 
Therefore, we have developed an extension to FUG that uses 
a conditional operator (-~), as illustrated by the encoding of 
the BenefactiveVoice system shown in Figure 5. A descrip- 
tion corresponding to the input condition appears to the left 
of the --~ symbol, and the description to be included when 
the input condition is satisfied appears to its right. A formal 
definition of what it means for a description to be satisfied 
will be given in Section 2.1. 

4Some negations of atomic features can be replaced by a finite 
disjunction of other pouible values for that feature, but this tech- 
nique only works effectively when the set of possible values is small 
and can be enumerated. 
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Agentive - 
Benefactive - 

BENEFACTIVE 

VOICE f 
'Benefact]veActive 

AGENT / SUBJECT 
lv[EDIUM / DIRECTCOMP 

IvfedloPazslve 
MEDIUM / SUBJECT 

-BenePsssive 
BENEFICIARY / SUBJECT 
MEDIUM / DIRECTCOMP 

Figure '3:  The  BenefactiveVoice System. 

Rank = Clause 
Agentivity = Agentive 
Benefaction = Benefacitve 

' BenefactiveVoice = BenefactiveActive ] 
AGENT = <SUBJECT> | 

MEDIUM = <DIRECTCOIqP> ] 

BenefactlveVoice = MedioPassive ] 
, MEDIUM = <SUBJECT> 

BenefactlveVolce = BenePassive | 
BENEFICIARY = <SUBJECT> | 

, MEDIUM = <DIRECTCOMP> J 
'Agentivity = NOT AEentive ] ~ ] ' 

Benefaction = NOT Benefactive ] S / 
BenefactlveVolce = NONE J 

Figure 4: BenefactiveVoice sys tem in FUG,  using disjunction and negation.  

Rank = Clause 

Agentivity = Agentlve ] BenefactiveVoice = lvfedioPasslve 
---k 

Benefaction = Benefactive MEDIUM = <SUBJECT> 
BenefactlveVoice = BenePessive 
BENEFICIARY = <SUBJECT> 
MEDIUM = <DIRECTCOIVIP> 

3 BenefactiveVolce - - ,  [ Agentivity = Agentlve ] 
Benefaction = Benefactlve 

BenefactiveVolce = BenefactiveActive ] 

] AGENT = <SUBJECT> 

MEDIUM = <DIRECTCOMP> 

Figure 5: BenefactiveVoice sys tem in extended FUG,  using two condit ional descriptions. 

Note: In systemic notation curly braces represent conjunction and square braces represent disjunction, while in FUG curly 
braces represent disjunction and square braces represent conjunction. 
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Note: A and L are 

N I L  

l : ~  

~<p~ > . . . . .  <p.  >] 

~ ^ ~ or [ ~ . . .  ~.] 
~bz V~b~ or {~bz...~b.} 

denoting no information; 
where a E A, to describe atomic values; 
where l E L and ~b E FDL, to describe structures 
in which the feature labeled by I has a value described by ~; 
where each p; E L ' ,  to describe an equivalence class 
of paths sharing a common value in a feature structure; 
where ~i E FDL, denoting conjunction; 
where ~; E FDL, denoting disjunction. 

sets of symbols which are used to denote atomic values and feature labels, respectively. 

Figure 6: Syntax  of FDL Formulas. 

2 D e f i n i t i o n s  

The feature description logic (FDL) of Kasper and 
Rounds [Kas86] provides a coherent framework to give a pre- 
cise interpretation for conditional descriptions. As in previ- 
ous work, we carefully observe the distinction between fea- 
ture structures and their descriptions. Feature structures are 
represented by directed graphs (DGs), and descriptions of 
feature structures are represented by logical formulas. The 
syntax for formulas of FDL is given in Figure 6. We define 
several new types of formulas for conditional descriptions and 
negations, but  the domain of feature structures remains DGs, 
as before. 

2 .1  S a t i s f a c t i o n  a n d  C o m p a t i b i l i t y  

In order to understand how conditional descriptions are used, 
it is important to recognize two relations that may hold be- 
tween a particular feature structure and a description: satis- 
faction and compatibility. Satisfaction implies compatibility, 
so there are three possible states that a particular structure 
may have with respect to a description: the structure may 
fully 8ati~/X/the description, the structure may be i.eompat. 
isle with the description, or the structure may be ¢ompatiMe 
with (but not satisfy) the description. To define these terms 
more precisely, consider the state of an arbitra~ 7 structure, 
/~, with respect to an atomic feature description, f : e: 

satisfies f : e if f occurs in A with value e; 

is i n c o m p a t i b l e  w i t h  f : e if j '  occurs in g with value 
z, for some z ~ ~; 

/~ is (mere ly)  c o m p a t i b l e  w i t h  f : e if f does not occur 
inA.  

Because feature structures are used to represent partial 
information, it is possible for a structure that is merely com- 
patible wlth a description to be extended (i.e., by adding a 
value for some previously nonexistent feature) so that it ei- 
ther satisfies or becomes incompatible with the description. 
Consider, for example, the structure (~z) shown in Figure 7, 
and the three descriptions: 

aubj : (perao. : 3 A .umber : ai.g) (I) 

subj : (perao. : 1 A .umber  : . i . g )  (2) 

8=by: (case : .ore  ^ . t , ,nbe.  : s i .g )  (3) 

subj 

~ n d e r  

stag neut 

Figure 7: Example feature s t ructure  (AZ)- 

Description (I) is satisfied by Az, because •z is fully iustan- 
tiated with all the required feature values. Description (2) is 
i,eompatible with Az, because Az has a different value for the 
feature aubj : person. Description (3) is merely compatible 
with Az (but not satisfied by Az), because Az has no value 
for the feature aubj : e~se. 

In the following definitions, the notation A ~ ~5 means that 
the structure A satisfies the description ~, and the notation 
A ~ ~ means that the structure A is compatible toith the 
description ~. 

Logical combinations of feature descriptions are evaluated 
with their usual semantics to determine whether they are 
satisfied by a structure. Thus, a conjunction is satisfied only 
when every conjunct is satisfied, and a disjunction is satls- 
fied if any disjunct is satisfied. The formal semantics of the 
satisfaction relation has been specified in our previous work 
describing FDL [Kas86]. The semantics of the compatibility 
relation is given by the following conditions: 

I. ~ -- N I L  always; 

2. A .~ • ¢=¢. /~ is the atomic structure ~; 

3. A ~ [< Pz >,-.-,< P. >] ~=~ all DGs in the 
set {~q/ < Pz > ..... 4/ < p. >} can be unified (any 
member of this set may be undefined; such members 
are equivalent to null DGs); 

4. /~ ~ I : ~ ¢=~ /~/! is undefined or ~/1 ~ ~; 

5. A ~ ~ V ~  ¢=~ ~ ~ ~ o r ~ ~ ~ 0 ;  

6. ~ N ~bA~, ¢ffiffi~ . ~ ,  canonical form of~bA~. 

Unlike satisfaction, the semantics of compatibility cannot be 
defined by simple induction over conjunctive formulas, be- 
cause of a subtle interaction between path equivalences and 
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nonexistent features. For example, consider whether A,, 
shown LU Figure 7, is compatible with the description: 

nurnber: pl A |< ~*~mber >, < aubj number >]. 

A, is compatible with r~urnber : pl, and d ,  k also compat- 
ible with ~< nurnber > , <  subj  n~mber >l,  but #~, is not 
compatible with the conjunction of these two descriptions, 
because it requires aub] : r~mber  : pl and ,~, has si~,g as the 
value of that feature. 

Thus, in order to determine whether a structure is compat- 
ible wlth a conjunctive description, it is generally necessary 
to unify all conjuncts, putt ing the description into the canon- 
ical form described in [Kas87c]. This canonical form (i.e. the 
feature.description data structure) contains definite and in- 
definite components. The definite component contains no 
disjunction, and is represented by a DG structure that satis- 
fies all non-disjunctive parts of a description. The indefinite 
component is a list of disjunctions. A structure is compatible 
with a description in canonical form if and only if it is unifi- 
able with the definite component and it is compa!;ible wlth 
each disjunction of the indefinite component. 

2 . 2  C o n d i t i o n a l  D e s c r i p t i o n  

We augment FDL with a new type of formula to represent 
conditional descriptions, using the notation, n - .  ~, and the 
standard interpretation given for material implication: 

AI  = ~ -~ p ~ A I  = ~ a v # .  C4) 

This Luterpretatlon of conditionals presupposes an interpre- 
tation of negation over feature descriptions, which is given 
below. To simpLify the interpretation of negations, we ex- 
clude formulas contaiuing path equivalences and path values 
from the antecedents of conditlonak. 

2 . 3  N e g a t i o n  

We use the classical interpretation of negation, where 
/~ ~ -~b ¢=~ /~ ~: #. Negated descriptions are defined for 
the following types of formulas: 

1. A ~ - ~  ¢=~ A is not the atom ~; 

2. A ~ -~(l : ~) ~ Jl ~= l : "-~ or .~/! is not defined; 

3. ,~ ~ -~(~ v ,/,) ~ : ~  A ~ -,~ ^ -,,p; 

4. ,~ M -,(~ ^ ,p) ~ ,~ M -,~ v -,,p. 
Note that we have not defined negation for formulas contain- 
ing path equivalences or path values. Thls restriction makes 
it possible to reduce all occurrences of negation to a boolean 
combLuatlon of a fiuite number of negative constraints on 
atomic values. While the classical interpretation of negation 
is not strictly monotonic with respect to the normal sub- 
sumptlon ordering on feature structures, the restricted type 
of negation proposed here does not suffer from the ineffi- 
ciencies and order-dependent uuificaticn properties of gen- 
eral negation or intuiticnistic negation [Mosh87,Per87]. The 
reason for this is that we have restricted negation so that 
all negative information can be specified as local constraLuts 

on single atomic feature values. Thus, these constraints only 
come into play when specific atomic values are proposed for 
a feature, and they can be checked as efficiently as positive 
atomic value constraints. 

2 .4  F e a t u r e  E x i s t e n c e  C o n d i t i o n s  

A special type of conditional description k needed when the 
antecedent of a conditional is an existence predicate for a 
particular feature, and not a regular feature description. We 
call this type of conditional a [eature ezistence condition, and 
use the notation: 

B/ -+ ~, where A ~ 3 [  4==~ A / [  is defined. 

Thk use of B / i s  essentially equivalent to the use of f = ANY 
in Kay's FUG, where ANY lsa  place-holder for any substan- 
tive (i.e., non-NIL) value. 

The primary effect of a feature existence condition, such as 
3 f  --, ~, is that the consequent is asserted whenever a sub- 
stantive value is introduced for a feature labeled by f .  The 
treatment of feature existence conditions differs slightly from 
other conditional descriptions in the way that an uusatisfiable 
consequent is handled. In order to negate the antecedent of 
3 f  --~ #, we need to state that f may never have any sub- 
stantive value. This is accomplished by unifying a special 
atomic value, such as NONE, with the value of f .  This spe- 
cial atomic value is incompatible with any other real value 
that might be proposed as a value for f .  

Feature existence conditions are needed to model the sec- 
ond type of implication expressed by systemic input condi- 
tions - namely, when a constituent has one of the feature 
alternatives described by a system, it must also have the fea- 
ture(s) specified by that system's input condition. Generally, 
a system named f with input condition a and alternatives 
described by/~, can be represented by two conditional de- 
scriptlons: 

1. a .--. p; 

2. B f  -* a. 

For example, recall the BenfactiveVoice system, which is rep- 
resented by the two conditionals shown in Figure 5. 

It is important to note that feature existence conditions 
are used for systems with simple input conditions as well as 
for those with complex input conditions. The use of feature 
existence conditions is essential in both cases to encode the 
bidirectional dependency between systems that is implicit in 
a systemic network. 

3 U n i f i c a t i o n  w i t h  C o n d i t i o n a l  

D e s c r i p t i o n s  

The unification operation, which is commonly used to corn- 
blue feature structures (i.e., non-disjunctive, non-conditional 
DGs), can be generalised to define an operation for combLuLug 
the information of two feature descriptions (i.e., formulas of 
FDL). In FDL, the unification of two descriptions is equiva- 
lent to their logical conjunction, as discussed in [Kas87b]. We 
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have shown in previous work [Kas87c] how unification can be 
accomplished for disjunctive descriptions without expanding 
to disjunctive normal form. 

This unification method factors descriptions into a canon- 
ical form conslstlng of definite and indefinite components. 
The definite component contains no dlsjunctlon, and is rep- 
resented by a DG structure that satisfies all non-disjunctive 
parts of a description. The indefinite component of a de- 
scription k a list of disjunctions. When two descriptions 
are unified, the first step is to unlfy their definite compo- 
nents. Then the indefinite components of each description 
are checked for compatlbility with the resulting definite com- 
ponent. Dlsjuncts are eliminated from the description when 
they are inconsistent with deflnlte information. When only 
one alternative of a disjunction remains, it is unified with the 
definite component of the description. 

This section details how thls unification method can be 
extended to handle conditional descriptions. Conditionals 
may be regarded as another type of indefinite information in 
the description of a feature structure. They are indefinite ]n 
the sense that they impose constraints tha t  can be satisfied 
by several alternatives, depending on the values of features 
already present in a structure. 

3.1 How to Satisfy a Condit ional  
Description 

The constraints imposed on a feature structure by a condi- 
tional description can usually be determined most emclently 
by first examining the antecedent of the conditional, because 
it generally con t~n l  a smaller amount of information than 
the consequent. F, xamining the antecedent k often sufficient 
to determine whether the consequent is to be included or 
discarded. 

Given a conditional description, C ---- ~ -+ ~, we can 
define the coustralnts that it imposes on a feature structure 
(A) as follows. When: 

~ ct, then A ~ ~;6 

~ or, then ¢ imposes no further constraint on A, and can 
therefore be elhnJnated; 

A ~, c~, then check whether ~ ls compatible wlth A. 
If compatible, then C must be retained in the descrip- 
tion of ~. 
If incompatible, then ~ ~ -~a (and ¢ can be elimio 
nated). 

These constraints follow directly from the interpretation (4) 
that we have given for conditional descriptions. These con- 
straiuts are logically equivalent to those that would be im- 
posed on A by the disjunction - ~  V ~, as required. However, 
the constraints of the conditional can often be imposed more 
ef~ciently than those of the equivalent dJsjunctlon, because 
examlnlng the antecedent of the conditional carries the same 
cost as examining only one of the dkjuncts. When the con- 
straints of a disjunction are imposed, both of the disjuncts 
must be examined in all cases. 

6Read this constraint as: Umake sure that .4 satisfies ~.t 

3.2 Extending  the Unification 
Algorithm 

The unification algorithm for dlsjunctlve feature descrip- 
tions [Kas87c] can be extended to handle conditionals by 
recognizing two types of indefinite ~uformatlon in a descrip- 
tion: disjunctions and conditionals. The extended feature- 
descriptlon data structure has the components: 

def ini te :  a DG structure; 

d i s junc t ions :  a llst of disjunctions; 

cond i t iona l s ,  a list of conditional descriptions. 

The part of the unification algorithm that checks the compat- 
ibility of indefinite components of a description with its def- 
inite component is defined by the function CHECK-INDEF, 
shown in Figure 8. Thk  algorithm checks the disjunctions of 
a description before conditionals, but an equally correct ver- 
sion of thk algorithm might check conditionals before disjunc- 
tions. In our application of parsing with a systemic grammar 
it is generally more et~cient to check disjunctions first, but 

• other applications might be made more efBclent by varylng 
this order. 

4 P o t e n t i a l  R e f i n e m e n t s  

Several topics merit further investlgatlon regarding condi- 
tional descrlptions. The implementation we describe has the 
constraints of conditionals and dkjunctions imposed in an ar- 
bitrary order. Chang|ng the order has no effect on the final 
result, but it is likely that the el~clency of unification could 
be improved by ordering the conditionals of a grammar in 
a deliberate way. Another way to improve the efficiency of 
unification with condltiona~ would involve indexing them by 
the features that they contain. Then a conditional would 
not need to be checked against a structure until some feature 
value of the structure might determine the manner in which 
it k eat|s fled. The amount of efficiency gained by such tech- 
niques clearly depends largely on the nature of the particular 
grammar being used in an appllcatlon. 

A slightly different type of conditional might be used as a 
way to speed up unification with binary disjunctive descrip- 
tions. If it k known that the values of a relatively small 
number of features can be used to discrimlnate between two 
alternative descriptions, then those features can be factored 
into a separate condition in a description such as 

IF cor, ditioa THEN alt~ ELSE air2. 

When the condition is satisfied by a structure, then altl is 
selected. When the condition is incompatible with a struc- 
ture, then air2 is selected. Otherwise both alternatives must 
remain under consideration. As it often requires a consider- 
able amount of time to check which alternatives of a dkjunc- 
tion are applicable, this technlque might offer a significant 
improvement in an application where large dlsjunctlve de- 
scriptions are used. 

Remember that we have restricted conditionals by requir- 
ing that their antecedents do not contain path equivalences. 
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Function CHECK-INDEF (desc) Returns feature-description: 
where desc is a featur~description. 

Let P = desc.deflnite (a DG). 
Let disjunctions = desc.disjunctions. 
Let conditionals = desc.conditionals. 
Let unchecked-parts ---- true. 

While unchecked-parts, do: 
unchecked-parts := false. 

Cheek eomp~h'~/ty oj' d/~nct/onm ~ P (omited, see [Kas87c]). 

O~ek eomp~'t~U of ¢ o ~ o ~ b  ~ P: 
Let  new-condit ionals ---- ~. 
For each ~, -- . /9 in condit ionals: 

test whether  D satisfies or  is compat ib le w i t h  , - :  

SATISFIES: 9 := UNIFY-DGS (9, ~.deflnite), 
disjunctions := disjunctions U ~.dlsjunctions, 
unchecked-parts := true; 

COMPATIBLE: If ~) is compatible with ~, 
then new-conditionals := new-conditionals U {a --, ~}, 
else let neg-ante = -~e. 

D := UNIFY-DGS (P, neg-ante.deflnite), 
disjunctions :---- disjunctions u neg-ante.disjunctions, 
unchecked-parts := true; 

INCOMPATIBLE: t ~  eoad~/on,d imposem no ]urO~ee coaa~v~/nt. 
end (for loop). 

conditionals :---- new-conditionals. 
end (while loop). 

Let nd ---- make feature-description with: 
nd.deflnite -~ P, nd.disjunctions = disjunctions, nd.conditionals ---- conditionals. 

Return (nd). 

F igu re  8: C H E C K - I N D E F :  A l g o r i t h m  for  checking  c o m p a t i b i l i t y  of  indef in i te  pa r t s  of  a f ea tu r e -desc r ip t i on  w i t h  its 
def in i te  c o m p o n e n t .  

This restriction has been acceptable in our use of condi- 
t ional descriptions to model  systemic grammars.  It  k unclear 
whether  a t rea tment  of conditional descriptions without  thls 
restriction will be needed in o ther  applications. If this restric- 
tion is lifted, then further  work will be necessary to define the 
behavior of negation over path  equivalences, and to handle 
such negations in a reasonably e~c ien t  manner .  

5 Summary  

We have shown how the notat ional  resources of FUG can be 
extended to include descriptions of conditional information 
about  feature structures.  Condit ional  descriptions have been 
given a precise logical definition in terms of the feature de- 
scription logic of Kasper  and Rounds,  and we have shown 
how a unification method  for feature descriptions can be ex- 
tended to use conditional descriptions. We have implemented 
this unification method  and tested it in a parser for systemic 
grammars,  using several hundred conditional descriptions. 
The definition of conditional descriptions and the unifica- 
tion method  should be generaily applicable as an extension 
to other  unificatlon-based g rammar  frameworks, as well as to 
F U G  and the modeling of systemic grammars.  In fact, the 

implementat ion described has been carried out  by extending 
PATI~I I  [Shie84], a general representat ional  framework for 
unificatlon-based grammars.  

While it is theoretically possible to represent the informa- 
tion of  conditional descriptions indirectly using notat ional  
devices already present in Kay 's  F U G ,  there are practical 
advantages to representing conditional descriptions directly. 
The indirect encoding of condit ional  descriptions by dlsjunc- 
tions and negations entails approximately doubling the size of 
a description, adding many explicit nonexistence constraints 
on features (NONE values), and slowing the unification pro- 
cess. In our experiments,  unification wlth conditional de- 
scriptions requires approximately 50~  of the t ime required 
by unification with an indirect encoding of the same descrip- 
tions. By adding conditional descriptions as a notat ional  
resource to F U G ,  we have not changed the theoretical  limits 
of what  FUG can do, but  we have developed a representation 
that  is more perspicuous, less verbose, and computat ionaily 
more e/~clent. 
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