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A b s t r a c t  

We propose that logic (enhanced to encode probability 
information) is a good way of characterizing semantic in- 
terpretation. In support of this we give a fragment of 
an axiomatization for word-sense disambiguation, noun- 
phrase (and verb) reference, and case disambiguation. 
We describe an inference engine (Frail3) which actually 
takes this axiomatization and uses it to drive the semantic 
interpretation process. We claim three benefits from this 
scheme. First, the interface between semantic interpreta- 
tion and pragmatics has always been problematic, since 
all of the above tasks in general require pragmatic infer- 
ence. Now the interface is trivial, since both semantic 
interpretation and pragmatics use the same vocabulary 
and inference engine. The second benefit, related to the 
first, is that semantic guidance of syntax is a side effect 
of the interpretation. The third benefit is the elegance 
of the semantic interpretation theory. A few simple rules 
capture a remarkable diversity of semantic phenomena. 

I .  I n t r o d u c t i o n  

The use of logic to codify natural language syntax is well 
known, and many current systems can parse directly off 
their axiomatizations (e.g.,)[l]. Many of these systems 
simultaneously construct an intermediate "logical form" 
using the same machinery. At the other end of language 
processing, logic is a well-known tool for expressing the 
pragmatic information needed for plan recognition and 
speech act recognition [2-4]. In between these extremes 
logic appears much less. There has been some movement 
in the direction of placing semantic interpretation on a 
more logical footing [5,6], but it is nothing like what has 
happened at the extremes of the ~anguage understanding 
process. 

To some degree this is understandable. These "mid- 
dle" parts, such as word-sense disambiguation, noun 
phrase reference, case disambiguation, etc. are notori- 
ously difficult, and poorly understood, at least compared 
to things like syntax, and the construction of interme- 
diate logical form. Much of the reason these areas are 

l This work has been supported in part  by the National Science 
Foundation under grants IST 8416034 and IST 8515005 and Office 
~)f Nav~l Research under grant N00014-79-C-0529. 

so dark is that they are intimately bound up with prag- 
matic reasoning. The correct sense of a word depends on 
context, as does pronoun resolution, etc. 

Here we rectify this situation by presenting an ax- 
iomatization of fragment of semantic interpretation, no- 
tably including many aspects previously excluded: word- 
sense disambiguation, noun-phrase reference determina- 
tion, case determination, and syntactic disambiguation. 
Furthermore we describe an inference engine, Frail3, 
which can use the logical formulation to carry out seman- 
tic interpretation. The description of Frail3 is brief, since 
the present paper is primarily concerned with semantic 
interpretation. For a more detailed description, see [7]. 
The work closest to what we present is that by Hobbs 
[5]; however, he handles only noun-phrase reference from 
the above list, and he does not consider intersentential 
influences at all. 

Our system, Wimp2 (which uses Frail3), is quite 
pretty in *,wo respects. First, it integrates semantic and 
pragmatic processing into a uniform whole, all done in 
the logic. Secondly, it provides an elegant and concise 
way to specify exactly what has to be done by a seman- 
tic interpreter. As we shall see, a system that  is roughly 
comparable to other state-of-the-art semantic interpreta- 
tion systems [6,8] can be written down in a pagc or so of 
logical rules. 

Wimp2 has been implemented and works on all of 
the examples in this paper. 

I I .  V o c a b u l a r i e s  
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Let us start  by giving an informal semantics for the spe- 
cial predicates and terms used by the system. Since we 
are doing semantic interpretation, we are translating be- 
tween a syntactic tree on one hand and the logical, or in- 
ternal, representation on the other. Thus.we distinguish 
three vocabularies: one for trees, one for the internal rep- 
resentation, and one to aid in the translation between the 
two. 

The vocabulary for syntactic trees assumes that each 
word in the sentence is represented as a word instance 
which is represented as a word with a numerical post- 
fix (e.g., boy22). A word instance is associated with the 
actual lexical entry by the predicate word-inst: 



(word-inst word-instance part-ofospeech lexwal-item). 

For example, (word-inst case26 noun case). (We use "part  
of speech" to denote those syntactic categories that  are 
directly above the terminal symbols in the grammars,  
that  is, directly above words.) 

The relations between word instances are encoded 
with two predicates: syn-pos, and syn-pp. Syn-pos 

(syn-pos relation head sub-constituent), 

indicates that  the sub-constituent is the relation of the 
head. We distinguish between positional relations and 
those indicated by prepositional phrases, which use the 
predicate syn-pp, but otherwise look the same. The 
propositions denoting syntactic relations are generated 
during the parse. The parser follows all possible parses 
in a breadth-first search and outputs  propositions on a 
word-by-word basis. If there is more than one parse and 
they disagree on the propositional output,  a disjunction 
of the outputs  is a.~ert.ed into the database. The corre- 
spondence between trees and formulas is as follows: 

Trees 
s - -  up (vp ... head-v 

...) 
vp . . . .  head-v np ... 
vp ~ ... head-v npl 

np2 ... 

vp . . . .  head-v ... 
(pp prep ...) 

pp ~ prep np 

Formulas 
(syn-pos subject head-v np) 
head-v symbol is s symbol 
(syn-pos object head-v up) 
(syn-pos indirect-object 

head-v npl) 
(syn-pos object head-v npg) 
(syn-pp head-prep head-v 

prep) 
(-yn-pp prel>-np prep rip) 

np - -  ... head-n ... head-n symbol is np symbol 
np - -  pronoun pronoun symbol is 

np symbol 
np - -  propernoun propernoun symbol is 

np symbol 
np . . . .  adj head-n ... (syn-pos adj adj head-n) 
np . . . .  head-n ... 

(pp prep ...) 
up that  s 
s - -  np (vp ... copula 

(pp prep ...)) 
s - -  np (vp ... copula 

adj) 

(syn-pp head-prep head-n 
prep) 

s symbol is np symbol 
(syn-pp head-prep np prep) 

(syn-pos adj ad3 np) 

This is enough to express a wide variety of simple declar- 
ative sentences. Furthermore, since our current parser 
implements a transformational account of imperatives, 
questions (both yes-no and wh), complement construc- 
tions, and subordinate clauses, these are automatically 
handled by the above as well. For example, given an ac- 
count of "Jack wants to borrow the book." as derived 
from "Jack wants (np that  (s Jack borrow the book))." 
or something similar, then the above rules would produce 
the following for both (we also indicate after what  word 
the formula is produced): 
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Words 
Jack 
wants 

to 
borrow 

the 
book 

I"ornnl la.s 
(word-inst jackl propernoun jack) 
(word-inst want1 verb want) 
(syn-pos subject want1 jackl) 

(word-inst borrowl verb borrow) 
(syn-pos object want1 borrowl) 
(syn-pos subject borrow1 jack1) 

(word-inst bookl noun book) 
(syn-pos object borrowl bookl) 

This is, of course, a fragment, and most things are not 
handled by this analysis: negation, noun-noun combina- 
tions, particles, auxiliary verbs, etc. 

Now let us consider the internal representation used 
for inference about the world. Here we use a simple 
predicate-calculus version of frames, and slots. We as- 
sume only two predicates for this: == and inst. Inst, 

(inst instance frame), 

is a two-place predicate on an instance of  a frame and 
the frame itself, where a "frame" is a set of  objects, all 
of which are of the same natural kind. Thus (inst boyl 
boy-) asserts that  boyl is a member of the set of boys, de- 
noted by boy-. (Frames are symbols containing hyphens, 
e.g., supermarket-shoping. Where a single English word is 
sufficiently descriptive, the hyphen is put at the end.) 

The other predicate used to describe the world is the 
%et ter  name" relation = = :  

(---- worse-name better-name). 

This is a restricted use of equality. The second argument  
is a "better name" for the first, and thus may be freely 
substituted for it (but not the reverse). Since slots are 
represented as functions, - -  is used to fill slots in frames. 
To fill the agent slot of a particular action, say borrowl, 
with a particular person, say jackl,  we say 

( = =  (agent borrow1)jack1). 

At an implementation level, - =  causes everything known 
about its f irst argument (the worse name) to be asserted 
about the second (the better name). This has the effect. 
of concentrating all knowledge about all of an object's 
names as facts about  the best name. 

Frail will take as input a simple frame representation 
and translate it into predicate-calculus form. Figure 1 
shows a frame for shopping along with the predicate- 
calculus translation. 

Naturally, a realistic world model requires more than 
these two predicates plus slot functions, but  the relative 
success of  fairly simple frame models of reasoning indi- 
cates that  they are a good start ing set. The last set of 
predicates (word-sense, case, and roie-inst) are used in the 
translation itself. They will be defined later. 



(defframe 
isa 

slots 

acts 

shop- 
action 
;(inst ?s.shop- action) 
(agent (person-)) 
:(inst (agent. ?s.shop-) person-) 
(store-of (store-)) 
;( inst ( store-of ?s.shop-) store-) 
(go-step 
(go- (agent (agent ?shop-)) 

(destination (store-of ?shop-)))) 
; ( = =  (agent (go-step ?shop-)) (agent ?shop-)) 
;(== (destination (go-step ?s.shop-)) 
; (store-of ?s.shop-)) 

Figure 1: A frame for shopping 

I I I .  W o r d - S e n s e  D i s a m b i g u a t i o n  

We can now write down some semantic  interpretation 
rules. Let us assume that  all words in English have one or 
more word senses as their meaning, that  these word senses 
correspond to frames, and that  any particular word in- 
stance has as its meaning exactly one of these senses. We 
can express this fact for the instances of any particular 
lexical entry as follows: 

(word-inst inst part-of.speech word) =~ 
(inst rest sense1) V ... V (inst inst sense,=) 

where sense1 through sense,= are senses of word when it 
is used as a part.of.speech (i.e., as a noun, verb, etc.) 

Not all words in English have meanings in this sense. 
"The" is an obvious example. Rather than complicate 
the above rules, we assign such words a "null" mean- 
ing, which we represent by the term garbage*. Nothing 
is known about garbage* so this has no consequences. 
A better axiomatization would also include words which 
seem to correspond to functions (e.g., age), but we ignore 
such complications. 

A minor problem with the above rule is that  it re- 
quires us to be able to say at the outset (i.e., when we 
load the program) what all the word senses are, and new 
senses cannot be added in a modular fashion. To fix this 
we introduce a new predicate, word-sense: 

(word-sense lez-item part-of-speech frame) 
(word-sense straw noun drink-straw) 
(word-sense straw noun animal-straw). 

This states that let-item when used as a part.of.speech 
can mean frame. 

We also introduce a pragmatically difl'erent form of 
disjunction, - -OR:  

( ~ O R  formulal formula2). 
In terms of implementation, think of this as inferring 
formula1 in all possible ways and then asserting the dis- 
junction of the formula,s with each set of bindings. So if 
there are two seLs of bindings, the result will be to assert 
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(OR f ormula2/biltdingsl f ormula2/bindings~ ). 

Logically, the meaning of - - O R  is that  if xl ... x ,  are 
unbound variables i ,  for'rnulal, then there nmst exist xl 
... z ,  that  make formulal and formula2 true. 

We can now express our rule of word-sense ambiguity 
a s :  

(word-inst ?instance ?part-of-speech ?lex-item) =:, 
(--OR (word-sense ?lex-item ?part-of-speech ?frame) 

(inst ?instance ?frame)) 

I V .  T h e  I n f e r e n c e  E n g i n e  

While it seems clear that  the above rule expresses a rather 
simple-minded idea of how words relate to their mean- 
ings, its computat ional  import  may not be so clear. Thus 
we now discuss Wimp2, our language comprehension pro- 
gram, and its inference engine, Frail3. 

Like most rule-based systems, Frail distinguishes for- 
ward and backward-chaining use of modus-ponens. All 
of our semantic interpretation rules are forward-chaining 
rules'. 

(--- (word-inst ?instance ?part-of-speech ?lex-item) 
(--OR (word-sense ?lex-item ?part-of-speech ?frame) 

(inst ?instance ?frame))) 

Thus, whenever a new word instance is asserted, we 
forward-chain to a statement that the word denotes an 
instance of one of a set of frames. 

Next, Frail uses an ATMS [9,10] to keep track of 
disjunctions. That is, when we assert (OR formulal 
... formula,=) we create n assumptions (following DeK- 
leer, these are simply integers) and assert each formula 
into the data-base, each with a label indicating that the 
formula is not true but only true given some assumptions. 
Here is an example of how some simple disjunctions come 
out. 

A (--  A (OR B C)) 
( - -  B (OR D El) 

Formulas Assumptions 
A 
B 1 
¢ 2 
D 3 
E 4 

Labels 

(0) 
((1)) 
((2)) 

((1 3)) 
((1 4)) 

Figure 2 represents this pictorially. Here D, for example, 
has the label ((13)), which means that  it is true if we grant 
assumptions 1 and 3. If an assumption (or more gener- 
ally, a set of assumptions) leads to a contradiction, the 
assumption is declared a "nogood" and formulas which 
depend on it are no longer believed. Thus if we learn (not 
D) then (1 3 / is x nogood. This also has the consequence 
that  E now has the label (1/. It is as if different sets 
of assumptions correspond to different worlds. Seman- 
tic interpretation then is finding the "best" of the worlds 
defined by the linguistic possibilities. 



t A 

D 

Figure 2: Pictorial representation of disju.ct io.s  

We said "best" ill the last sentence deliberately. 
When alternatives can be ruled out on logical grounds the 
corresponding assumptions become nogoods, and conclu- 
sions from them go away. But it is rare that. all of the can- 
didate interpretations (of words, of referents, etc.) reduce 
to only one that is logically possible. Rather, there are 
ilsually several which are logically .co,sistent, but some 
are more "probable" than others, For this rea.so,, Frail 
associates probabilities with sets of assumptions ("alter- 
native worlds") and Wimp eventually "garbage collects" 
statements which remain low-probability alter,atives be- 
cause their assumptions are unlikely. Probabilities also 
guide which interpretation to explore. Exactly how this 
works is described in [7]. Here we will simply note that 
the probabilities are designed to capture the following 
intuitions: 

1. Uncommon vs. common word-senses {marked vs. 
unmarked) are indicated by probabilities input by 
the system designer and stored in the lexicon. 

2. Wimp prefers to find referents for entities (rather 
than not finding referents). 

3. Possible reasons for actions and entities are preferred 
the more specific they are to. the action or entity. 
(E.g., "shopping" is given a higher probability than 
"meeting someone" as an explanation for going to 
the supermarket.) 

4. Formulas derived in two differents ways are more 
probable than they would have been if derived in 
either way alone. 

5. Disjunctions which lead to already considered 
"'worlds" are preferred over those which do not hook 
up in this way. (We will illustrate this later.} 

V .  C a s e  D i s a r n b i g u a t i o n  

Cases are indicated by positional relations (e.g., subject) 
and prepositional phrases. We make the simplifying as- 
sumption that prepositional phrases only indicate case 
relations. As we did for word-sense disambiguation, we 
introduce a new predicate that allows us to incrementally 
specify how a particular head (a noun or verb) relates to 
its syntactic roles. The new predicate, 

(case head syntactic-relation slot), 
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states that head can have its slol filled by things which 
stand itl syntacttc.lvlation to it. For example 

0nst ?g go-) =~ (case ?g subject agent). 
This Call also be expressed in Frail using the typed vari- 
ables 

(case ?g.go- subject agent). 
This says that any instance of a go- can use the subject 
position to indicate the agent of the go- event. These facts 
can be inherited in the typical way via the isa hierarchy, 
so this fact would more generally be expressed as 

(case ?a.action- subject agent), 
Using case and the previously introduced - -OR connec- 
tive, we can express the rule of case relations. Formally, 
it says that for all syntactic positional relations and all 
meanings of the head, there must exist a case relation 
which is the significance of that syntactic position: 

(syn-pos ?tel ?head ?val) A (inst ?head ?frame) =~ 
('--*OR (case ?hea~l ?tel ?slot) 

(== (?slot ?hesd) ?val))) 
So, we might have 

(syn-pos subject gol jackl) A (inst gol go-) 
h (case gol subject agent) 
::~ ( ' - - -  (agent gol)jackl). 

A similar rule holds for case relations indicated by 
prepositional phrases. 

(syn-pp head-prep ?head ?pinst) 
A (syn-pp prep-np ?pinst ?np) 
A (word-inst ?pinst prep ?prep) A (inst ?head ?frame) 

=~ (--"OR (case ?head ?prep ?slot) 
(=--- (7slot ?head) ?np)) 

For example, "Jack went to the supermarket." would 
give us 

(syn-pp head-prep gol tol) A (case gol to destination) 
A (syn-pp prep-np to1 supermarket1) 
A (word-inst tol prep to) A (;nst gol go-) 

=~ (==  (destination go1) supermarketl). 
We now have enough machinery to describe two ways 

in which word senses and case relations can help disam- 
biguate each other. First consider the sentence 

Jack went to the supermarket. 

Wimp currently knows two meanings of "go," to travel 
and to die. After "Jack went" Wimp prefers travel (based 
upon probability rule 1 and the probabilities assigned to 
these two readings in the lexicon) but both are possible. 
After "Jack went to" the die reading goes away. This is 
because the only formulas satisfying 

(case gol to ?slot) 
all require gol to be a travel rather than a die. Thus 
"die" cannot be a reading since it makes 

(~OR (case ?head ?prep ?slot) 
(---- (?slot ?head) ?val)) 



false (a disjunction of zero disjuncts is false). 
We also have enough machinery to see how "'selec- 

tional restrictions" work in Wimp2. Consider the sen- 
tence 

Jack fell at the store. 

and suppose that  Wimp knows two case relatious for "'at," 
Ioc and time. This will initially lead to the following 
disjunction: 

((1)) 
. (== (Ioc fell1) store1) 

(syn-pp head-prep fell1 at1)<((2) ) 
(== (time fell1) store1). 

However, Wimp will know that  

(inst (time ?a.aetion) time-). 

As we mentioned earlier, = =  statements cause everything 
known about  the first argument to be asserted about the 
second. Thus Wimp will try to believe that store1 is a 
time, so (2) becomes a nogood and (1) becomes just tmte. 

It is important  to note that  both of these disam- 
biguation methods fall out  from the basics of the system. 
Nothing had to be added. 

VL Reference and Explanat ion 

Definite noun phrases (rip's) typically refer to something 
already mentioned. Occasionally they do not, however, 
and some, like proper names may or may not refer to 
an already mentioned entity. Let us simplify by saying 
that  all rip's may or may not refer to something already 
mentioned. (We will return to indefinite np's later.) We 
represent np's  by always creating a new instance which 
represents the entity denoted by the np. Should there be 
a referent we assert equality between the newly minted 
object and the previously mentioned one. Thus, in "Jack 
went to the supermarket.  He found some milk on the 
shelf.", the recognition that  "He" refers to Jack would be 
indicated by 

( = =  he24 jack3). 

(Remember that  = =  is a best name relation, so this says 
that  jack3 is a better name for the new instance we cre- 
ated to represent the "he," he24.) 

As for representing the basic rule of reference, the 
idea is to see the call for a referent, as a statement that  
something exists. Thus we might try to say 

(inst ?x ?frame) =~ (Exists (y \ ?frame) (== ?x ?y)). 
This is intended to say, if we are told of  an object of type 
?frame then there must exist an earlier one y of this same 
type to which the new one can be set equal. 

The trouble with this formula is tha t  it does not say 
"earlier one." Exists simply says tha t  there has to be one, 
whether or not it was mentioned. Furthermore, since we 
intend to represent an np like "the taxi" by (inst taxi27 
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taxi-) and then look for an earlier taxi. the Exists would 
be trivially satisfied by taxi27 itself. 

Our solution is to introduce a new quantifier called 
"previously exists" or PExists. (In [5] a similar end is 
achieved by putting weights on formula and looking for 
a minimum-weight proof.) Using this new quantifier, we 
h aye 

(inst ?x ?frame) =~ (PExists (y \ ?frame) (== ?x ?y)). 
If there is more than one a disjunction of equality state- 
ments is created. For example, consider the story 

Jack went to the supermarket. He found the 
milk on the shelf. He paid for it. 

The "it" in the last sentence could refer to any of the three 
inanimate objects mentioned, so initially the following 
disjunction is created: 

(== it8 shelf(}) 
(inst it8 inan imate - )~ - (==  it8 milk5) 

• " \ ( = =  it8 supermarket2). 

This still does not allow for the case when there is 
no referent for the np. To understand our solution to this 
problem it is necessary to note that we originally set out  
to create a plan-recognition system. That  is to say, we 
wanted a program which given a sentence like "Jack got 
a rope. He wanted to kill himself." would recognize that  
Jack plans to hang himself. We discuss this aspect of  
Wimp2 in greater detail in [7]. Here we simply note tha t  
plans in Wimp2 are represented as frames (as shown in 
Figure 1.) and that  sub tasks of plans are actions which 
fill certain slots of the frame. So the shop- plan has a 
go-step in Figure 1. and recognizing the import  of "Jack 
went to the supermarket." would be to infer that  ( = =  
(go-step shop-74) go61) where go61 represented the verb 
in "Jack went to the supermarket." We generalize this 
slightly and say that  all inputs must be "explained"; by 
this we mean that  we must find (or postulate) a frame 
in which the input fills a slot. Thus the go-step state- 
ment explains go61. The presence of a supermarket in the 
story would be explained by (== (store-of shop-74) super- 
market64). The rule that  everything mentioned must be 
explained looks like this: 

(inst?x ?frame) ::~ 
(---,OR (roJe-inst ?x ?slot ?superfrm) 

(Exists (y \ ?superfrm) (== (?slot ?y) ?x))). 
(Some things cannot be explained, so this rule is not 
strict.) Here the role-inst predicate says that  7× can 
fill the ?slot role of the frame ?supedrm. E.g., (ro!e-inst 
?r.store- store-of shop-) says that  stores can fill the store- 
of slot in the shop- frame. Here we use Exists, not PExists 
since, as in the rope example, we explained the existence 
of the rope by postulating a new hanging event. The se- 
mantics of Exists is therefore quite standard, simply say- 
ing that  one must exist, and making no commitment  to 
whether it was mentioned earlier or not. As a matter  of  
implementation, we note that  it works simply by always 



creating a new instance. The impact of this will be seen 
i, a moment. 

We said that all inputs must be explained, and that 
we explain by seeing that the entity fills a slot in a pos- 
tulated frame. There is one exception to this. if a newly 
mentioned entity refers to an already extant one, then 
there is no need to explain it, since it was presumably 
explained the first time it was seen. Thus we combine 
our rule of reference with our rule of explanation. Or, to 
put it. slightly differently, we handle the exceptions to the 
rule of reference (some things do not refer to entities al- 
ready present) by saying that those which do not so refer 
must be explained instead. This gives the following rule: 

(inst ?x ?frame) A (not (= ?frame garbage*)) :=~ 
(OR (PExists (y \ ?frame) (== ?x ?y)) .9 

(--,OR (role-inst ?x ?superfrm ?slot) 
(Exists (s \ ?superfrm) 

(== ( slot ?s) 

Here we added the restriction that the frame in question 
cannot be the garbage* frame, which has no properties by 
definition. We have also added probabilities to the dis- 
junctions that are intended to capture the preference for 
previously existing objects (probability rule 2). The rule 
of reference has several nice properties. First, it might 
seem odd that our rule for explaining things is expressed 
in terms of the Exists quantifier, which we said always cre- 
ates a new instance. What about a case like "Jack went 
to the supermarket. He found the milk on the shelf." 
where we want to explain the second line in terms of the 
shopping plan created in the first? As we have things set 
up, it simply creates a new shopping plan. But note what 
then occurs. First the system asserts (inst new-shopping5 
shopping-). This activates the above rule, which must ei- 
ther find a referent for it, or try to explain it in terms 
of a frame for which it fills a role. In this case there is a 
referent, namely the shopping created in the course of the 
first line. Thus we get ( = =  new-shopping5 shopping4) and 
we have the desired outcome. This example also shows 
that the reference rule works on event reference, not just 
np reference. 

This rule handles reference to "related objects" 
rather well. Consider "Jack wanted to play the stereo. 
He pushed the on-off button." Here "the on-off button" 
is to be understood as the button "related" to the stereo 
mentioned in the first line. In Wimp this falls out from 
the rules already described. Upon seeing "the on-off but- 
ton" Wimp creates a new entity which must then either 
have a referent or an explanation. It does not have the 
first, but one good explanation for the presence of an on- 
off button is that it fills the on-off-switch slot for some 
power-machine. Thus Wimp creates a machine and the 
machine then has to be explained. In this case a referent 
is found, the stereo from the first sentence. 
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V I I .  P r a g m a t i c  I n f l u e n c e  

We iinish with three examples illustrating how our se- 
mantic interpretation process easily integrates pragmatic 
influences: one example of pronoun reference, one of 
word-sense disambiguatiom and one of syntactic ambi- 
guity. First pronoml reference: 

Jack went to the supermarket. He found the 
milk on the shelf. He paid for it. 

In this example the "milk" of sentence two is seen as the 
purchased of shop-1 and the "pay" of sentence three is 
postulated to be the pay-step of a shopping event, and 
then further postulated to be the same shopping event as 
that created earlier. (In each case other possibilities will 
be considered, but their probabilities will be much lower.) 
Thus when "it" is seen Wimp is in the situation shown in 
Figure 3. The important thing here is that the statement 
( = =  it7 milk5) can be derived in two different ways, and 
thus its probability is much'higher than the other possible 
refereuts for "'it" (probability rule 4). (One derivation has 
it that since one pays for what one is shopping for, and 
Jack is shopping for milk, he mdst be paying for the milk. 
The other derivation is that "it" must refer to something, 
and tile milk is one alternative.) 

The second example is one of word-sense disam- 
biguation: 

Jack ordered a soda. He picked up the straw. 

Here sentence one is seens as the order-step of a newly 
postulated eaboutl.  The soda suggests a drinking event, 
which in turn can be explained as the eat-step of cab 
outl. The straw in line two can be one of two kinds of 
straw, but the drink-straw interpretation suggests (via a 
role-inst statement) a straw-drinking event. This is postu- 
lated, and Wimp looks for a previous such event (using 
the normal reference rule) and finds the one suggested 
by the soda. Wimp prefers to assume that the drink- 
ing event suggested by "soda" and that from "straw" are 
the same event (probability rule 2) and this preference 
is passed back to become a preference for the drink-straw 
meaning of "straw" (by probability rule 5). The result is 
shown in Figure 4. 

Our third and last example shows how semantic 
guidance of syntax works: 

Janet wanted to kill the boy with some poison. 

Starting with the "with" there are two parses which dis- 
agree on the attachment of the prepositional phrase (pp). 
There are also two case relations the "with" can indi- 
cate if it modifies "kill," instrument and accompaniment. 
When Wimp sees "poison" it looks for an explanation of 
its presence, postulates a poisoning and which is found 
to be potentially coreferential with the "kill." The result 
looks like Figure 5. In this interpretation the poison can 
be inferred to be the instrument of the poisoning, so this 
option llas higher probability (probability rule 4). This 



! O t h e r  allernative,9 

(inst pay7 pay-) ~ 1== (pay-step shop-l) ~ : . . . . . / {  

(inst it8 inanimate-) l ~  ~ (== it8 shelf6) 

(== it9 supermarket2) 

Figure 3: -k pronoun example 

(== it8 milk5) ] 

i ~  ~ Other alternatives i 

(inst orcler2 orcler-) 
:~-~(=~" (orcler-step eat-outl) orcler2) (= (eat-step eat-outl) clrink3) I 

< Y (= (patient clrink3) socla4) 
(inst soda4 soda-) 

Other alternatives I 

(word-inst straw3 noun s ~ ' a w ) ~  (inst ~straw3~animal-straw)~ J]] ~ (= (straw-of clrink3) Straw3) I 

Figure 4: A word-sense example 

L the boy with I 

l(syn-pp head-prep I 
boy1 with1) ~ . . ~  Accompany 

(syn-pp head-prep 
killl withl) I " ~  Instrument ..... ~ _  [(== (instr killl) poison4) I 

(inst poison4 poison-) ~ e s  J 

Figure 5: A syntactic disambiguation example 
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higher probability is passed back to the disjuncts repre- 
senting a) t, he choice of instrument over accompanyment, 
and b) the choice of attaching to ~kill" over "boy" (prob- 
ability rule 5). This last has the effect of telling the parser 
where to attach the pp. 

VIII. Future Research 

This work can be extended in many ways: increased syn- 
tactic coverage, more realistic semantic rules, improved 
search techniques for possible explanations, etc. Here we 
will simply look at some fairly straightforward extensions 
to the model. 

Our rule preferring finding a referent to not finding a 
referent is not reasonable for indefinite np's. Thus Wimp 
currently misinterprets 

3ack bought a gun. Mary bought a gun. 

since it wants to interpret the second gun as coreferen- 
tial with the first. A simple change would be to have 
two rules of reference/explanation. The rule for indefi- 
nite np's would look like this: 

(inst ?x ?frame) A (not (=  ?frame garbage*)) 
A (syn-pos indef-det ?x ?det) 

=~ (OR (PExists (y \ ?frame) (== ?x ?y)) .1 
(--*OR (role-inst ?x ?superfrm ?slot) 

(Exists (s \ ?superfrm) 
(== (?s=ot ?s) ?x))) .9) 

This looks just like our earlier rule, except a check for 
an indefinite determiner is added, and the probabilities 
are reversed so as to prefer a new object over an already 
existing one. The earlier reference rule would then be 
modified to make sure that the object did not have an 
indefinite determiner. 

Another aspect of language which fits rather nicely 
into this framework is metonymy. We have already noted 
that the work closest to ours is [5], and in fact we can 
adopt the analysis presented there without a wrinkle. 
This analysis assumes that  every np corresponds to two 
objects in the story, the one mentioned and the one in- 
tended. For example: 

I read Proust over summer vacation. 

The two objects are the entity literally described by the 
np (here the person "Proust ' )  and that intended by the 
speaker (here a set of books by Proust). The syntactic 
analysis would be modified to produce the two objects, 
here proustl and read-objl respectively~ 

(syn-pos direct-object read1 read-objl) 
(word-inst proustl propernoun proust) 
(syn-pos metonymy rea6-objl proustl) 
It is then assumed that  there are a finite number of 

relations that may hold between these two entities, most 
notably equality, but others as well. The rule relating the 
two entities would look like this: 

( - ,  (syn-pos metonymy ?intended ?given) 
(OR ( = -  ?intended ?given) .9 

(------ (creator-of ?intended) ?given) .02) 
...)). 

This rule would prefer assuming that the two individuals 
are the same, but would allow other possibilities. 

I X .  C o n c l u s i o n  " 

We have presented logical rules for a fragment of the 
semantic interpretation (and plan recognition) process. 
The four simple rules we gave already capture a wide 
variety of semantic and pragmatic phenomena. We are 
currently working on diverse aspects of semantics, such 
as definite vs. indefinite np's, noun-noun combinations, 
adjectives, non-case uses of prepositions, metonymy and 
relative clauses. 
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