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A b s t r a c t  

Although disjunction has been used in several unification- 
based grammar formalisms, existing methods of unification 
have been unsatisfactory for descriptions containing large 
quantities of disjunction, because they require exponential 
time. This paper describes a method of unification by succes- 
sive approximation, resulting in better average performance. 

1 I n t r o d u c t i o n  

Disjunction has been used in severM unlfication-based gram- 
mar formalisms to represent alternative structures in descrip- 
tions of constituents. Disjunction is an essential component 
of grammatical descriptions in Kay's Functional Unification 
Grammar [6], and it has been proposed by Karttunen as a 
Linguistically motivated extension to PATR-II [2]. 

In previous work two methods have been used to handle 
disjunctive descriptions in parsing and other computational 
applications. 

The first method requires expanding descriptions to dis- 
]unctl've normal form (DNF)  so tha t  the entire descript ion 
can be in terpre ted  as a set of s t ructures ,  each of which con- 
tains no disjunct ion.  This  me thod  is exemplified by Definite 
Clause Grammar [8], which eliminates disjunctive terms by 
expanding each rule containing disjunction into alternative 
rules. It is also the method used by Kay [7] in parsing FUG. 
This method works reasonably well for small grammars, but 
it is clearly unsatisfactory for descriptions containing more 
than a small number of disjunctions, because the DNF ex- 
pansion requires an amount of space which is exponential in 
the number of disjunctions. 

The second method, developed by Karttunen [2], uses con- 
straints on dlsjuncts which must be checked whenever a die- 
junct is modified. Karttunen's method is only applicable to 
value disjunctions (i.e. those disjunctions used to specify the 
value of a single feature), and it becomes complicated and in- 

efficient when disjuncts contain non-local dependencies (i.e. 
values specified by path expressions denoting another fea- 
ture). 

In previous research [4,5] we have shown how descriptions 
of feature structures can be represented by a certain type 
of logical formula, and that the consistency problem for dis- 
junctive descriptions is NP-complete. This result indicates, 
according to the widely accepted mathematical assumption 
that P ~ NP, that any complete unification algorithm for 
disjunctive descriptions wiU require exponential time in the 
worst case. However, this result does not preclude algorithms 
with better average performance, such as the method de- 
scribed in the remainder of this paper. This method over- 
comes the shortcomings of previously existing methods, and 
has the following desirable properties: 

1. It appUes to descriptions containing general disjunction 
and non-local path expressions; 

2. It delays expansion to DNF; 

3. It can take advantage of fast unification algorithms for 
non-disjunctive directed graph structures. 

2 D a t a  S t r u c t u r e s  

The most common unification methods for non-disjunctive 
feature structures use a directed graph (DG) representation, 
in which arcs are labeled by names of features, and nodes 
correspond to values of features. For an introduction to these 
methods, the reader is referred to Shieber's survey [11 I. In 
the remainder of this section we will define a data structure 
for disjunctive descriptions, using DG structures as a basic 
component. 

In the following exposition, we will carefully observe the 
distinction between feature structures and their descriptions, 
as explained in [4]. Feature structures will be represented 
by DGs, and descriptions of feature structures will be repre- 
sented by logical formulas of the type described in [4 I. The 
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N I L  
T O P  

~< Px > , . . . , <  P,~ >! 

~ ^ ¢  

,/, V ¢, 

denoting no information; 
denoting inco~istent information; 
where a E A, to describe atomic values; 
where l E L and ~ E FDL, to describe structures 

in which the feature labeled by I has a value described by ~; 

where each pC E L °, to describe an equivalence class 

of paths sharing a common value in a feature structure; 

where @, ¢ E FDL; 

where @, ¢ E FDL. 

Figure  I: Syn tax  of F D L Formulas .  

syntax for formulas of this feature description logic (hereafter 
called FDL) is given in Figure 1. I 

Note, in particular, that disjunction is used in descriptions 
of feature structures, but not in the structures themselves. 
As we have shown (see [9]) that there is a unique minimal 
satisfying DG structure for any nondisjunctive FDL formula, 
we can represent the parts of a formula which do not contain 
any disjunction by DGs. DGs are a more compact way of 
representing the same information that is contained in a FDL 
formula, provided the formula contains no disjunction. 

Let us define an unconditional conjunct to be a conjunct 
of a formula which contains no occurrences of disjunction. 
After path expansion any formula can be put into the form: 

uco~j ^ disj~ A . . .  A disy,,, 

where uconj contains no occurrences of disjunction, and each 
disj¢, for 1 ~ i ~ m, is a disjunction of two or more alter- 
natives. The ,~conj part of the formula is formed by using 
the commutative law to bring all unconditional conjuncts of 
the formula together at the front. Of course, there may be 
no unconditional conjuncts in a formula, in which case ucoaj 
would be the formula NIL. 

Each disjunct may be any type of formula, so disjuncts can 
also be put into a similar form, with aLl unconditional con- 
juncts grouped together before all disjunctive components. 
Thus the disjunctions of a formula can be put into the form 

(~conj~ ̂ disA ~ ̂ . . . ^d isA, )  v . . .  v (uconj,, ^disj,, ~ ̂ . . . ^  dlsj , ,  ). 

The embedding of conjuncts within disjuncts is preserved, 
but the order of conjuncts may be changed. 

The unconditional conjuncts of a formula contain informa- 
tion that is more definite than the information contained in 
disjunctions. Thus a formula can be regarded as having a 
definite part, containing only unconditional conjuncts, and 
an indefinite part, containing a set of disjunctions. The def- 
inite part contains no disjunction , and therefore it may be 
represented by a DG structure. To encode these parts of a 
formula, let us define a feature-description as a type of data 
structure, having two components: 

ILet A and L be sets of symbols which are used to denote 
atomic values and feature labels, respectively. 

Figure 2: A N D / O R  graph rep resen ta t ion  of a feature 
descript ion.  

defl,n|te: a DG structure; 

i nde f in i t e :  a SET of disjunctions, where each disjunction 
is a SET of feature.descriptlon.s. 

It is poesibh to convert any FDL formula into a feature- 
description structure by a simple automatic procedure, a.s 
described in [5]. This conversion does not add or subtract any 
information from a formula, nor increase its size in any sig- 
nificant way. It simply identifies components of the formula 
which may be converted into a more el~cient representation 
as DG structures. 

A feature-descriptlon is conceptually equivalent to a spe- 
cial kind of AND/OR graph, in which the terminal nodes are 
represented by DG structures. For example, an AND/OR 
graph equivalent to the formula, 

4,0 ^ (¢1 v ,/,2) ^ (~,3 v ¢4 v (Ca ^ (¢o v ¢7))) 

is shown in Figure 2. In the AND/OR graph representa- 
tlon, each AND-node represents a feature-description. The 
first outgoing arc from an AND-node represents the definite 
component of a feature-description, and the remaining outgo- 
Lug arcs represent the indefinite component, Each OR-node 
represents a disjunction. 
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Function I/N]FY-DESC (f, g) Returns feature.description: 
where f and g are feature-descriptions. 

I. Unify definite components. 
Let new-def = UNIFY-DGS (f.definite, g.definite). 
If new-def = TOP, then return (failure). 
Let desc = a feature-description with: 

desc.definite = new-def, 
desc.indefinite = f.indefinite td g.indefinite. 

If desc.indefinite = $, 
Then return (desc); 

Else begin; 

2. Check compatibility of indefinite components with new-def. 
Let new-desc = CHECK-INDEF (desc, new-def). 
If new-desc = failure, then return (failure); 

3. Complete ezhat~tiv¢ consistency checking, if necessary. 
Else if new-desc.indefinite = $ 

OR if complete checking is not required, 
Then return (new-desc); 

Else begin; 
Let n = 1. 
Repeat while n < cardinallty of new-desc.indefinite: 

new-desc := NWISE-CONSISTENCY (new-desc, n). 
n:=n+l. 

return (new-desc). 
end. 

end. 

Figure  3: Unif icat ion a lgor i thm for feature-descript ions.  

3 The Algorithm: Unification 
by Successive Approx imat ion  

In this section we will give a complete algorithm for unify- 
ing two feature.descriptions, where one or both may contain 
disjunction. This algorithm is designed so that it can be used 
as a relatively efficient approximation method, with an op- 
tional step to perform complete consistency checking when 
necessary. 

Given two feature-descriptions, the strategy of the unifi- 
cation algorithm is to unify the definite components of the 
descriptions first, and examine the compatibility of indefi- 
nite components later. Disjuncts are eliminated from the 
description when they are inconsistent with definite informa- 
tion. This strategy avoids exploring dlsjuncts more than once 
when they are inconsistent with definite information. 

The exact algorithm is described in Figure 3. It has three 
major steps. 

In the first step, the definite components of the two de- 
scriptions are unified together, producing a DG structure, 
new-def, which represents the definite information of the re- 
sult. This step can be performed by existing unification al- 
gorithms for DGs. 

In the second step, the indefinite components of both de- 

scriptions are checked for compatibility with new-def, using 
the function CHECK-INDEF, which is defined in Figure 4. 
CHECK-IN]DEF uses the function CHECK-DIS J, defined in 
Figure 5, to check the compatibility of each disjunction with 
the DG structure given by the parameter con& 

The compatibility of two DGs can be checked by almost the 
same procedure as unification, but  the two structures being 
checked are not actually merged as they are in unification. 

In the third major step, if any disjunctions remain, and it 
is necessary to do so, disjuncts of different disjunctions are 
considered in groups, to check whether they are compatible 
together. This step is performed by the function NWISE- 
CONSISTENCY, defined in Figure 6. 

When the parameter r~ to NWISE,-CONSISTENCY has 
the value 1, then one disjunct is checked for compatibility 
with all other disjunctions of the description in a pairwise 
manner. The pairwise manner  of checking compatibility can 
be generalized to groups of any size by increasing the value 
of the parameter n. 

While this third step of the algorithm is necessary in or- 
der to insure consistency of disjunctive descriptions, it is not 
necessary to use it every time a description is built during a 
parse. In practice, we find that the performance of the algo- 
rithm can be tuned by using this step only at strategic points 
during a parse, since it is the most inefficient step of the al- 
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Function CHECK-INDEF (desc, cond) Returns feature-description: 
where deac is a feature-description, 
and cond is a DG. 

Let indef = desc.indeflnite (a set of disjunctions). 
Let new-def = desc.deflnite (a DG). 
Let unchecked-parts ~ true. 

While unchecked-parts, begin; 

unchecked-parts := false. 
Let new-indef = ~. 

For each disjunetiort in indef." 
Let compatible-disjuncts = CHECK-DISJ (disjunction, cond). 
If cardinality of compatible-disjuncts is: 

0 : Return  (failure); 
1 : Let disjunct ---- single element of compatible-disjuncts.  

new-def :--- UNIFY-DGS (new-def, disjunct.deflnite). 
newoindef := new-indef tJ disjunct.indeflnite. 
unchecked-parts := true; 

otherwise : new-indef :ffi newoindef U {compatible-disjuncta}. 

Prepare to check remaining disjunctions for compatibility with new-def. 
cond := new-def. 
indef :~ new-indef. 
end (while loop). 

Let newodesc ~= make feature-description with: 
new-desc.deflnite ---- new-def, 
new.desc.indeflnite ---- new-indef. 

Return (new-desc). 

Figure 4: Algorithm to check compatibility of indefinite parts of feature-descriptions with respect to a condition DG. 

Function CHECK-DISJ (disj, cord) Return8 disjunction: 
where disj is a disjunction of feature-descriptions, 
and cond is a DG. 

Let new-disj = 0 (a set of feature-descriptions). 

For each disjunct in disj: 
If DGS-COMPATIBLE? (cond, disjunct.definite), 

Then  if disjunct.indeflnite = $, 
Then new-disj := new-disj t9 {disjunct}; 

Else begin; 
Let new-disjunct : CHECK-INDEF (disjunct, cond). 
If new-disjunct ~ failure, then begin; 

new-disj := new-disj t9 {new-dlsjunct}. 
end. 

end. 

Return (new-disj). 

F i g u r e  5: A l g o r i t h m  to  c h e c k  c o m p a t i b i l i t y  of  d i s j u n c t i o n s  w i t h  r e s p e c t  to  a c o n d i t i o n  D G .  
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Funetlon NWISE-CONSISTENCY (desc, n)  Returns  feature-description: 
where desc is a feature-description. 

If number of disjunctions in desc.indefinite _< n, 
T h e n  R e t u r n  (de sc ) .  

L e t  de f  = d e s c . d e f i n i t e .  
L e t  i n d e f  = d e s c . i n d e f i n i t e .  
L e t  n e w - i n d e f  = ~. 

W h i l e  d i s i u n c t i o n s  r e m a i n  in  i nde f :  
L e t  d i s i u n c t i o n  ---- r e m o v e  o n e  d i s j u n c t i o n  f r o m  inde f .  
L e t  n e w - d i s j  = ~. 

For e a c h  dlsjuTtct in  d i s j u n c t i o n :  
L e t  d i s j u n c t - d e f  ---- U N I F Y - D G S  (def ,  d i s i u n c t . d e f i n i t e ) .  
L e t  d i s j u n c t - i n d e f  ---- d i s j u n e t . i n d e f i n i t e  U i n d e f  U n e w - i n d e f .  
L e t  h y p - d e s c  = m a k e  f e a t u r e - d e s c r i p t i o n  w i t h :  

h y p - d e s c . d e f i n i t e  = d i s j u n c t - d e f ,  
h y p - d e s c . i n d e f i n i t e  ---- d i s i u n e t - i n d e f .  

If  n = 1, 
T h e n  le t  n e w - d e s c  = C H E C K - I N D E F  ( h y p - d e s c ,  d i s j u n c t - d e f ) .  

Else let new-desc = NWISE-CONSISTENCY (hyp-desc, n-l). 
If new-desc ~ failure, 

Then new-disj := new-disj tJ (new-desc}. 

If c a r d i n a l i t y  of  n e w - d i s j  is: 
O: R e t u r n  ( f a i l u r e ) ;  
1: L e t  n e w - d e s c  = s ing l e  e l e m e n t  of  n e w - d i s j .  

de f  : =  n e w - d e s c . d e f i n i t e .  
i n d e f  : =  n e w - d e s e . i n d e f i n i t e .  
n e w - i n d e f  : =  ¢; 

o t h e r w i s e :  ( k e e p  t h i s  d i s j u n c t i o n  in r e s u l t )  
n e w - i n d e f  : =  n e w - i n d e f  U { n e w - d i s j } .  

L e t  r e s u l t - d e s c  = m a k e  f e a t u r e - d e s c r i p t i o n  w i t h :  
r e s u l t - d e s c . d e f i n i t e  = def ,  
result-desc.indefinite = n e w - i n d e f .  

R e t u r n  ( r e s u l t - d e s c ) .  

Figure  6: A l g o r i t h m  to check c o m p a t i b i l i t y  of d i s junc t ions  of a desc r ip t ion  by  checking groups  of  n d i s junc t ions .  

gorithm. In our application, using the Earley chart parsing 
method,  it has proved best to use NWISE-CONSISTENCY 
only when building descriptions for complete edges, but not 
when building descriptions for active edges. 

Note that  two feature-descriptions do not become perma- 
nently linked when they are unified, unlike unification for 
DG stuctures. The result of unifying two descriptions is a 
new description, which is satisfied by the intersection of the 
sets of structures that  satisfy the two given descriptions. The 
new descriptlon contains all the information that  is contained 
in either of the given descriptions, subtract ing any disjuncts 
which are no longer compatible. 

4 An example  

In order to illustrate the effect of each step of the algo- 
ri thm, let us consider an example of unifying the descrip- 
tion of a known constituent with the description of a por- 
tion of a grammar.  This exemplifies the predominant type of 
structure building operation needed in a parsing program for 
Functional Unification Grammar.  The example given here is 
deliberately simple, in order to il lustrate how the algorithm 
works with a minimum amount of detail.  It is not intended 
as an example of a linguistically motivated grammar.  

Let us trace what happens when the two descriptions of 
Figure 7 are given as inputs to the function UNIFY-DESC. 
Figure 8 shows the feature-description which results after 
step 1 of the algorithm. The definite components of the two 
descriptions have been unified, and their indefinite compo- 
nents have been conjoined together. 

In step 2 of the algorithm each of the disjuncts 
of DESC.INDEFINITE is checked for compatibil i ty with 
DESC.DEFINITE,  using the function CHECK-IN'DEF. In 
this case, all disjuncts are compatible with the definite infor- 
mation, except for one; the disjunct of the third disjunction 
which contains the feature N u m b e r  : S ing .  This disjunct is 
eliminated, and the only remaining disjunct in the disjunc- 
tion (i.e., the disjunct containing N u m b e r  : PI)  is unified 
with DESC.DEFINITE.  The result after this step is shown 
in Figure 9. The four disjuncts that  remain are numbered for 
convenience. 

In step 3, NWISE-CONSISTENCY is used with 1 as the 
value of the parameter  n. A new description is hypothesized 
by unifying disjunct (1) with the definite component of the 
description (i.e., NEW-DESC.DEFINITE) .  Then disjuncts 
(3) and (4) are checked for compatibi l i ty  with this hypothe- 
sized structure: (3) is not compatible,  because the values of 
the T r a n s i t i v i t y  features do not unify. Disjunct (4) is also 
incompatible, because it has Goal : P e r s o n  : 3, and the hy- 
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GRAMMAR: 

DEFINITE = [ Rank : Clause ] 
Sub] : Caes : Nora 

INDEFINITE = 

( [ Yo4ca : Paa~dus 
Transi t iv i ty  : Trana 
~< Sub] >, < Goal >] 
Traneitlvity : Intran$ 
A c t o r  : P e r s o n  : 3 

Number : Sing 
Sub] : Number : Sing 

V 

% 

V 

'I 
Vo~cs : Actiu,, | 
~< Sub] >, < Actor >! J 
G o a l  : P e r e o n  : 3 

N u m b e r  : P l  ] 
S~] : N u m b e r  : Pl 

SUBJECT CONSTITUENT: 
Lez : y'all ] 

DEFINITE = Sub] : Person : 2 
Number : P l  

INDEFINITE = N I L  

Figure 7: Two descriptions to be unified. 

pothesized description has ~< Sub]  >, < Goal >l, along with 
Sub] : Person  : 2. Therefore, since there is no compatible 
dlsjunct among (3) and (4), the hypothesis that  (1) is com- 
patible with the rest of the description has been shown to be 
invalid, and (1) can be eliminated. I t  follows that  disjunct 
(2) should be unified with the definite par t  of the descrip- 
tion. Now disjuncts (3) and (4) are checked for compatibi l i ty 
with the definite component of the new description: (3) is no 
longer compatible,  but  (4) is compatible.  Therefore, (3) ls 
eliminated, and (4) is unified with the definite information. 
No disjunctions remain in the result,  as shown in Figure 10. 

5 Complexity of the Algor i thm 

Referring to Figure 3, note that the function LrNIF¥-DESC 
may terminate after any of the three major steps. After each 
step it may detect  inconsistency between the two descriptions 
and terminate,  returning failure, or it  may terminate  because 
no disjunctions remain in the descrlption. Therefore, it is 
useful to examine the complexity of each of the three steps 
independently. 

Let n represent the to ta l  number of symbols in the com- 
bined description f ^ g, and d represent the total  number 
of disjuncts (in both top-level and embedded disjunctions) 
contained in f A g. 

Step I. This step performs the unification of two DG struc- 
tures. Ait-Kaci [11 has shown how this operation can be per- 
formed in almost linear time by the UNION/FIND algorithm. 
Its time complexity has an upper bound of O(n log n). Since 
an unknown amount of a description may be contained in the 
definite component, this step of the algorithm also requires 
O(n log n) time. 

Slop ~. For this step we examine the complexity of the 
function CHECK-INDEF. There are two nested loops in 

CHECK-INDEF,  each of which may be executed at most once 
for each disjunct in the description. The inner loop checks the 
compatibi l i ty of two DG structures,  which requires no more 
time than unification. Thus, in the worst case, CHECK- 
INDEF requires O(d2n log n) time. 

Step 8. NWISE-CONSISTENCY requires at most 0(2  ~/~) 
time. In this step, NWISE-CONSISTENCY is called at most 
(d/2) - 1 times. Therefore, the overall complexity of step 3 

0(2"/2). 
Discussion. While the worst case complexity of the entire 

algorithm i, 0(2~),  an exponential ,  it is significant that  it 
often terminates  before step 3, even when a large number 
of dlsjunctlons are present in one of the descriptions. Thus, 
in many pract ical  cases the actual  cost of the algorithm is 
bounded by a polynomial  that  is at most d2n log n. Since 
must be less than n, this complexity function is almost cubic. 
Even when step 3 must  be used, the number  of remaining 
disjunctions is often much fewer than d/2,  so the exponent 
i,  usually a small  number.  The algorithm performs well in 
most cases, because the three steps are ordered in increasing 
complexity, and the number of disjunctions can only decrease 
during unification. 

6 Implementa t ion  
The algorithm presented in the previous sections has been im- 
plemented and tested as part of a general parsing method for 
Systemic Functional Grammar, which is described in 13]. The 
algorithm was integrated with the structure building module 
of the PATR-II system [10], written in the Zetalisp program- 
ming language. 

While the feature-description corresponding to a grammar 
may have hundreds of disjunctions, the descriptions that re- 
sult from parsing a sentence usually have only a small number 
of disjunctions, if any at all. Most disjunctions in a systemic 
grammar represent possible alternative values that some par- 
ticular feature may have (along with the grammatical conse- 
quences entailed by choosing particular values for the fea- 
ture). In the analysis of a particular sentence most features 
have a unique value, and some features are not present at all. 
When disjunction remains in the description of a sentence 
after parsing, it usually represents ambiguity or an under- 
specified part of the grammar. 

With this implementation of the algorithm, sentences of 
up to I0 words have been parsed correctly, using a grammar 
which contains over 300 disjunctions. The time required for 
most sentences is in the range of 10 to 300 seconds, running 
on lisp machine hardware. 

The fact that sentences can be parsed at all with a gram- 
mar containing this many disjunctions indicates that the al- 
gorithm is performing much better than its theoretical worst 
case time of O(2d). 2 The timings, shown in Table 1, obtained 
from the experimental parser for systemic grammar also in- 
dicate that a dramatic increase in the number of disjunctions 
in the grammar does not result in an exponential increase 
in parse time. Gos is a grammar containing 98 disjunctions, 

2Consider, 2300 ~ 2 s°, and 2 s° is taken to be a rough estimate 
of the number of particles in the universe. 
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DESC.DEFINITE = 

R a n k  : C lause  
Case : Nora  
Lee : y 'all  

Sub]  : P e r s o n  : 2 

N u m b e r  : P l  

DESC.INDEFINI.TE = 

Voice  : P a s s i v e  
T r a n s i t i v i t y  : T r a n s  
[< Sub] >, < Goal >] 

T r a n s i t i v i t y  : I n t r a n s  
Actor  : P e r s o n  : 3 
N u m b e r  : S ing  
Sub]  : N u m b e r  : S i n g  

vE 1) [< Sub] >, < Ac tor  >] 

[ T r a n s i t i v i t y : T r a n s  t )  
V Goal : P e r s o n  : 3 

[ N u m b e r : P l  ] 
¢ Sub] : N u m b e r  : P l  

Figure 8: UNIFY-DESC: After step 1 (UNIFY-DGS). 

NEW-DESC.DEFINITE = 

R a n k  : Clause  
Case  : Nora 
Lee : y'  all 

Sub]: P e r s o n : 2  

N u m b e r  : PI  
N u m b e r  : PI  

NEW-DESC.INDEFINITE = 
Voice  : P a s s i v e  

(1) T r a n s i t i v i t y  : T r a n s  
[< Sub]  >, < Goal >] 

T r a n s i t i v i t y  : I n t r a n s  
(3) Actor  : P e r s o n  : 3 

Voice : Active ] ) 
v(2) ~<Suby>,<Actor>]  

V (4) Goal : P e r s o n  : 3 

Figure 9: UNIFY-DESC: After step 2 (CHECK-INDEF). 

R a n k  : Clause  

Case : Nora  
Lee  : y' all 

Sub]  : P e r s o n  : 2 

NEW-DESC.DEFINITE = N u m b e r  : P l  
N u m b e r  : P l  
Voice : Act ive  
[< S u b j  >, < Ac tor  >] 
T r a n s i t i v i t y  : T r a n s  
Goal : P e r s o n  : 3 

NEW-DESC.INDEFINITE = N I L  

Figure 10: UNIFY-DESC: After step 3 (NWISE-CONSISTENCY). 
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Sentence Gos G44o 
Nigel has been speaking English. 22.9 144".3 
Nigel has been speaking English to me. 28.6 203.5 

Table i: Timings obtained from a systemic parser. 

and G,,o is a grammar containing 440 disjunctions. The total 
time used to parse each sentence is given in seconds. 

7 C o n c l u s i o n s  

The unification method presented here represents a general 
solution to a seemingly intractable problem. This method has 
been used successfully in an experimental parser for a gram- 
mar containing several hundred disjunctions in its descrip- 
tion. Therefore, we expect that it can be used as the basis 
for language processing systems requiring large grammatical 
descriptions that contain disjunctive information, and refined 
as necessary and appropriate for specific applications. 

While the range of speed achieved by a straightfQrward 
implementation of this algorithm is acceptable for grammar 
testing, even greater efficiency would be desirable (and neces- 
sary for applications demanding fast real-time performance). 
Therefore, we suggest two types of refinement to this algo- 
rithm as topics for future research: using heuristics to deter- 
mine an opportune ordering of the dlsjuncts within a descrip- 
tion, and using parallel hardware to implement the compat- 
ibility tests for different disjunctions. 

Acknowledgements  

I would like to thank Bill Rounds, my advisor during gradu- 
ate studies at the University of Michigan, for hie helpful crit- 
icism of earlier versions of the algorithm which is presented 
here. I would also like to thank Bill Mann for suggestions 
during its implementation at USC/ISI, and Stuart Shieber 
for providing help in the use of the PATR-II system. 

This research was sponsored in part by the United States 
Air Force Office of Scientific Research contracts FQ8671-84- 
01007 and F49620-87-C.-0005, and in part by the United 
States Defense Advanced Research Projects Agency under 
contract MDA903-81-C-0335; the opinions expressed here are 
solely those of the author. 

[3] Kasper, R. Systemic Grammar and Functional Unifica- 
tion Grammar. In J. Benson and W. Greaves, editors, 
Systemic Functional Perspectives on Discourse: Selected 
Papers from the 12 t~ International Systemics Wor~hop, 
Norwood, New Jersey: Ablex (forthcoming). 

[4] Keeper, R. and W. Rounds. A Logical Semantics for 
Feature Structures. In Proceedings of the 24 eh Annual 
Meeting of the Association for Computational Linguistics, 
Columbia University, New York, N'Y, June 10-13, 1986. 

[5] Keeper, R. Feature Structures: A Logical Theory ~ith Ap- 
plication to Language Analysis. PhD dissertation, Uni- 
versity of Michigan, 1987. 

[6] Kay, M. Functional Grammar. In Proceedings of the 
Fifth Annual Meeting of the Berkeley Linguistics Soci- 
ety, Berkeley Linguistics Society, Berkeley, California, 
February 17-19, 1979. 

[7] Kay, M. Parsing in Functional Unification Grammar. In 
D. Dowty, L. Karttunen, and A. Zwicky, editors, Natu- 
ral Language Parsing. Cambridge University Press, Cam- 
bridge, England, 1985. 

[8] Perelra, F. C. N. and D. H. D. Warren. Definite clause 
grammars for language analysis - a survey of the formal- 
ism and a comparison with augmented transition net- 
works. Artificial Intelligence, 13:231-278, 1980. 

[9] Rounds, W. C. and R. Keeper. A Complete Logical 
Calculus for Record Structures Representing Linguistic 
Information. Symposium on Logic in Computer Science. 
IEEE Computer Society, June 16-18, 1986. 

[101 Shieber, S. M. The design of a computer language for 
linguistic information. In Proceedings of the Tenth Inter- 
national Conference on Computational Linguistics: COL- 
ING 84, Stanford University, Stanford, California, July 
2-7, 1984. 

[11] Shieber, S. M. An Introduction to Unification-based Ap- 
proaches to Grammar. Chicago: University of Chicago 
Press, CSLI Lecture Notes Series, 1986. 

R e f e r e n c e s  

[1] Ait-Kaci, H. A New Model of Computation Based on a 
Calculus of Type Subsumption. PhD thesis, University of 
Pennsylvania, 1984. 

[2l Karttunen, L. Features and Values. In Proceedings of the 
Tenth International Conference on Computational Lin- 
guistics: COLING 8~, Stanford University, Stanford, 
California, July 2-7, 1984. 

242 




