
A Unification Method for Disjunctive Feature Descriptions

Robert T. Kasper
USC/Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292

and

Electrical Engineering and Computer Science Department
University of Michigan

A b s t r a c t

Although disjunction has been used in several unification-
based grammar formalisms, existing methods of unification
have been unsatisfactory for descriptions containing large
quantities of disjunction, because they require exponential
time. This paper describes a method of unification by succes-
sive approximation, resulting in better average performance.

1 I n t r o d u c t i o n

Disjunction has been used in severM unlfication-based gram-
mar formalisms to represent alternative structures in descrip-
tions of constituents. Disjunction is an essential component
of grammatical descriptions in Kay's Functional Unification
Grammar [6], and it has been proposed by Karttunen as a
Linguistically motivated extension to PATR-II [2].

In previous work two methods have been used to handle
disjunctive descriptions in parsing and other computational
applications.

The first method requires expanding descriptions to dis-
]unctl've normal form (DNF) so tha t the entire descript ion
can be in terpre ted as a set of s t ructures , each of which con-
tains no disjunct ion. This me thod is exemplified by Definite
Clause Grammar [8], which eliminates disjunctive terms by
expanding each rule containing disjunction into alternative
rules. It is also the method used by Kay [7] in parsing FUG.
This method works reasonably well for small grammars, but
it is clearly unsatisfactory for descriptions containing more
than a small number of disjunctions, because the DNF ex-
pansion requires an amount of space which is exponential in
the number of disjunctions.

The second method, developed by Karttunen [2], uses con-
straints on dlsjuncts which must be checked whenever a die-
junct is modified. Karttunen's method is only applicable to
value disjunctions (i.e. those disjunctions used to specify the
value of a single feature), and it becomes complicated and in-

efficient when disjuncts contain non-local dependencies (i.e.
values specified by path expressions denoting another fea-
ture).

In previous research [4,5] we have shown how descriptions
of feature structures can be represented by a certain type
of logical formula, and that the consistency problem for dis-
junctive descriptions is NP-complete. This result indicates,
according to the widely accepted mathematical assumption
that P ~ NP, that any complete unification algorithm for
disjunctive descriptions wiU require exponential time in the
worst case. However, this result does not preclude algorithms
with better average performance, such as the method de-
scribed in the remainder of this paper. This method over-
comes the shortcomings of previously existing methods, and
has the following desirable properties:

1. It appUes to descriptions containing general disjunction
and non-local path expressions;

2. It delays expansion to DNF;

3. It can take advantage of fast unification algorithms for
non-disjunctive directed graph structures.

2 D a t a S t r u c t u r e s

The most common unification methods for non-disjunctive
feature structures use a directed graph (DG) representation,
in which arcs are labeled by names of features, and nodes
correspond to values of features. For an introduction to these
methods, the reader is referred to Shieber's survey [11 I. In
the remainder of this section we will define a data structure
for disjunctive descriptions, using DG structures as a basic
component.

In the following exposition, we will carefully observe the
distinction between feature structures and their descriptions,
as explained in [4]. Feature structures will be represented
by DGs, and descriptions of feature structures will be repre-
sented by logical formulas of the type described in [4 I. The

235

N I L
T O P

~< Px > , . . . , < P,~ >!

~ ^ ¢

,/, V ¢,

denoting no information;
denoting inco~istent information;
where a E A, to describe atomic values;
where l E L and ~ E FDL, to describe structures

in which the feature labeled by I has a value described by ~;

where each pC E L °, to describe an equivalence class

of paths sharing a common value in a feature structure;

where @, ¢ E FDL;

where @, ¢ E FDL.

Figure I: Syn tax of F D L Formulas .

syntax for formulas of this feature description logic (hereafter
called FDL) is given in Figure 1. I

Note, in particular, that disjunction is used in descriptions
of feature structures, but not in the structures themselves.
As we have shown (see [9]) that there is a unique minimal
satisfying DG structure for any nondisjunctive FDL formula,
we can represent the parts of a formula which do not contain
any disjunction by DGs. DGs are a more compact way of
representing the same information that is contained in a FDL
formula, provided the formula contains no disjunction.

Let us define an unconditional conjunct to be a conjunct
of a formula which contains no occurrences of disjunction.
After path expansion any formula can be put into the form:

uco~j ^ disj~ A . . . A disy,,,

where uconj contains no occurrences of disjunction, and each
disj¢, for 1 ~ i ~ m, is a disjunction of two or more alter-
natives. The ,~conj part of the formula is formed by using
the commutative law to bring all unconditional conjuncts of
the formula together at the front. Of course, there may be
no unconditional conjuncts in a formula, in which case ucoaj
would be the formula NIL.

Each disjunct may be any type of formula, so disjuncts can
also be put into a similar form, with aLl unconditional con-
juncts grouped together before all disjunctive components.
Thus the disjunctions of a formula can be put into the form

(~conj~ ̂ disA ~ ̂ . . . ^d isA,) v . . . v (uconj,, ^disj,, ~ ̂ . . . ^ dlsj , ,).

The embedding of conjuncts within disjuncts is preserved,
but the order of conjuncts may be changed.

The unconditional conjuncts of a formula contain informa-
tion that is more definite than the information contained in
disjunctions. Thus a formula can be regarded as having a
definite part, containing only unconditional conjuncts, and
an indefinite part, containing a set of disjunctions. The def-
inite part contains no disjunction , and therefore it may be
represented by a DG structure. To encode these parts of a
formula, let us define a feature-description as a type of data
structure, having two components:

ILet A and L be sets of symbols which are used to denote
atomic values and feature labels, respectively.

Figure 2: A N D / O R graph rep resen ta t ion of a feature
descript ion.

defl,n|te: a DG structure;

i nde f in i t e : a SET of disjunctions, where each disjunction
is a SET of feature.descriptlon.s.

It is poesibh to convert any FDL formula into a feature-
description structure by a simple automatic procedure, a.s
described in [5]. This conversion does not add or subtract any
information from a formula, nor increase its size in any sig-
nificant way. It simply identifies components of the formula
which may be converted into a more el~cient representation
as DG structures.

A feature-descriptlon is conceptually equivalent to a spe-
cial kind of AND/OR graph, in which the terminal nodes are
represented by DG structures. For example, an AND/OR
graph equivalent to the formula,

4,0 ^ (¢1 v ,/,2) ^ (~,3 v ¢4 v (Ca ^ (¢o v ¢7)))

is shown in Figure 2. In the AND/OR graph representa-
tlon, each AND-node represents a feature-description. The
first outgoing arc from an AND-node represents the definite
component of a feature-description, and the remaining outgo-
Lug arcs represent the indefinite component, Each OR-node
represents a disjunction.

236

Function I/N]FY-DESC (f, g) Returns feature.description:
where f and g are feature-descriptions.

I. Unify definite components.
Let new-def = UNIFY-DGS (f.definite, g.definite).
If new-def = TOP, then return (failure).
Let desc = a feature-description with:

desc.definite = new-def,
desc.indefinite = f.indefinite td g.indefinite.

If desc.indefinite = $,
Then return (desc);

Else begin;

2. Check compatibility of indefinite components with new-def.
Let new-desc = CHECK-INDEF (desc, new-def).
If new-desc = failure, then return (failure);

3. Complete ezhat~tiv¢ consistency checking, if necessary.
Else if new-desc.indefinite = $

OR if complete checking is not required,
Then return (new-desc);

Else begin;
Let n = 1.
Repeat while n < cardinallty of new-desc.indefinite:

new-desc := NWISE-CONSISTENCY (new-desc, n).
n:=n+l.

return (new-desc).
end.

end.

Figure 3: Unif icat ion a lgor i thm for feature-descript ions.

3 The Algorithm: Unification
by Successive Approx imat ion

In this section we will give a complete algorithm for unify-
ing two feature.descriptions, where one or both may contain
disjunction. This algorithm is designed so that it can be used
as a relatively efficient approximation method, with an op-
tional step to perform complete consistency checking when
necessary.

Given two feature-descriptions, the strategy of the unifi-
cation algorithm is to unify the definite components of the
descriptions first, and examine the compatibility of indefi-
nite components later. Disjuncts are eliminated from the
description when they are inconsistent with definite informa-
tion. This strategy avoids exploring dlsjuncts more than once
when they are inconsistent with definite information.

The exact algorithm is described in Figure 3. It has three
major steps.

In the first step, the definite components of the two de-
scriptions are unified together, producing a DG structure,
new-def, which represents the definite information of the re-
sult. This step can be performed by existing unification al-
gorithms for DGs.

In the second step, the indefinite components of both de-

scriptions are checked for compatibility with new-def, using
the function CHECK-INDEF, which is defined in Figure 4.
CHECK-IN]DEF uses the function CHECK-DIS J, defined in
Figure 5, to check the compatibility of each disjunction with
the DG structure given by the parameter con&

The compatibility of two DGs can be checked by almost the
same procedure as unification, but the two structures being
checked are not actually merged as they are in unification.

In the third major step, if any disjunctions remain, and it
is necessary to do so, disjuncts of different disjunctions are
considered in groups, to check whether they are compatible
together. This step is performed by the function NWISE-
CONSISTENCY, defined in Figure 6.

When the parameter r~ to NWISE,-CONSISTENCY has
the value 1, then one disjunct is checked for compatibility
with all other disjunctions of the description in a pairwise
manner. The pairwise manner of checking compatibility can
be generalized to groups of any size by increasing the value
of the parameter n.

While this third step of the algorithm is necessary in or-
der to insure consistency of disjunctive descriptions, it is not
necessary to use it every time a description is built during a
parse. In practice, we find that the performance of the algo-
rithm can be tuned by using this step only at strategic points
during a parse, since it is the most inefficient step of the al-

237

Function CHECK-INDEF (desc, cond) Returns feature-description:
where deac is a feature-description,
and cond is a DG.

Let indef = desc.indeflnite (a set of disjunctions).
Let new-def = desc.deflnite (a DG).
Let unchecked-parts ~ true.

While unchecked-parts, begin;

unchecked-parts := false.
Let new-indef = ~.

For each disjunetiort in indef."
Let compatible-disjuncts = CHECK-DISJ (disjunction, cond).
If cardinality of compatible-disjuncts is:

0 : Return (failure);
1 : Let disjunct ---- single element of compatible-disjuncts.

new-def :--- UNIFY-DGS (new-def, disjunct.deflnite).
newoindef := new-indef tJ disjunct.indeflnite.
unchecked-parts := true;

otherwise : new-indef :ffi newoindef U {compatible-disjuncta}.

Prepare to check remaining disjunctions for compatibility with new-def.
cond := new-def.
indef :~ new-indef.
end (while loop).

Let newodesc ~= make feature-description with:
new-desc.deflnite ---- new-def,
new.desc.indeflnite ---- new-indef.

Return (new-desc).

Figure 4: Algorithm to check compatibility of indefinite parts of feature-descriptions with respect to a condition DG.

Function CHECK-DISJ (disj, cord) Return8 disjunction:
where disj is a disjunction of feature-descriptions,
and cond is a DG.

Let new-disj = 0 (a set of feature-descriptions).

For each disjunct in disj:
If DGS-COMPATIBLE? (cond, disjunct.definite),

Then if disjunct.indeflnite = $,
Then new-disj := new-disj t9 {disjunct};

Else begin;
Let new-disjunct : CHECK-INDEF (disjunct, cond).
If new-disjunct ~ failure, then begin;

new-disj := new-disj t9 {new-dlsjunct}.
end.

end.

Return (new-disj).

F i g u r e 5: A l g o r i t h m to c h e c k c o m p a t i b i l i t y of d i s j u n c t i o n s w i t h r e s p e c t to a c o n d i t i o n D G .

238

Funetlon NWISE-CONSISTENCY (desc, n) Returns feature-description:
where desc is a feature-description.

If number of disjunctions in desc.indefinite _< n,
T h e n R e t u r n (de sc) .

L e t de f = d e s c . d e f i n i t e .
L e t i n d e f = d e s c . i n d e f i n i t e .
L e t n e w - i n d e f = ~.

W h i l e d i s i u n c t i o n s r e m a i n in i nde f :
L e t d i s i u n c t i o n ---- r e m o v e o n e d i s j u n c t i o n f r o m inde f .
L e t n e w - d i s j = ~.

For e a c h dlsjuTtct in d i s j u n c t i o n :
L e t d i s j u n c t - d e f ---- U N I F Y - D G S (def , d i s i u n c t . d e f i n i t e) .
L e t d i s j u n c t - i n d e f ---- d i s j u n e t . i n d e f i n i t e U i n d e f U n e w - i n d e f .
L e t h y p - d e s c = m a k e f e a t u r e - d e s c r i p t i o n w i t h :

h y p - d e s c . d e f i n i t e = d i s j u n c t - d e f ,
h y p - d e s c . i n d e f i n i t e ---- d i s i u n e t - i n d e f .

If n = 1,
T h e n le t n e w - d e s c = C H E C K - I N D E F (h y p - d e s c , d i s j u n c t - d e f) .

Else let new-desc = NWISE-CONSISTENCY (hyp-desc, n-l).
If new-desc ~ failure,

Then new-disj := new-disj tJ (new-desc}.

If c a r d i n a l i t y of n e w - d i s j is:
O: R e t u r n (f a i l u r e) ;
1: L e t n e w - d e s c = s ing l e e l e m e n t of n e w - d i s j .

de f : = n e w - d e s c . d e f i n i t e .
i n d e f : = n e w - d e s e . i n d e f i n i t e .
n e w - i n d e f : = ¢;

o t h e r w i s e : (k e e p t h i s d i s j u n c t i o n in r e s u l t)
n e w - i n d e f : = n e w - i n d e f U { n e w - d i s j } .

L e t r e s u l t - d e s c = m a k e f e a t u r e - d e s c r i p t i o n w i t h :
r e s u l t - d e s c . d e f i n i t e = def ,
result-desc.indefinite = n e w - i n d e f .

R e t u r n (r e s u l t - d e s c) .

Figure 6: A l g o r i t h m to check c o m p a t i b i l i t y of d i s junc t ions of a desc r ip t ion by checking groups of n d i s junc t ions .

gorithm. In our application, using the Earley chart parsing
method, it has proved best to use NWISE-CONSISTENCY
only when building descriptions for complete edges, but not
when building descriptions for active edges.

Note that two feature-descriptions do not become perma-
nently linked when they are unified, unlike unification for
DG stuctures. The result of unifying two descriptions is a
new description, which is satisfied by the intersection of the
sets of structures that satisfy the two given descriptions. The
new descriptlon contains all the information that is contained
in either of the given descriptions, subtract ing any disjuncts
which are no longer compatible.

4 An example

In order to illustrate the effect of each step of the algo-
ri thm, let us consider an example of unifying the descrip-
tion of a known constituent with the description of a por-
tion of a grammar. This exemplifies the predominant type of
structure building operation needed in a parsing program for
Functional Unification Grammar. The example given here is
deliberately simple, in order to il lustrate how the algorithm
works with a minimum amount of detail. It is not intended
as an example of a linguistically motivated grammar.

Let us trace what happens when the two descriptions of
Figure 7 are given as inputs to the function UNIFY-DESC.
Figure 8 shows the feature-description which results after
step 1 of the algorithm. The definite components of the two
descriptions have been unified, and their indefinite compo-
nents have been conjoined together.

In step 2 of the algorithm each of the disjuncts
of DESC.INDEFINITE is checked for compatibil i ty with
DESC.DEFINITE, using the function CHECK-IN'DEF. In
this case, all disjuncts are compatible with the definite infor-
mation, except for one; the disjunct of the third disjunction
which contains the feature N u m b e r : S ing . This disjunct is
eliminated, and the only remaining disjunct in the disjunc-
tion (i.e., the disjunct containing N u m b e r : PI) is unified
with DESC.DEFINITE. The result after this step is shown
in Figure 9. The four disjuncts that remain are numbered for
convenience.

In step 3, NWISE-CONSISTENCY is used with 1 as the
value of the parameter n. A new description is hypothesized
by unifying disjunct (1) with the definite component of the
description (i.e., NEW-DESC.DEFINITE) . Then disjuncts
(3) and (4) are checked for compatibi l i ty with this hypothe-
sized structure: (3) is not compatible, because the values of
the T r a n s i t i v i t y features do not unify. Disjunct (4) is also
incompatible, because it has Goal : P e r s o n : 3, and the hy-

239

GRAMMAR:

DEFINITE = [Rank : Clause]
Sub] : Caes : Nora

INDEFINITE =

([Yo4ca : Paa~dus
Transi t iv i ty : Trana
~< Sub] >, < Goal >]
Traneitlvity : Intran$
A c t o r : P e r s o n : 3

Number : Sing
Sub] : Number : Sing

V

%

V

'I
Vo~cs : Actiu,, |
~< Sub] >, < Actor >! J
G o a l : P e r e o n : 3

N u m b e r : P l]
S~] : N u m b e r : Pl

SUBJECT CONSTITUENT:
Lez : y'all]

DEFINITE = Sub] : Person : 2
Number : P l

INDEFINITE = N I L

Figure 7: Two descriptions to be unified.

pothesized description has ~< Sub] >, < Goal >l, along with
Sub] : Person : 2. Therefore, since there is no compatible
dlsjunct among (3) and (4), the hypothesis that (1) is com-
patible with the rest of the description has been shown to be
invalid, and (1) can be eliminated. I t follows that disjunct
(2) should be unified with the definite par t of the descrip-
tion. Now disjuncts (3) and (4) are checked for compatibi l i ty
with the definite component of the new description: (3) is no
longer compatible, but (4) is compatible. Therefore, (3) ls
eliminated, and (4) is unified with the definite information.
No disjunctions remain in the result, as shown in Figure 10.

5 Complexity of the Algor i thm

Referring to Figure 3, note that the function LrNIF¥-DESC
may terminate after any of the three major steps. After each
step it may detect inconsistency between the two descriptions
and terminate, returning failure, or it may terminate because
no disjunctions remain in the descrlption. Therefore, it is
useful to examine the complexity of each of the three steps
independently.

Let n represent the to ta l number of symbols in the com-
bined description f ^ g, and d represent the total number
of disjuncts (in both top-level and embedded disjunctions)
contained in f A g.

Step I. This step performs the unification of two DG struc-
tures. Ait-Kaci [11 has shown how this operation can be per-
formed in almost linear time by the UNION/FIND algorithm.
Its time complexity has an upper bound of O(n log n). Since
an unknown amount of a description may be contained in the
definite component, this step of the algorithm also requires
O(n log n) time.

Slop ~. For this step we examine the complexity of the
function CHECK-INDEF. There are two nested loops in

CHECK-INDEF, each of which may be executed at most once
for each disjunct in the description. The inner loop checks the
compatibi l i ty of two DG structures, which requires no more
time than unification. Thus, in the worst case, CHECK-
INDEF requires O(d2n log n) time.

Step 8. NWISE-CONSISTENCY requires at most 0(2 ~/~)
time. In this step, NWISE-CONSISTENCY is called at most
(d/2) - 1 times. Therefore, the overall complexity of step 3

0(2"/2).
Discussion. While the worst case complexity of the entire

algorithm i, 0(2~), an exponential , it is significant that it
often terminates before step 3, even when a large number
of dlsjunctlons are present in one of the descriptions. Thus,
in many pract ical cases the actual cost of the algorithm is
bounded by a polynomial that is at most d2n log n. Since
must be less than n, this complexity function is almost cubic.
Even when step 3 must be used, the number of remaining
disjunctions is often much fewer than d/2, so the exponent
i, usually a small number. The algorithm performs well in
most cases, because the three steps are ordered in increasing
complexity, and the number of disjunctions can only decrease
during unification.

6 Implementa t ion
The algorithm presented in the previous sections has been im-
plemented and tested as part of a general parsing method for
Systemic Functional Grammar, which is described in 13]. The
algorithm was integrated with the structure building module
of the PATR-II system [10], written in the Zetalisp program-
ming language.

While the feature-description corresponding to a grammar
may have hundreds of disjunctions, the descriptions that re-
sult from parsing a sentence usually have only a small number
of disjunctions, if any at all. Most disjunctions in a systemic
grammar represent possible alternative values that some par-
ticular feature may have (along with the grammatical conse-
quences entailed by choosing particular values for the fea-
ture). In the analysis of a particular sentence most features
have a unique value, and some features are not present at all.
When disjunction remains in the description of a sentence
after parsing, it usually represents ambiguity or an under-
specified part of the grammar.

With this implementation of the algorithm, sentences of
up to I0 words have been parsed correctly, using a grammar
which contains over 300 disjunctions. The time required for
most sentences is in the range of 10 to 300 seconds, running
on lisp machine hardware.

The fact that sentences can be parsed at all with a gram-
mar containing this many disjunctions indicates that the al-
gorithm is performing much better than its theoretical worst
case time of O(2d). 2 The timings, shown in Table 1, obtained
from the experimental parser for systemic grammar also in-
dicate that a dramatic increase in the number of disjunctions
in the grammar does not result in an exponential increase
in parse time. Gos is a grammar containing 98 disjunctions,

2Consider, 2300 ~ 2 s°, and 2 s° is taken to be a rough estimate
of the number of particles in the universe.

240

DESC.DEFINITE =

R a n k : C lause
Case : Nora
Lee : y 'all

Sub] : P e r s o n : 2

N u m b e r : P l

DESC.INDEFINI.TE =

Voice : P a s s i v e
T r a n s i t i v i t y : T r a n s
[< Sub] >, < Goal >]

T r a n s i t i v i t y : I n t r a n s
Actor : P e r s o n : 3
N u m b e r : S ing
Sub] : N u m b e r : S i n g

vE 1) [< Sub] >, < Ac tor >]

[T r a n s i t i v i t y : T r a n s t)
V Goal : P e r s o n : 3

[N u m b e r : P l]
¢ Sub] : N u m b e r : P l

Figure 8: UNIFY-DESC: After step 1 (UNIFY-DGS).

NEW-DESC.DEFINITE =

R a n k : Clause
Case : Nora
Lee : y' all

Sub]: P e r s o n : 2

N u m b e r : PI
N u m b e r : PI

NEW-DESC.INDEFINITE =
Voice : P a s s i v e

(1) T r a n s i t i v i t y : T r a n s
[< Sub] >, < Goal >]

T r a n s i t i v i t y : I n t r a n s
(3) Actor : P e r s o n : 3

Voice : Active])
v(2) ~<Suby>,<Actor>]

V (4) Goal : P e r s o n : 3

Figure 9: UNIFY-DESC: After step 2 (CHECK-INDEF).

R a n k : Clause

Case : Nora
Lee : y' all

Sub] : P e r s o n : 2

NEW-DESC.DEFINITE = N u m b e r : P l
N u m b e r : P l
Voice : Act ive
[< S u b j >, < Ac tor >]
T r a n s i t i v i t y : T r a n s
Goal : P e r s o n : 3

NEW-DESC.INDEFINITE = N I L

Figure 10: UNIFY-DESC: After step 3 (NWISE-CONSISTENCY).

241

Sentence Gos G44o
Nigel has been speaking English. 22.9 144".3
Nigel has been speaking English to me. 28.6 203.5

Table i: Timings obtained from a systemic parser.

and G,,o is a grammar containing 440 disjunctions. The total
time used to parse each sentence is given in seconds.

7 C o n c l u s i o n s

The unification method presented here represents a general
solution to a seemingly intractable problem. This method has
been used successfully in an experimental parser for a gram-
mar containing several hundred disjunctions in its descrip-
tion. Therefore, we expect that it can be used as the basis
for language processing systems requiring large grammatical
descriptions that contain disjunctive information, and refined
as necessary and appropriate for specific applications.

While the range of speed achieved by a straightfQrward
implementation of this algorithm is acceptable for grammar
testing, even greater efficiency would be desirable (and neces-
sary for applications demanding fast real-time performance).
Therefore, we suggest two types of refinement to this algo-
rithm as topics for future research: using heuristics to deter-
mine an opportune ordering of the dlsjuncts within a descrip-
tion, and using parallel hardware to implement the compat-
ibility tests for different disjunctions.

Acknowledgements

I would like to thank Bill Rounds, my advisor during gradu-
ate studies at the University of Michigan, for hie helpful crit-
icism of earlier versions of the algorithm which is presented
here. I would also like to thank Bill Mann for suggestions
during its implementation at USC/ISI, and Stuart Shieber
for providing help in the use of the PATR-II system.

This research was sponsored in part by the United States
Air Force Office of Scientific Research contracts FQ8671-84-
01007 and F49620-87-C.-0005, and in part by the United
States Defense Advanced Research Projects Agency under
contract MDA903-81-C-0335; the opinions expressed here are
solely those of the author.

[3] Kasper, R. Systemic Grammar and Functional Unifica-
tion Grammar. In J. Benson and W. Greaves, editors,
Systemic Functional Perspectives on Discourse: Selected
Papers from the 12 t~ International Systemics Wor~hop,
Norwood, New Jersey: Ablex (forthcoming).

[4] Keeper, R. and W. Rounds. A Logical Semantics for
Feature Structures. In Proceedings of the 24 eh Annual
Meeting of the Association for Computational Linguistics,
Columbia University, New York, N'Y, June 10-13, 1986.

[5] Keeper, R. Feature Structures: A Logical Theory ~ith Ap-
plication to Language Analysis. PhD dissertation, Uni-
versity of Michigan, 1987.

[6] Kay, M. Functional Grammar. In Proceedings of the
Fifth Annual Meeting of the Berkeley Linguistics Soci-
ety, Berkeley Linguistics Society, Berkeley, California,
February 17-19, 1979.

[7] Kay, M. Parsing in Functional Unification Grammar. In
D. Dowty, L. Karttunen, and A. Zwicky, editors, Natu-
ral Language Parsing. Cambridge University Press, Cam-
bridge, England, 1985.

[8] Perelra, F. C. N. and D. H. D. Warren. Definite clause
grammars for language analysis - a survey of the formal-
ism and a comparison with augmented transition net-
works. Artificial Intelligence, 13:231-278, 1980.

[9] Rounds, W. C. and R. Keeper. A Complete Logical
Calculus for Record Structures Representing Linguistic
Information. Symposium on Logic in Computer Science.
IEEE Computer Society, June 16-18, 1986.

[101 Shieber, S. M. The design of a computer language for
linguistic information. In Proceedings of the Tenth Inter-
national Conference on Computational Linguistics: COL-
ING 84, Stanford University, Stanford, California, July
2-7, 1984.

[11] Shieber, S. M. An Introduction to Unification-based Ap-
proaches to Grammar. Chicago: University of Chicago
Press, CSLI Lecture Notes Series, 1986.

R e f e r e n c e s

[1] Ait-Kaci, H. A New Model of Computation Based on a
Calculus of Type Subsumption. PhD thesis, University of
Pennsylvania, 1984.

[2l Karttunen, L. Features and Values. In Proceedings of the
Tenth International Conference on Computational Lin-
guistics: COLING 8~, Stanford University, Stanford,
California, July 2-7, 1984.

242

