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A B S T R A C T  

We consider the structural descriptions produced by vari- 
ous grammatical formalisms in ~ of the complexity of the 
paths and the relationship between paths in the sets of structural 
descriptions that each system can generate. In considering the 
relationship between formalisms, we show that it is useful to 
abstract away from the details of the formalism, and examine 
the nature of their derivation process as reflected by properties 
of their deriva:ion trees. We find that several of the formalisms 
considered can be seen as being closely related since they have 
derivation tree sets with the same structure as those produced 
by Context-Free C-ramma~. On the basis of this observation, 
we describe a class of formalisms which we call Linear Context- 
Free Rewriting Systems, and show they are recognizable in poly- 
nomial time and generate only semilinear languages. 

1 Introduction 

Much of the study of grammatical systems in computational 
linguistics has been focused on the weak generative capacity of 
grammatical forma~sm- Little attention, however, has been paid 
to the structural descriptions that these formalisms can assign to 
strings, i.e. their strong generative capacity. This aspect of the 
formalism i s  beth linguistically and computationally important. 
For example, Gazdar (1985) discusses the applicability of In- 
dexed Grammars (IG's) to Natural Language in terms of the 
structural descriptions assigned; and Berwick (1984) discusses 
the strong generative capacity of Lexical-Functional Grammar 
CLFG) and Government and Bindings grammars (GB). The work 
of Thatcher (1973) and Rounds (1969) define formal systems 
that generate tree sets that are related to CFG's and IG's. 

We consider properties of the tree sets generated by CFG's, 
Tree Adjoining Grammars (TAG's), Head GrammarS (HG's), 
Categorial Grammars (CG's), and IG's. We examine both the 
complexity of the paths of trees in the tree sets, and the kinds 
of dependencies that the formalisms can impose between paths. 
These two properties of the tree sets are not only linguistically 
relevant, but also have computational importance. By consider- 
ing derivation trees, and thus abstracting away from the details of 
the composition operation and the structures being manipuht_ed, 
we are able to state the similarities and differences between the 
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formalisms. It is striking that from this point of view many for- 
malisms can be grouped together as having identically s~'uctm'ed 
derivation tree sets. This suggests that by generalizing the notion 
of context-freeness in CFG's, we can define a class of grarnmati- 
ca] formalisms that manipulate more complex structures. In this 
paper, we outline how such family of formalisms can be defined, 
and show that like CFG's, each member possesses a number of 
desirable linguistic and computational properties: in particular, 
the constant growth property and polynomial recognizability. 

2 Tree Sets of Various Formalisms 

2.1 Context-Free Grammars 

From Thateheds (1973) work, it is obvious that the complexity 
of the set of paths from root to frontier of trees in a local set (the 
tree set of a CFG) is regular ~ . We define the path set of a tree 7 
as the set of strings that label a path from the root to frontier of 
7. The path set of a tree set is the union of the path sets of trees 
in that tree set. It can be easily shown from Thateher's result 
that the path set of every local set is a regular set. As a result, 
CFG's  can not provide the structural descriptions in which there 
are nested dependencies between symbols labelling a path. For 
example, CFG's cannot produce trees of the form shown in Fig- 
ure I in which there are nested dependencies between S and NP 
nodes appearing on the spine of the tree. Gazdar (1985) argues 
this is the appropriate analysis of unbounded dependencies in the 
hypothetical Scandinavian language Norwedish. He also argues 
that paired English complementizers may also require structural 
descriptions whose path sets have nested dependencies. 

2.2 H e a d  G r a m m a r s  a n d  G e n e r a l i z e d  C F G ' s  

Head Grammars (HG's), introduced by Pollard (1984), is a for- 
realism that manipulates headed strings: i.e., strings, one of 
whose symbols is distinguished as the head. Not only is con- 
catenation of these s~ings possible, but head wrapping can be 
used to split a string and wrap it around another string. The 
productions of HG's  are very similar to those of CFG's except 
that the operation used must be made explicit. Thus, the tree 
sets generated by HG's are similar to those of CFG's, with each 
node annotated by the operation (concatenation or wrapping) 
used to combine the headed s~ngs  derived by the daughters of 

IThatcher actually chxacter/zed recognizable set~ for the purposes of this 
paper we do not distinguish them from local gels. 
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Figure 1: Nested dependencies in Norwedish 

that node. A derivation tree giving an analysis of Dutch subor- 
dinate clauses is given in Figure 2. 
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Figure 2: HG analysis of Dutch subordinate clauses 

HG's are a special case of a class of formalisms called 
Generalized Context-Free Grammars, also introduced by Pol- 
lard (1984). A formalism in this class is defined by a finite 
set of operations (of which concatenation and wrapping are two 
possibilities). As in the case of HG's the annotated tree sets for 
these formalisms have the same structure as local sets. 

2.3 Tree Ad jo in ing  G r a m m a r s  

Tree Adjoining Grzrnmars, a tree rewriting formalism, was intro- 
duced by Joshi, Levy and Takabashi (1975) and Joshi (1983/85). 
A TAG consists of a finite set of elementary trees that are ei- 
ther initial trees or auxg/ary trees. Trees are composed using 
an operation called adjoining, which is defined as follows. Let 

be some node labeled X in a tree 3' (see Figure 3). Let 3" be 
a tree with root and foot labeled by X. When -/' is a d j o i n e d  
at r/ in the tree 3' we obtain a tree 3"". The subtree under ~1 
is excised from 3', the tree 3" is inserted in its place and the 
excised subtree is inserted below the foot of 3". 

It can be shown that the path set of the tree set generated by 
a TAG G is a context-free language. TAG's can be used to give 

Y: S 

i ' .  s 

r'." x 

/?,,, 
Figure 3: Adjunction operation 

the structural descriptions discussed by Gazdar (1985) for the 
unbounded nested dependencies in Norwedish, for cross serial 
dependencies in Dutch subordinate clauses, and for the nestings 
of paired English complementizers. 

From the definition of TAG's, it follows that the choice of 
adjunodon is not dependent on the history of the derivation. 
Like CFG's, the choice is predetermined by a finite number of 
rules encapsulated in the grammar. Thus, the derivation trees 
for TAG's have the same structure as local sets. As with HG's 
derivation structures are annotated; in the case of TAG's, by the 
trees used for adjunction and addresses of nodes of the elemen- 
tary tree where adjuoctions occurred. 

We can define derivation trees inductively on the length of 
the derivation of a tree 3'. If 3' is an elementary tree, the deriva- 
tion tree consists of a single node labeled 3'. Suppose 3' results 
from the adjunction of 3"1,..., 3"k at the k distinct tree addresses 
n l , . . . ,  nk in some elementary tree 3", respectively. The tree 
denoting this derivation of 3' is rooted with a node labeled 7' 
having k sublrees for the derivations of 3"z,..., 3'k. The edge 
from the root to the subtree for the derivation of 3'~ is labeled 
by the address n~. To show that the derivation tree set of a 
TAG is a local set, nodes are labeled by pairs consisting of the 
name of an elementary tree and the address at which it was ad- 
joined, instead of labelling edges with addresses. The following 
rule corresponds to the above derivation, where 3 '1, . . . ,  3"k are 
derived from the auxiliary trees ~1 . . . . .  ~k, respectively. 

(3", n) - -  h i ) . . .  
for all addresses n in some elementary tree at which 7 ~ can be 
adjoined. If 3" is an initial tree we do not include an address on 
the left-hand side. 

2.4 Indexed  G r a m m a r s  

There has been recent interest in the application of Indexed 
Grammars (IG's) to natural languages. Gazdar (1985) considers 
a number of linguistic analyses which IG's (but not CFG's) can 
make, for example, the Norwedish example shown in Figure i. 
The work of Rounds (1969) shows that the path sets of trees de- 
rived by IG's (like those of TAG's) are context-free languages. 
Trees derived by IG's exhibit a property that is not exhibited by 
the trees sets derived by TAG's or CFG's. Informally, two or 
more paths can be dependent on each other:, for example, they 
could be required to be of equal length as in the trees in Figure 4. 
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IG's can generate trees with dependent paths as in Figure 4b. 
Although the path set for trees in Figure 4a is regular, no CFG 

$ a 

a ~ b ~ a / A  / B  

a • b • 
/ A  / B  . . a 

a b 
(a) (b) 

Figure 4: Example with dependent paths 

generates such a tree set. We focus on this difference between 
the U'ee sets of CFG's and IG's, and formaliTe the notion of 
dependence between paths in a tree set in Section 3. 

An IG can he viewed as a CFG in which each nonterminal 
• is associated with a stack. Each production can push or pop 

symbols on the stack as can he seen in the following productions 
that generate tree of the form shown in Figure 4b. 

- .  s(n, , )  push 
- share 

- , ,A(o,) pop 
B(~a) - -  bB(a) pop 
A O  - -  
BO - b 

Gazdar (1985) argues that sharing of stacks can be used to give 
analyses for coordination. Analogous to the sharing of stacks 
in IG's, Lexical-Functional Grammar's (LFG's) use the unifi- 
cation of unbounded hierarchical structures. Unification is used 
in LFG's  to produce structures having two dependent spines 
of unbounded length as in Figure 5. Bresnan, Kaplan, Peters, 
and Zaenen (1982) argue that these structures are needed to de- 
scribe erossed-serial dependencies in Dutch subordinate clauses. 
Gaadar (1985) considers a restriction of lG's  in which no more 
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Figure 5: LFG analysis of Dutch subordinate clauses 

than one nonterminal on the right-hand-side of a production can 
inherit the stack from the left-hand-side. Unbounded dependen- 
cies between branches are not possible in such a system. TAG's 

can be shown to be equivalent to this restricted system. Thus, 
TAG's can not give analyses in which dependencies between 
arbitrarily large branches exist. 

2.5 C a t e g o r i a l  G r a m m a r s  

Steedman (1986) considers Categorial Grammars in which both 
the operations of function application and composition may be 
used, and in which function can specify whether they take their 
arguments from their right or left. While the generative power 
of CG's is greater that of CFG's, it appears to be highly con- 
strained. Hence, their relationship to formalisms such as HG's 
and TAG's is of interest. On the one hand, the definition of com- 
position in Steedm~- (1985), which technically permits compo- 
sition of functions with unbounded number of arguments, gen- 
erates tree sets with dependent paths such as those shown in 
Figure 6. This kind of dependency arises from the use of the 

b 2 

Figure 6: Dependent branches from Categorial Grammars 

composition operation to compose two arbitrarily large cate- 
gories. This allows an unbounded amount of information about 
two separate paths (e.g. an encoding of their length) to be com- 
bined and used to influence the later derivation. A consequence 
of the ability to generate tree sets with this property is that CG's 
under this definition can generate the following language which 
can not be gener~_t_~_ by either TAG's or HG's. 

{a  a 1 a 2 b I b 2 b [ n = n l  + - 2 }  

On the other hand, no linguistic use is made of this general 
form of composition and Steedman (personal communication) 
and Steedman (1986) argues that a more limited definition of 
composition is more natural. With this restriction the resulting 
tree sets will have independent paths. The equivalence of CG's 
with this restriction to TAG's and HG's is, however, still an 
open problem. 

2.6 M u l t i c o m p o n e n t  T A G ' s  

An extension of the TAG system was introduced by Joshi et al. 
(1975) and later redefined by Joshi (1987) in which the adjunc- 
tion operation is defined on sets of elementary trees rather than 
single trees. A multicomponent Tree Adjoining Grammar (MC- 
TAG) consists of a finite set of finite elementary tree sets. We 
must adjoin all trees in an auxiliary tree set together as a single 
step in the derivation. The adjuncfion operation with respect 
to tree sets (multicomponent adjunction) is defined as follows. 
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Each member of a set of trees can be adjoined into distinct nodes 
of trees in a single elementary tree set, i.e, derivations always 
involve the adjunction of a derived auxiliary tree set into an 
elementary tree set. 

Like CFG's, TAG's, and HG's the derivation tree set of a 
MCTAG will be a local set. The derivation trees of a MCTAG 
are similar to those of a TAG. Instead of the names of elementary 
trees of a TAG, the nodes are labeled by a sequence of names 
of trees in an elementary tree set. Since trees in a tree set 
are adjoined together, the addressing scheme uses a sequence of 
pairings of the address and name of the elementary tree adjoined 
at that address. The following context-frue production captures 
the derivation step of the grammar shown in Figure 7, in which 
the trees in the auxiliary tree set are adjoined into themselves at 
the root node (address e). 

The path complexity of the tree set generated by a MCTAG is not 
necessarily context-free. Like the string languages of MCTAG's, 
the complexity of the path set increases as the cardinality of the 
elementary tree sets increases, though hoth the string languages 
and path sets wi l l  always be semilinear. 

MCTAG's are able to generate tree sets having dependent 
paths. For example, the MCTAG shown in Figure 7 generates 
trees of the form shown in Figure 4b. The number of paths that 

A I  J ,/J / ,  
Figure 7: A MCTAG with dependent paths 

can be dependent is bounded by the grammar (in fact the max- 
imum cardinality of a tree set determines this bound). Hence, 
trees shown in Figure 8 can not be generated by any MCTAG 
(but can be generated by an IG) because the number of pairs of 
dependent paths grows with n. 

h c i l a t ,  a 
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h e i l h t .  = 

Figure 8: Trees with unbounded dependencies 

Since the derivation trees of TAG's, MCTAG's, and HG's 
are local sets, the choice of the structure used at each point in 
a derivation in these systems does not depend on the context 
at that point within the derivation. Thus, as in CFG's, at any 
point in the derivation, the set of structures that can be applied 
is determined only by a finite set of rules encapsulated by the 
grammar. We characterize a class of formalisms that have this 
property in Section 4. We loosely describe the class of all such 
systems as Linear Context-Free Rewriting Formalisms. As is 
described in Section 4, the property of having a derivation tree 
set that is a local set appears to be useful in showing important 
properties of the languages generated by the formalisms. The 
semflineerity of Tree Adjoining Languages (TAL's), MCTAL's, 
and Head Languages (I-IL's) can be proved using this property, 
with suitable restrictions on the composition operations. 

3 Dependencies between Paths 

Roughly spe~ki,g, we say that a tree set contains trees with 
dependent paths if there are two paths p.~ = u~v.~ and q.y = 

u.lw.1 in each -/ E r' such that u-y is some, possibly empty, 
shared initial subpath; v.y and w.y are not hounded in length; 
and there is some "dependence" (such as equal length) between 
the set of all v.~ and w. r for each ~/ E I'. A tree set may be 
said to have dependencies between paths if some "appropriate" 
subset can be shown to have dependent paths as defined above. 

We attempt to formalize this notion in terms of the tree 
pumping lemma which can be used to show that a tree set 
does not have dependent paths. Thatcher (1973) describes a 
tree pumping lemma for recognizable sets related to the suing 
pumping ]emma for regular sets. The tree in Figure 9a can be 
denoted by t l t2t3 where tree substitution is used instead of con- 
catenation. The tree pumping lemm2 states that if there is tree, 
t = h t 2 t s ,  generated by a CFG G, whose height is more than 
a predetermined bound k, then all trees of the form tlt2t 3 for 
each i >_ 0 will also generated by (3 (as shown in Figure 9b). 
The suing pumping lemma for CFG's (uvuTz!/-theorem) can be 
seen as a corollary of this lemma. 

$ 

x 

w 

(=) Co) 

Figure 9: Tree pumping lemma for local sets 

The fact that local sets do not have dependent paths follows 
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from this pumping lemma: a single path can be pumped in- 
dependently. For example, let us consider a tree set containing 
trees of the form shown in Figure 4a. The tree t~ must be on one 
of the two branches. Pumping ta will change only one branch 
and leave the other b~aach unaffected. Hence, the resulting trees 
wiU no longer have two branches of equal size, 

We can give a tree pumping lemma for TAG's by adapt- 
ing the uvwzy-tbeorem for CFL's since the Uee sets of TAG's 
have independent and context-free paths. This pumping ]emma 
states that if there is tree, t = tzt2tat4ts, gener=_t_-~_ by a TAG 
G, such that its height is more than a predetermined bound k, 
then all trees of the form tst~tot~ts for each i _> 0 will also 
generated by G. Similarly, for tree sets with independent paths 
and more complex path sets, tree pumping lemmas can be given. 
We adapt the string pumping lemmn for the class of languages 
corresponding to the complexity of the path set. 

A geometrical progression of language families defined by 
Weir (1987) involves tree sets with increasingly complex path 
sets. The independence of paths in the tree sets of the k ta 
grammatical formalism in this hierarchy can be shown by means 
of tree pumping lemma of the form i ~ i ~ z t ~ t s t  4 . . .  t2k+Z t~k+Z+S. 
The path set of ~ sets at level k + 1 have the complexity of 
the string language of level k. 

The independence of paths in a tree set appears to be an 
important property. A formalism generating tree sets with com- 
plex path sets can still generate only semilinc~r languages ff 
its tree sets have independent paths, and semilinear path s e ~  
For example, the formalisms in the hierarchy described above 
generate semflinear languages although their path sets become 
increasingly more complex as one moves up the hierarchy. From 
the point of view of recognition, independent paths in the deriva- 
t/on structures suggests that a top-down parser (for example) can 
work on each branch independently, which may lead to efficient 
pa~sing using an algorithm based on the Divide and Conquer 
technique. 

4 L i n e a r  C o n t e x t - F r e e  R e w r i t i n g  S y s t e m s  

From the discussion so far it is clear that a number of formalisms 
involve some type of context-free rewriting (they have derivation 
trees that are local sets). Our goal is to define a class of formal 
systems, and show that any member of this class will possess 
certain attractive properties. In the remainder of the paper, we 
outline how a class of Linear Context-Free Rewriting Systems 
(LCFRS's) may be defined and sketch how semifinearity and 
polynomial recognition of  these systems follows. 

4.1 D e f i n i t i o n  

In defining LCFRS's, we hope to generalize the definition of 
CFG's to formalisms manipulating any structure, e.g. strings, 
trees, or graphs. To be a member of LCI~S  a formalism must 
satisfy two restrictions. First, any grammar must involve a fi- 
nite number of elementary structures, composed using a finite 
number of composition operations. These operations, as we see 
below, are restricted to be size preserving (as in the case of 
concatenation in CFG) which implies that they will be linear 

and non-erasing. A second res~iction on the forma~ms is that 
choices during the derivation are independent of the context in 
the derivation. As will be obvious later, their derivation tree 
sets will be local sets as are those of CFG's. 

Each derivation of a grammm" can be represented by a gener- 
alized context-free derivation tree. These derivation trees show 
how the composition operations were used to derive the final 
structures from elementary structm'es. Nodes are annotated by 
the name of the composition operation used at that step in the 
derivation. As in the case of the derivation trees of CFG's, 
nodes are labeled by a member of  some finite set of symbols 
(perhaps only implicit in the grnrnmm" as in TAG's) used to de- 
note derived structures. Frontier nodes are annotated by zero 
arity functions con'esponding to elementary su'uctures. Each 
treelet (an internal node with all its children) represents the use 
of  a rule that is encapsulated by the g~a,- , ,~ .  The grammar 
encapsulates (either explicitly or implicitly) a finite number of 
rules that can be written as follows: 

A - . - , / , , (A~  . . . .  , A . )  n > 0 

In the case of CFG's, for each production 

p = A -*  u t A 1  • . .  unAnun+I 

(where ui is a string of terminals) the function fp is defined as 
follows. 

In the case of TAG's, a derivation step in which the derived 
uees ~z,. . . ,  ~- are adjoined into ~ at the addresses i s , . . . ,  i , ,  
would involve the use of the following rule 2. 

- . 4 , , , , ,  ..... , . (Bs  . . . . .  ~ . )  

The composition operations in the case of CFG's are parame- 
terized by the productions. In TAG's the elementary ~ee and 
addresses where adjunction takes place are used to instantiate 
the operation. 

To show that the derivation trees of any grammar in LCFRS 
is a /oca/ set, we can rewrite the annotated derivation trees 
such that every node is labelled by a pair to include the com- 
position operations. These systems are similar to those de- 
scribed by Pollard (1984) as Generalized Context-Free Gram- 
mars (GCFG's). Unlike GCF*G'S, however, the composition 
operations of LCFRS's are restricted to be linear (do not du- 
plicate unboundedly large s~mcmres) and nonerasing (do not 
erase unbounded structures, a restriction made in most modern 
transformational grammars). These two resWictions impose the 
constraint that the remit of composing any two s~ucmres should 
be a sa-ucture whose "size" is the sum of  its constituents plus 
some constant For example, the operation fp discussed in the 
case of CF'G's (in Section 4.1) adds the constant equal to the 
sum of  the length of the strings u s , . . . ,  u ,+z .  

Since we are considering formalisms with arbitrary struc- 
tures it is difficult to precisely specify all of the restrictions 
on the composition operations that we believe would appropri- 
ately generalize the concatenation operation for the particular 

2 We denote • tree derived from the elemeatany Wee -f by the symbol '~. 

108 



structures used by the formalism. In considering recognition of 
LCFRS's, we make further assumption concerning the contri- 
butinn of each structure to the input suing, and how the com- 
position operations combine structores in this respect. We can 
show that languages generated by LCFRS's are semilinear as 
long as the composition operation does not remove any terminal 
symbols from its arguments. 

4.2 S e m i l i n e a r i t y  o f  L C F R L ' s  

Semillnearity and the closely related constant growth property 
(a consequence of semilinearity) have been discussed in the con- 
text of grammars for naUtral languages by Joshi (1983185) and 
Berwick and Weinberg (1984). Roughly speaking, a language, 
L, has the property of semillnearity if the number of occurrences 
of each symbol in any suing is a linear combination of the oc- 
currences of these symbols in some fixed finite set of strings. 
Thus, the length of any suing in L is a linear combination of the 
length of swings in some fixed finite subset of L, and thus L is 
said to have the constant growth property. Although this prop- 
erty is not structural, it depends on the structural property that 
sentences can be built from a finite set of clauses of bounded 
structure as noted by Joshi (1983/85). 

The property of semilinearity is concerned only with the 
occurrence of symbols in strings and not their order. Thus, any 
language that is letter equivalent to a semilinear language is 
also semilinear. Two strings are letter equivalent if they contain 
equal number of occurrences of each terminal symbol, and two 
languages are letXer equivalent if every string in one language is 
letter equivalent to a string in the other language and vice-versa. 
Since every CFL is known to be semillnear (Parikh, 1966), in 
order to show semilinearity of some language, we need only 
show the existence of a leUer equivalent CFL. 

Our definition of LCFRS's insists that the composition op- 
erations are linear and nonerasing. Hence, the terminal sym- 
bols appearing in the structures that are composed are not lost 
(though a constant number of new symbols may be inUxaluced). 
If ~P(A) gives the number of occurrences of each terminal in the 
structure named by A, then, given the constraints imposed on 
the formalism, for each rule A --* f p (A1  . . . . .  A n )  we have the 
equality 

¢(A) = ¢(A~) + . . .  + ¢ (A. )  + cp 

where cp is some constant. We can obtain a letter equivalent 
CFL defined by a CFG in which the for each rule as above, 
we have the production A - *  A1 . . .  A , u p  where ~P(up) = cp. 
Thus, the language generated by a grammar of a LCFRS is 
semilinear. 

4.3 Recogn i t ion  o f  L C F R L ' s  

We now turn our attention to the recognition of suing languages 
generated by these formalisms (LCFRL's). As suggested at the 
end of Section 3, the restrictions that have been specified in 
the definition of LCFRS's suggest that they can be efficiently 
recognized. In this section for the purposes of showing that 
polynomial time recognition is possible, we make the additional 
restriction that the contribution of a derived structure to the in- 

put string can be specified by a bounded sequence of substrings 
of the input. Since each composition operation is linear and 
nonerasing, a bounded sequences of substrings associated with 
the resulting structure is obtained by combining the substrings in 
each of its arguments using only the concatenation operation, in- 
cluding each substring exactly once. CFG's, TAG's, MCTAG's 
and HG's are all members of this class since they satisfy these 
restrictions. 

Giving a recognition algorithm for LCFRL's involves de- 
scribing the subs~ings of the input that are spanned by the 
structures derived by the LCFRS's and how the composition 
operation combines these substrings. For example, in TAG's 
a derived auxiliary tree spans two substrings (to the left and 
right of the foot node), and the adjunction operation inserts an- 
other substring (spanned by the subtree under the node where 
adjunction takes place) between them (see Figure 3). We can 
represent any derived tree of a TAG by the two subsc~ngs that 
appear in its frontier, and then define how the adjunction opera- 
t/on concatenates the substrings. Similarly, for all the LCFRS's, 
discussed in Section 2, we can define the relationship between a 
structure and the sequence of suhstrings it spans, and the effect 
of the composition operations on sequences of subsU'ings. 

A derived structure will be mapped onto a sequence 
z l  . . . .  , zt of subsU'ings (not necessarily contiguous in the in- 
puO, and the composition operations will be mapped onto func- 
tions that can defined as follows s . 

f ( ( = ,  . . . . .  = . , ) ,  (y ,  . . . . .  y .~ ) )  = (~, . . . . .  ,,,,,) 

where each zl is the concatenation of strings from z j ' s  and y~'s. 
The linear and nonerasing assumptions about the operations dis- 
cussed in Section 4.1 require that each z j  and Yk is used exactly 
once to define the swings z l , . . . ,  z,~ 3. S o m e  of the operations 
will be constant functions, corresponding to elementary s~uc- 
rares, and will be written as f 0  ---- ( z l , . . . z~ ) ,  where each z~ is 
a constant, the string of terminal symbols a1,~ . . .  an~,~. 

This representation of strncV.tres by substrings and the com- 
position operation by its effect on subswings is related to the 
work of Rounds (1985). Although embedding this version of 
LCFRS's in the framework of ILFP developed by Rounds (1985) 
is straightforward, our motivation was to capture properties 
shared by a family of grammatical systems and generalize them 
defining a class of related formafisms. This class of formalisms 
have the properties that their derivation trees are local sets, and 
manipulate objects, using a finite number of composition oper- 
ations that use a finite number of symbols. With the additional 
assumptions, inspired by Rounds (1985), we can show that mem- 
bers of this class can be recognized in polynomial time. 

4 .3.1 A l t e r n a t i n g  T u r i n g  M a c h i n e s  

We use Alternating Turing Machines (Chandra, Kozen, and 
Stockmeyer, 1981) to show that polynomial time recognition 
is possible for the languages discussed in Section 4.3. An ATM 
has two types of states, existential and universal. In an existen- 
tial state an ATM behaves like a nondeterminlstic TM, accepting 

3 In order to simplify the following discussion, we assume that each composition 
operation is binary. It is easy to generalize to the case of n-ary operations. 
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if one of the applicable moves leads to acceptance; in an uni- 
versal state the ATM accepts if all the applicable moves lead to 
acceptance. An ATM may be thought of as spawning indepen- 
dent processes for each applicable move. A k-tape ATM, M,  
has a read-only input tape and k read-write work tapes. A $~p 
of an ATM consists of reading a symbol from each tape and 
optionally moving each head to the left or right one tape ceiL 
A configuration of M consists of a state of the finite control, 
the nonblank contents of the input tape and k work tapes, and 
the position of each head. The space of a configuration is the 
sum of the lengths of the nonblank tape contents of the k work 
tapes. M works in space 5(n)  if  for every string that M ac- 
cepts no configuration exceeds space S(n) .  It has been shown 
in (Chandra et al., 1981) that if M works in space logn  then 
there is a deterministic TM which accepts the same language in 
polynomial time. In the next section, we show how an ATM 
can accept the slrings generated by a grammar in a LCFRS for- 
realism in logspace, and hence show that each fatally can be 
recognized in polynomial time. 

4 .3 .2  R e c o g n i t i o n  b y  A T M  

We define an ATM, M,  reCOgni~ng a language gener~t~ by 
a grammar, G, having the properties discussed in Section 4.3. 
It can be seen that M performs a top-down recognition of the 
input ax . . .  a,~ in logspace. 

The rewrite rules and the definition of the composition op- 
erations may be stored in the finite state control since G uses 
a finite number of them. Suppose M has to determine whether 
the k substrings z x , . . . ,  zk can be derived from some symbol 
A. Since each zi is a contiguous substrin 8 of the input (say 
a~x . . .  a~2), and no two substrings overlap, we can represent zi 
by the pair of intoge~'s (ix, i2). We assume that M is in an ex- 
istential state qA, with integers ix and i2 representing z~ in the 
(2i - 1) th and 2i *h work tape, for 1 _< i _< k. 

For each rule p : A --, fp(B,  C) such that fp is mapped 
onto the function fp defined by the following rule. 

M' breaks z x , . . . , z k  into substrings z l , . . . , Z n ~  and 
Yx . . . . .  Y,,2 conforming to the definition of fp. M spawns as 
many processes as there are ways of breaklng up zx, . . . .  zk 
and rules with A on their left-hand-side. Each spawned process 
must check if z x , . . . ,  zn:  and y x , . . . ,  Yn2 can be derived from 
B and C, respectively. To do this, the z ' s  and y ' s  are stored 
in the next 2nx + 2n2 tapes, and M goes to a universal state. 
Two processes are spawned requiring B to derive z x , . . . , z n l  
and C to derive ~./x , . . . ,  Yn2. Thus, for example, one successor 
process will be have M to be in the existential state qs with 
the indices encoding zx, . . . .  zn~ in the firat 2nl tapes. 

For rules p : A - ,  f p 0  such that fp is constant func- 
tion, giving an elementary structure, fp is defined such that 
f p 0  ---- (zx . . .  zk) where each z is a constant string. M must 
enter a universal state and check that each of the k constant 
substrings are in the appropriate place (as determined by the 
contents of the first 2k work tapes) on the input tape. In addi- 
tion to the tapes required to store the indices, M requires one 

work tape for splitting the substrings. Thus, the ATM has no 
more than 6k m'x -4- I work tapes, where k m'x is the maximum 
number of substrings spanned by a derived structure. Since the 
work tapes store integers (which can be written in binary) that 
never exceed the size of the input, no configuration has space ex- 
ceeding O(log n). Thus, M works in logspace and recognition 
can be done on a deterministic TM in polynomial tape. 

5 Discussion 

We have studied the structural descriptions (trce sets) that can 
be assigned by various gr-mr-at;cal systems, and classified these 
formalisms on the basis of two fentures: path complexity; and 
path independence. We contrasted formalisms such as CFG's, 
HG's, TAG's and MCTAG's, with formalisms such as IG's and 
unificational systems such as LFG's and FUG's. 

We address the question of whether or not a formalism 
can generate only slructural descriptions with independent paths. 
This property reflects an important aspect of the underlying lin- 
guistic theory associated with the formalism. In a grammar 
which generates independent paths the derivations of sibling 
constituents can not share an unbounded amount of information. 
The importance of this property becomes clear in contrasting the- 
ories underlying GPSG (Gazdar, Klein, Pullum, and Sag, 1985), 
and GB (as described by Berwick, 1984) with those underly- 
ing LFG and FUG. It is interesting to note, however, that the 
ability to produce a bounded number of dependent paths (where 
two dependent paths can share an unbounded amount of infor- 
mation) does not require machinery as powerful as that used in 
LFG, FUG and IG's. As illustrated by MCTAG's, it is possible 
for a formalism to give tree sets with bounded dependent paths 
while still sharing the constrained rewriting properties of CFG's, 
HG's, and TAG's. 

In order to observe the similarity between these constrained 
systems, it is crucial to abstract away from the details of the 
strucUwes and operations used by the system. The similarities 
become apparent when they are studied at the level of deriva- 
tion structures: derivation tree sets of CFG's, HG's, TAG's, 
and MCTAG's are all local sets. Independence of paths at this 
level reflects context freeness of rewriting and suggests why they 
can be recognized efficiently. As suggested in Section 4.3.2, a 
derivation with independent paths can be divided into subcom- 
putatious with limited sharing of information. 

We outlined the definition of a family of constrained gram- 
matical formalisms, called Linear Context-Free Rewriting Sys- 
tems. This family represents an attempt to generalize the prop- 
erties shared by CFG's, HG's, TAG's, and MCTAG's. Like 
HG's, TAG's, and MCTAG's, members of LCFRS can manipu- 
late structures mere complex than terminal strings and use com- 
position operations that are more complex that concatenation. 
We place certain restrictions on the composition operations of 
LCFRS's, restrictions that are shared by the composition opera- 
tions of the constrained grammatical systems that we have con- 
sidered. The operations must be linear and nonerasing, i.e., they 
can not duplicate or erase structure from their arguments. Notice 
that even though IG's and LFG's involve CFG-like productions, 
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they are (linguistically) fundamentally different from CFG's be- 
cause the composition operations need not be linear. By sharing 
stacks (in IG's) or by using nonlinear equations over f-structares 
(in FUG's and LFG's), structures with unbounded dependencies 
between paths can be generat_~i_. LCFRS's share several proper- 
ties possessed by the class of m//d/y context-sensitive formalisms 
discussed by Joshi (1983/85). The results described in this paper 
suggest a characterization of mild context-sensitivity in terms of 
generalized context-freeness. 

Having defined LCFRS's, in Section 4.2 we established the 
sem/1/nearity (and hence constant growth property) of the lan- 
guages generated. In considering the recognition of these lan- 
guages, we were forced to be more specific regarding the re- 
lationship between the structures derived by these formalisms 
and the substrings they span. We insisted that each slzucture 
dominates a bounded number of (not necessarily adjacent) sub- 
strings. The composition operations are mapped onto operations 
that use concatenation to define the substrings spanned by the 
resulting strucntres. We showed that any system defined in this 
way can be recocniTed in polynomial time. Members of LCFRS 
whose operations have this property can be translated into the 
ILFP notation (Rounds, 1985). However, in order to capture the 
properties of various grammatical systems under consideration, 
our notation is more restrictive that ILFP, which was designed 
as a general logical notation to characterize the complete class of 
languages that are recognizable in polynomial time. It is known 
that CFG's, HG's, and TAG's can be recognized in polynomial 
time since polynomial time algorithms exist in for each of these 
formalisms. A corollary of the result of Section 4.3 is that poly- 
nomial time recognition of MCTAG's is possible. 

As discussed in Section 3, independent paths in tree sets, 
rather than the path complexity, may be crucial in characteriz- 
ing semilinearity and polynomial time recognition. We would 
like to relax somewhat the constraint on the path complexity 
of formalisms in LCFRS. Formalisms such as the restricted in- 
dexed grammars (Gazdar, 1985) and members of the hierarchy 
of grammatical systems given by Weir (1987) have independent 
paths, but more complex path sets. Since these path sets are 
semillnear, the property of independent paths in their tree sets 
is sufficient to cause semilinearity of the languages generated 
by them. In addition, the restricted version of CG's (discussed 
in Section 6) generates Use sets with independent paths and we 
hope that it can be included in a more general definition of 
LCFRS's containing formalisms whose tree sets have path sets 
that are themselves LCFRL's (as in the case of the restricted 
indexed grammars, and the hierarchy defined by Weir). 

LCFRS's have only been loosely defined in this paper; we 
have yet to provide a complete set of formal properties associ- 
ated with members of this class. In thi s paper, our goal has been 
to use the notion of LCFRS's to classify grammatical systems 
on the basis of their strong generative capacity. In considering 
this aspect of a formalism, we hope to better understand the re- 
lationship between the structural descriptions generated by the 
grammars of a formalism, and the properties of semilinearity 
and polynomial recognizability. 
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