
Functional Unification Grammar Revisited
Kathleen R. McKeown and Cecile L. Paris

Department of Computer Science
450 Computer Science
Columbia University

New York, N.Y. 10027
MCKEOWN@CS.COLUMBIA.EDU

CECIL~@CS.COLUMBIA.EDU

Abstract
In this paper, we show that one benefit of FUG, the

ability to state global conslralnts on choice separately from
syntactic rules, is difficult in generation systems based on
augmented context free grammars (e.g., Def'mite Clause
Cn'anmm~). They require that such constraints be expressed
locally as part of syntactic rules and therefore, duplicated in
the grammar. Finally, we discuss a reimplementation of
lUg that achieves the similar levels of efficiency as
Rubinoff's adaptation of MUMBLE, a detcrministc
language generator.

1 I n t r o d u c t i o n
Inefficiency of functional unification grammar (FUG,

[5]) has prompted some effort to show that the same benefits
offered by FUG can be achieved in other formalisms more
efficiently [3; 14; 15; 16]. In this paper, we show that one
benefit of FUG, the ability to conciselyl state global
constraints on choice in generation, is difficult in other
formalhms in which we have written generation systems. In
particular, we show that a global constraint can be stated
separately from syntactic rules in FUG, while in generation
systems based on augmented context free ~g~nunars (e.g.,
Definite Clause Cn'amma~ (DCG, [13])) such consWaints
must be expressed locally as part of syntactic rules and
the~=for¢, duplicated in the grammar. Finally, we discuss a
reimplementation of lUG in TAILOR [11; 12] that achieves
the si.m/l~r leveLs of efficiency as Rubinoff's adaptation
[16] of MUMBLE [7], a deterministc language generator.

1.1 Sta tement o f Const ra in ts
Language generation can be viewed primarily as a

problem of choice, requiring decisions about which syntactic
structures best express intent. As a result, much research in
language generanon has focused on identi~ing conswaints
on choice, and it is important to be able to represent these
constraints clearly and efficiently. In this paper, we compare
the representation of constraints in FUG with their
repn:sentation in a DCG generation system [3]. We are
interested in representing functional constraints on syntactic
sWacture where syntax does not fully restrict expression; that
is, conswaints other than those coming from syntax. We
look at the representation of two specific constraints on
syntactic choice: focus of attention on the choice of sentence
voice and focus of attention on the choice of simple versus
complex sentences.

We claim that, in a lUG, these constraints can be
stated separately from rules dictating syntactic structure, thus
leading to simplicity of the granunar since the constraints
only need to be stated once. This is possible in FUG because
of unification and the ability to build constituent structure in

the grammar. In contrast, in a DCG, constraints must be
stated as part of the individual grammar rules, resulting in
duplication of a constraint for each syntactic rule to which it
applies.

1.2 Passive/Active Cons t ra in t
Focus of attention can determine whether the passive

or active voice should be used in a sentence [8]. The
constraint dictates that focused information should appear as
surface subject in the sentence. In FUG, this can be
represented by one pattern indicating that focus should occur
f'u'st in the sentence as shown in Figu~ 1. This panern would
occur in the sentence category of the grammar, since focus is
a sentence constituent. This constraint is represented as part
of an alternative so that other syntactic constraints can
override it (e.g., if the goal were in focus but the verb could
not be pmsivized, ~ constraint would not apply and an
active sentence would be generated). The structure of active
or passive would be indicated in the verb group as shown in
Figure 2.1 The correct choice of active or passive is made
through unification of the patterns: active voice is selected if
the focus is on the protagonist (focus unifies with pro:) and
passive if focus is on the goal or beneficiary Orocus unifies
with goal or beheld. This representation has two desirable
properties: the constraint can be stated simply and the
construction of the resulting choice b expr=ssed separately
from the constraint.

(a l t ((p a t t e r n (f o c u s . . .))))

Figure 1: Constraint on Passive/Active in FUG

In the DCG, the unification of argument variables
means a single rule can state that focus should occur first in
the sentence. However, the rules specifying construction of
the passive and active verb phrases must now depend on
which role (protagonist, goal, or beneficiary) is in focus.
This requires three separate rules, one of which will be
chosen depending on which of the three other case roles is
the same as the value for focus. The DCG v..presentation thus
mixes information from the conswaint, focus of attention,
with the passive/active construction, duplicating it over three

tThis figure shows only the m'dm, of comtitmmu foe active and passive
voice m~l does no¢ include odwr details of the co~au'ucdon.

97

(alt
((voice active)
(pattern (prot verb goal)))

((voice passive}
(alt
((pattern (goal verb1 verb2 by-pp)))
((pattern

(benef verbl verb2 by-pp)}})})

Figure 2: Passive/Active Construction in FUG

rules.

The sentence rule is shown in Figure 3 and the three
other rules are presented in Figure 4. The constituents of the
proposition are represented as variables of a clause. In
Figure 4, the arguments, in order, are verb (V), protagonist
(PR), goal (G), beneficiary (B), and focus. The arguments
with the same variable name must be equal. Hence, in the
Figure, focus of the clause must be equal to the protagonist
(PR).

sentence (clause
(Verb, Prot, Goal, Benef, Focus})

~>

nplist (Focus},
verb_phrase (Verb, Prot, Goal, Benef, Focus) .

Figure 3: Passive/Active Constraint in DCG

1.3 Focus Shift Constraint
This constraint, identified and formalized by Derr and

McKeown [3], constrains simple and complex sentence
generation. Any generation system that generates texts and
not just sentences must determine when to generate a
sequence of simple sentences and when to combine simple
sentences to form a more complex sentence. Derr and
McKcown noted that when a speaker wants to focus on a
single concept over a sequence of sentences, additional
information may need to be presented about some other
concept. In such a case, the speaker will make a temporary
digression to the other concept, but will immediately
continue to focus on the first. To signal that focus does not
shift, the speaker can use subordinate sentence structure
when presenting additional information.

The focus constraint can be stated formally as follows:
assume input of three propositions, PI, P2, and P3 with

/* V = Verb; PR = Prot; G ~ Goal;
B = Beneficiary; last argument - focus */

• verb_phrase (pred (V, NEG, T, AUX}, PR, G, B, PR)

-->verb (V, NEG, T, AUX, N, active),
nplist (G),
pp (to, B).

verb_phrase (pred (V, NEG, T, AUX), PR, G, B, G)

-->verb (V, NEG, T, AUX, N, passive),
pp (to, B),
p p (by, PR).

verbphrase (pred (V, NEG, T, AUX), PR, G, B, B)

-->verb (V, NEG, T, AUX, N, passive),
nplist (G),
pp (by, PR).

Figure 4: Passive/Active Construction in DCG

arguments indicating focus F1, F2, and F3. 2 The constraint
states that if F1 = F3, Fl does not equal F2 and F2 is a
constituent of PI, the generator should produce a complex
sentence consisting of PI, as main sentence with P2
subordinated to it through P2's focus, followed by a second
sentence consisting of P3. In FUG, this constraint can be
stated in three parts, separately from other syntactic rules
that will apply:

I. Test that focus remains the same from PI to
P3.

2. Test that focus changes from PI to P2 and that
the focus of I'2 is some constituent of PI.

3. If focus does shift, form a new constituent, a
complex sentence formed from PI and P2, and
order it to occur before P3 in the output (order
is specified by patterns in FUG).

Figure 5 presents the constraint, while Figure 6 shows the
construction of the complex sentence from P1 and P2.
Unification and paths simplify the representation of the
constraint. Paths, indicated by angle brackets (<>), allow the
grammar to point to the value of other constituents. Paths
and unification are used in conjunction in Part 1 of Figure 5
to state that the value of focus of P1 should unify with the

2In the systems we are describing, input is specified in a case frame
formalism, with each pmpositioa indicating protagonist (prot), goal,
beneficiary (benef), verb, and focus. In these systems, iexical choice is
made before entering the grammar, thus each of these arguments includes
the word to be used in the sentence.

98

(alt
% Is focus the same in P1 and P3?

1.((PI ((focus <^ P3 focus>)))

% Does not apply if focus
% stays the same

2. (alt (((PI ((focus <^ P2 focus>))))

(% Focus shifts; Check that P2
% focus is a constituent of
% PI.
(alt
(((PI ((prot <^ P2 focus>))))
((PI ((goal <a P2 focus>))))
((P1 ((benef

<^ P2 focus>))))))
% Form new constituent from P1
% and P2 and order before P3.

3. (pattern (PIP2subord P3))
(P3 (cat s))
% New constituent is of category
% subordinate.
(PIPRsubord
% Place P2 focus into
% subordinate as it will
% be head of relative clause.
(same <^ P2 focus>)
(cat subordinate))))))

Figure 5: Focus Shift Constraifit in FUG

value of focus of P3 (i.e., these two values should be equal). 3
Unification also allows for structure to be built in the
grammar and added to the input. In Part 3, a new const i tuent
P1P2subord is built. The full structure will result f rom
unifying P1P2aubord with the category subordinate, in
which the syntactic structure is represented. The grammar
for this category is shown in Figure 6. It constructs a relative
clause 4 from P2 and attaches it to the consti tuent in P1 to
which focus shifts in 1:'2. Figure 7 shows the form of input
requixed for this constraint and the output that would be
produced.

3A path is used to expect the focus of P3. An atuibute value pair such
as (focus <P3 focus>) determines the value for focus by searching for an
amibute P3 in the list of am'ibutes (or Functional Description if'D)) in
whichfocus occurs. The value of P3'sfocua is then copied in as the value
of focus. In order to refer to attributes at any level in the m~e formed by
the nestsd set of FDs, the formalism includes an up-arrow (^). For
example, given the attribum value pair (attrl <^ am'2 attt3>), the up-
arrow indica,,'s that the system should look for attr2 in the FD containing
the FD ofattrl. Since P3 occurs in the FD containing PI, an up-arrow is
used to specify that the system should look for the attribute P3 in the FD
containing PI (i.e., one level up). More up-arrows can be used if the fast
attribute in the path occurs in an even higher level FD.

4The entire grammar for relative clauses is not shown. In particular, it
would have to add a relative pronoun to the input.

((cat subordinate)
% Will consist of one compound sentence
(pattern (s))
(s ((cat s)))
% Place contents of P1 in s.
(s <^^ PI>)
% Add the subordinate as a
% relative clause modifying SAME.

(s ̂ me
% Place the new subordinate made from
% P2 after head.

((pattern (... head newsubord ...))
% Form new subordinate clause

(newsubord
% It's a relative clause.

(cat s-bar)
(head <^ head>)

% All other constituents in
% newsubord come from P2.
(same ((newsubord <^ ^ P2>)

% Unify same with appropriate
% constituent of P1 to attach
% relative clause

(s
((alt (((prot <^ same>))

((goal <^ same>))
((b a n e f <^ same>)))))))

Figure 6: Forming the Subordinate Clause in FUG

In the DCG formalism, the constraint is divided
between a rule and a test on the rule. The rule dictates focus
remain the same from P1 to P3 and that P2's focus be a
constituent of P1, while the test states that P2's focus must
not equal P l ' s . Second, because the DCG is essentially a
context free formalism, a duplication of rules for three
different cases of the construction is required, depending on
whether focus in P2 shifts to protagonist, goal or beneficiary
of PI. Figure g shows the three rules needed. Each rule
takes as input three clauses (the first three clauses listed) and
produces as output a clause (the last listed) that combines P1
and P2. The test for the equality of loci in Pl and P3 is done
through PROLOG unification of variables. As in the
previous DCG example, arguments with the same variable
name must be equal. Hence, in the first rule, focus of the
third clause (FI) must be equal to focus of the first clause
(also FI). The shift in focus from P1 to P2 is specified as a
condition (in curly brackets {}). The condition in the first
rule of Figure 8 states that the focus of the second clause
(PR l) must not be the same as the focus of the fast clause
if:l).

Note that the rules shown in Figure 8 represent
primarily the constraint (i.e., the equivalent of Figure 5).

99

INPUT:
((Pl ((prot ((head girl)))

(goal ((head cat)))
(verb-group ((verb pet)))
(focus <prot>))))

(P2 (prot ((head =ms cat))
(goal ((head ~ mouse))
(verb-group ((verb .ms caught)))
(focus <prot>))))

(P3 ((prot ((head ~- girl)))
(goal ((head ~m happy)))
(verb-group ((verb ~ be)))
(focus <prot>)))))

OUTPUT - The girl pet the cat that caught
the mouse. The girl was happy.

Figure 7: Input and Output for FUG

The building of structure, dictating how to construct the
relative clause from P2 is not shown, although these rules do
show where to attach the relative clause. Second, note that
the conswaint must be duplicated for each case where focus
can shift (i.e., whether it shifts to pint, goal or beneficiary).

1.4 C o m p a r i s o n s W i t h O t h e r G e n e r a t i o n Sys tem
G r a m m a r s

The DCG's duplication of rules and constraints in the
examples given above results because of the mechanisms
provided in DCG for representing conswaints. Constraints
on consdtuent ordering and structure are usually expressed in
the context free portion of the granmmr;, that is, in the left
and fight hand sides of rules. Constraints on when the
context free rules should apply are usually expressed as tests
on the rules. For generation, such constraints include
pragmatic constraints on free syntactic choice as well as any
context sensitive constraints. When pragmatic constraints
apply to more than one ordering constraint on constituents,
this necessarily means that the constraints must be duplicated
over the rules to which they apply. Since DCG allows for
some constraints to be represented through the unification of
variables, this can reduce the amount of duplication
somewhat.

FUG allows pragmatic constraints to be represented as
meta-rules which are applied to syntactic rules expressing
ordering constraints through the process of unification. This
is similar to Chomsky's [2] use of movement and focus rules
to transform the output of context free rules in order to avoid
rule duplication. It may be possible to factor out constraints
and represent them as recta-rules in a DCG, but this would
involve a non-standard implementation of the DCG (for
example, compilation of the DCG to another grammar
formalism which is capable of representing constraints as
meta-rules).

/* Focus of P2 is protagonist of PI (PR1)
Example: the cat was petted by the girl

that brought it. the cat purred */

foc_shift (clause (VI, PR1, GI, B1, FI),
clause (V2, PR2, G2, B2, PRI) ,
clause (V3, PR3, G3, B3, F1),
clause (Vl,

[np (PRI, clause (V2, PR2, G2, B2, PRI))],
GI, BI, FI))

/* Test: focus shifts from P1 to P2 */
(~I \-~ FI}

/* Focus of P2 is goal of P1 (GI)
Example: the girl pet the cat that
caught the mouse, the girl was happy */

foc shift (clause (Vl, PRI, GI, BI, FI),
I

clause (V2, PR2, G2, B2, GI),
clause (V3, PR3, G3, B3, FI) ,
clause (Vl, PRI,

[np (GI, clause (V2, PR2, G2, B2, GI))],
~i,Fl))

/* Test: focus shifts from P1 to P2 */
{GI \~m FI}

/* Focus of P2 is Beneficiary of P1 (BI)
Example: the mouse was given to the cat
that was hungry, the mouse was not
happy */

foc shift (clause (Vl, PRI, G1, B1, FI),
~ause (V2, PR2, G2, B2, BI) ,
clause (V3, PR3, G3, B3, FI),
clause (VI, PRI, GI,

[np (B1, clause (V2, PR2, G2, B2, BI))],
r l))

/* Test: focus shifts from P1 to P2 */
(~I V-= r l }

Figure 8: Focus Shift Constraint in DCG

Other grammar formalisms that express constraints
through tests on rules also have the same problem with rule
duplication, sometimes even more severely. The use of a
simple augmented context free grammar for generation, as
implemented for example in a bottom-up parser or an
augmented transition network, will require even more
duplication of constraints because it is lacking the unification
of variables that the DCG includes. For example, in a
bottom-up generator implemented for word algebra problem
generation by Ment [10], constraints on wording of the
problem are expressed as tests on context free rules and
natural language output is generated through actions on the
rules. Since Ment controls the linguistic difficulty of the
generated word algebra problem as well as the algebraic
difficulty, his constraints determine when to generate

100

particular syntactic constructions that increase wording
difficulty. In the bottom-up generator, one such instructional
consuaint must be duplicated over six different syntactic
rules, while in FUG it could be expressed as a single
constraint. Ment's work points to interesting ways
instructional constraints interact as well, further complicating
the problem of clearly representing constraints.

In systemic grammars, such as NIGEL [6], each choice
point in the grmm'nar is represented as a system. The choice
made by a single system often determines how choice is
made by other systems, and this causes an interdependence
among the systems. The grammar of English thus forms a
hierarchy of systems where each branch point is a choice.
For example, in the part of the grammar devoted to clauses,
one of the Rrst branch points in the grammar would
determine the voice of the sentence to be generated.
Depending on the choice for sentcmce voice, other choices
for ovcrali sentence structure would be made. Constraints on
choice arc expressed as LISP functions called choosers at
each branch point in the grammar. Typically a different
chooser is written for each system of the grammar. Choosers
invoke functions called inquiry operators to make tests
determining choice. Inquiry operators are the primitive
functions representing constraints and are not duplicated in
the grammar. Calls to inquiry operators from different
choosers, however, may be duplicated. Since choosers are
associated with individual syntactic choices, duplications of
calls is in some ways similar to duplication in augmented
context free grammars. On the other hand, since choice is
given an explicit representation and is captured in a single
type of rule called a system, representation of constraints is
made clearer. This is in contrast to a DCG where constraints
can be distributed over the grammar, sometimes represented
in tests on rules and sometimes represented in the rule itself.
The systcmic's grammar use of features and functional
categories as opposed to purely syntactic categories is
another way in which it, like FUG, avoids duplication of
rules.

It is unclear from published reports how constraints are
represented in MUMBLE [7]. Rubinoff[16] states that
constraints are local in MUMBLE, and thus we suspect that
they would have to be duplicated, but this can only be
verified by inspection of the actual grammar.

2 I m p r o v e d Ef f i c i ency
Our implementation of FUG is a reworked version of

the tactical component for TEXT [9] and is implemented in
PSL on an IBM 4381 as the tactical component for the
TAILOR system [11; 12]. TAILOR's FOG took 2 minutes
and 10 seconds of real time to process the 57 sentences from
the appendix of TEXT examples in [9] (or 117 seconds of
CPU time). This is an average of 2.3 seconds real time per
sentence, while TEXT's FUG took, in some cases, 5 minutes
per sentence. 5 This compares quite favorably with
Rubinoff's adaptation [16] of MUMBLE[7] for TEXT's
strategic component. Rubinoff's MUMBLE could process
all 57 sentences in the appendix of TEXT examples in 5
minutes, yielding an average of 5 seconds per sentence.

SWe use real times for our comparisons in ordea to make an analogy
with Rubinoff [16], who also used real times.

Thus our new implementation results in yet a better speed-up
(130 times faster) than Rubinoff's claimed 60 fold speed-up
of the TEXT tactical component.

Note, however, that Rubinoff's comparison is not at all
a fair one. First, Rubinoff's comparisons were done in real
times which are dependent on machine loads for time-
sharing machines such as the VAX-780, while Symbolics
real time is essentially the same as CPU time since it is a
single user workstation. Average CPU time per sentence in
TEXT is 125 seconds. 6 This makes Rubinoff's system only
25 times faster than TEXT. Second, his system runs on a
Symbolics 3600 in Zctalisp, while the original TEXT tactical
component ran in Franzlisp on a VAX 780. Using Gabriel's
benchmarks [4] for Boyer's theorem proving unification
based program, which ran at 166.30 seconds in Franzlisp on
a Vax 780 and at 14.92 seconds in Symbolics 3600
Commonl.isp, we see that switching machines alone yields a
11 fold speed-up. This means Rubinoff's system is actually
only 2.3 times faslcr than TEXT.

Of course, this means our computation of a 130 fold
speed-up in the new implementation is also exaggerated
since it was computed using real time on a faster machine
too. Gabriel's benchmarks arc not available for PSL on the
IBM 4381, 7 but we are able to make a fair comparison of the
two implementations since we have both the old and new
versions of FUG running in PSL on the IBM. Using CPU
times, the new version proves to be 3.5 times faster than the
old tactical component, e

Regardless of the actual amount of spc~-up achieved,
our new version of FUG is able to achieve similar speeds to
MUMBLE on the same input, despite the fact that FUG uses
a non-deterministic algorithm and MUMBLE uses a
deterministic approach. Second, regardless of comparisons
between systems, an average of 2.3 seconds real time per
sentence is quite acceptable for a practical generation
system.

We were able to achieve the speed-up in our new
version of FUG by making relatively simple changes in the
unification algorithm. The fast change involved
immediately selecting the correct category for unification
from the grammar whenever possible. Since the grammar is
represented as a llst of possible syntactic categories, the first
stage in unification involves selecting the correct category to
unify with the input. On fast invoking the unifier, this
means selecting the sentence level category and on unifying
each constituent of the input with the grammar, this means
selecting the category of the constituem. In the old
grammar, each category was unified successively until the
correct one was found. In the current implementation, we
retrieve the correct category immediately and begin

¢'rhis was computed using TEXT's appendix where CPU time is given
in units corresponding to 1/60 second.

"/Gabriel's benchmarks are available only for much larger IBM,
mainfranzs.

SThe new version took 117 CPU seconds to process all sentences, or 2
CPU seconds per sentence, while the old version took 410 CPU seconds
to process all sentences, or 7 CPU seconds per sentence.

101

unification directly with the correct category. Although
unification would fail immediately in the old version,
directly retrieving the category saves a number of recursive
calls.

Unification with the lexicon uses the same technique in
the new version. The correct lexicai item is directly retrieved
from the grammar for unification, rather than unifying with
each entry, in the lexicon successively.

Another change involved the generation of only one
sentence for a given input. Although the grammar is often
capable of generating more than one possible sentence for its
input 9, in practice, only one output sentence is desired. In the
old version of the unifier, all possible output sentences were
generated and one was selected. In the new version, only one
successful sentence is actually generated.

Finally, other minor changes were made to avoid
recursive calls that would result in failure. Our point in
enumerating these changes is to show that they arc extremely
simple. Considerably more speed-up is likely possible if
further implementation were done. In fact, we recently
received from ISI a version of the FUG unifier which was
completely rewritten from our original code by Jay Myers. It
generates about 6 sentences per seconds on the average in
Symbolics Commonlisp. Both of these implementations
demonstrate that unification for FUG can be done efficiently.

3 C o n c l u s i o n s
We have shown how constraints on generation can be

represented separately from representation of syntactic
structure in FUG. Such an ability is attractive because it
means that the constraint can be stated once in the grammar
and can be applied to a number of different syntactic rules.
In contrast, m augmented context free based generation
systems, constraints must be stated locally as part of
individual syntactic rules to which they apply. As a result'
constraints must be duplicated. Since a main focus in
language generation research has been to identify constraints
on choice, the ability to represent constraints clearly and
efficiently is an important one.

Representing constraints separately is only useful for
global constraints, of course. Some constraints in language
generation are necessarily local and must be represented in
FUG as they would in augmented context free based
systems: as part of the syntactic structures to which they
apply. Furthermore, information for some constraints may
be more easily represented outside of the grammar. In such
cases, using a function caLl to other components of the
system, as is done in NIGEL, is more appropriate. In fact,
this ability was implemented as part of a FUG in
TELEGRAM [I]. But for global constraints for which
information is available in the grammar, FUG has an
advantage over other systems.

Our reimplementation of FUG has demonstrated that
efficiency is not as problematic as was previously believed.
Our version of FUG, running in PSL on an IBM 4381, runs

9Often the surface sentences gen~ated are the same, but the syntactic
structure built in producing the sentence differs.

faster than Rubinoff's version of MUMBLE in Symbolics
3600 Zetalisp for the same set of input sentences.
Furthermore, we have shown that we were able to achieve a
slightly better speed-up over TEXT's old tactical component
than Rubinoff's MUMBLE using a comparison that takes
into account different machines. Given that FUG can
produce sentences in time comparable to a deterministic
generator, efficiency should no longer be an issue when
evaluating FUG as a generation system.

A c k n o w l e d g e m e n t s
The research reported in this paper was partially

supported by DARPA grant N00039-84-C-0165, by ONR
grant N00014-82-K-0256 and by NSF grant IST-84-51438.
We would like to thank Bill Mann for making a portion of
NIGEL's grammar available to us for comparisons.

R e f e r e n c e s

[1] Appelt' D. E.
T~T .~GRAM: A Gra.tm'nar Formalism for Language

Planning.
In Proceedings of the Eigth National Conference on

Artificial Intelligence, pages 595 - 9. Karlsruhe,
West Germany, August, 1983.

[2] Chomsky, N.
Essays on Form and Interpretation.
North-Holland Publishing Co., Amsterdam, The

Netherlands, 1977.

[3] Deft, M.A. and McKeown, K. R.
Using Focus to Generate Complex and Simple

Sentences.
In Proceedings of the]Oth International Conference

on Computational Linguistics, pages 501-4.
Stanford, Ca., July, 1984.

[4] Gabriel, R. P.
Performance and Evaluation of Lisp Systems.
MIT Press, Cambridge, Mass., 1985.

Kay, Martin.
Functional Grammar.
In Proceedings of the 5th meeting of the Berkeley

Linguistics Society. Berkeley Linguistics Society,
1979.

[6] Mann, W.C. and Matthiessen, C.
NIGEL: A Systemic Grammar for Text Generation.
Technical Report ISI/RR-85-105, Information

Sciences Institute, February, 1983.
4676 Admiralty Way, Marina del Rey, California

90292-6695.

[7] McDonald, D. D.
Natural Language Production as a Process of

Decision Making under Constraint.
PhD thesis, MIT, Cambridge, Mass, 1980.

McKeown, K. R.
Focus Constraints on Language Generation.
In Proceedings of the Eight International Conference

on Artificial Intelligence. Karlsruhe, Germany,
August, 1983.

,. [51.

[8]

102

[9] McKeown, K.R.
Text Generation: Using Discourse Strategies and

Focus Constraints to Generate Natural Language
Text.

Cambridge University Press, Cambridge, England,
1985.

[10] Ment~ J.
From Equations to Words. Language Generation

and Constraints in the Instruction of Algebra
Word Problems.

Technical Report, Computer Science Depamnent,
Columbia University, New York, New York,
10027, 1987.

[11] Paris, C. L.
Description Strategies for Naive and Expert Users.
In Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics.
Chicago, 1985.

[12] Paris, C. L.
Tailoring Object Descriptions to the User's Level of

Expertise.
Paper presented at the International Workshop on

User Modelling, Maria Laach, West Germany.
August, 1986

[13] Pereira, F.C.N. and Warren, D.H.D.
Definite Clause Grammars for Language Analysis -

A Survey of the Formalism and a Comparison
with Augmented Transition Network.

Artificial Intelligence :231- 278, 1980.

[14] Ritchie, G.
The Computational Complexity of Sentence

Derivation in Functional Unification Grammar.
In Proceedings of COLING '86. Association for

Computational Linguistics, Bonn, West Germany,
August, 1986.

[15] Ritchie, G.
Personal Communication.

[16] Rubinoff, R.
Adapting MUMBLE: Experience with Natural

Language Generation.
In Proceedings of the Fifth Annual Conference on

Artificial Intelligence. American Association of
Artificial Intelligence, 1986.

103

