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A b s t r a c t  
Consideration of the question of meaning in the frame- 

work of linguistics often requires an allusion to sets and 
other higher-order notions. The tradi t ional  approach to 
representing and reasoning about  meaning in a computa-  
tional sett ing has been to use knowledge representation sys 7 
tems that  are either based on first-order logic or that  use 
mechanisms whose formal justifications are to be provided 
after the fact. In this paper  we shall consider the use of 
a higher-order logic for this task. We first present a ver- 
sion of definite clauses (positive Horn clauses) that  is based 
on this logic. Predicate and function variables may oc- 
cur in such clauses and the terms in the language are the 
typed h-terms. Such term structures have a richness that  
may be exploited in representing meanings. We also de- 
scribe a higher-order logic programming language, called 
~Prolog, which represents programs as higher-order defi- 
nite clauses and interprets them using a depth-first inter- 
preter.  A virtue of this language is that  it is possible to 
write programs in it that  integrate syntactic and seman- 
tic analyses into one computat ional  paradigm. This is to 
be contrasted with the more common practice of using two 
entirely different computat ion paradigms, such as DCGs or 
ATNs for parsing and frames or semantic nets for semantic 
processing. We illustrate such an integration in this lan- 
guage by considering a simple example, and we claim that  
its use makes the task of providing formal justifications for 
the computations specified much more direct. 

1. I n t r o d u c t i o n  
The representation of meaning, and the use of such a 

representation to draw inferences, is an issue of central con- 
cern in natural  language understanding systems. A theoret- 
ical understanding of meaning is generally based on logic, 
and it has been recognized that  a higher-order logic is par- 
t icularly well suited to this task. Montague, for example, 
used such a logic to provide a compositional semantics for 
simple English sentences. In the computat ional  framework, 
knowledge representation systems are given the task of rep- 
resenting the semantical notions that  are needed in natural  
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language understanding programs. While the formal just i-  
fications that  are provided for such systems is usually log- 
ical, the actual  formalisms used are often distantly related 
to logic. Our approach in this paper  is to represent mean- 
ings directly by using logical expressions, and to describe 
the process of inference by specifying manipulations on such 
expressions. As it turns out, most programming languages 
are poorly suited for a n  approach such as ours. Prolog, 
for instance, permits  the representation and the examina- 
tion of the s tructure of first-order terms, but  it is not easy 
to use such terms to represent first-order formulas which 
contain quantification. Lisp on the other hand allows the 
construction of lambda expressions which could encode the 
binding operations of quantifiers, but  does not provide log- 
ical primitives for studying the internal structure of such 
expressions. A language that  is based on a higher-order 
logic seems to be the most natural  vehicle for an approach 
such as ours, and in the first par t  of this paper  we shall de- 
scribe such a language. We shall then use this language to 
describe computat ions of a kind that  is needed in a natural  
language understanding system. 

Before we embark on this task, however, we need to 
consider the arguments that  are often made against the 
computat ional  use of a higher-order logic. Indeed, several 
authors in the current l i terature on computat ional  linguis- 
tics and knowledge representation have presented reasons 
for preferring first-order logic over higher-order logic in nat- 
ural language understanding systems, and amongst these 
the following three appear  frequently. 
(1} GSdel showed that  second-order logic is essentially in- 

complete, i .e.  true second-order logic statements are 
not recursively enumerable. Hence, theorem provers 
for this logic cannot be, even theoretically, complete. 

(2) Higher-order objects like functions and predicates can 
themselves be considered to be first-order objects of 
some sort. Hence, a sorted first-order logic can be used 
to encode higher-order objects. 

(3) Litt le research on theorem proving in higher-order log- 
ics has been done. Moreover, there is reason to believe 
that  theorem proving in such a logic is extremely dif- 
ficult. 
These facts are often used to conclude that  a higher- 

order logic should not be used to formalize systems if 
such formalizations are to be computat ionally meaningful. 
While there is some t ruth  in each of these observations, we 
feel that  they do not warrant  the conclusion that  is drawn 
from it. We discuss our reasons for this belief below. 
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The point regarding the essential undecidability of 
second-order logic has actually little import on the com- 
putational uses of higher-order logic. This is because the 
second-order logic as it is construed in this observation, is 
not a proof system but  rather a t ruth  system of a very par- 
ticular kind. Roughly put, the second-order logic in ques- 
tion is not so much a logic as it is a branch of mathematics 
which is interested in properties about the integers. There 
are higher-order logics that have been provided which con- 
tain the formulas of second-order logic but which do not 
assume the same notion of models (i.e. the integers). These 
logics, in fact, have general models, including the standard, 
integer model, as well as other non-standard models, and 
with respect to this semantics, the logic has a sound and 
complete proof system. 

From a theoretical point-of-view, the second observa- 
tions is important.  Indeed, any system which could not be 
encoded into first-order logic would be more powerful than 
Turing machines and, hence, would be a rather unsatisfac- 
tory computationally! The existence of such an encoding 
has little significance, however, with regard to the appro- 
priateness of one language over another for a given set of 
computational tasks. Clearly, all general purpose program- 
ming languages can be encoded onto first-order logic, but 
this has little significance with regard to the suitability of 
a given programming language for certain applications. 

Although less work has been done on theorem proving 
in higher-order logic than in first-order logic as claimed in 
the last point, the nature of proofs in higher-order logic is 
far from mysterious. For example, higher-order resolution 

[1] and unification [8] has been developed, and based on 
these principles, several theorem provers for various higher- 
order logics (see [2] and its references) have been built and 

• / 
tested. The experience with such systems shows that the- 
orem proving in such a logic is difficult. It is not clear, 
however, that the difficulty is inherent in the language cho- 
sen to express a theorem rather than in the theorem itself. 
In fact, expressing a higher-order theorem (as we will claim 
many statements about meaning are) in a higher-order logic 
makes its logical structure more explicit than an encoding 
into first-order logic does. Consequently, it is reasonable 
to expect that the higher-order representation should ac- 
tually simplify the process of finding proofs. In a more 
specific sense, there are sublogics of a higher-order logic in 
which the process of constructing proofs is not much more 
complicated than in similar sublogics of first-order logic. 
An example of such a case is the higher-order version of 
definite clauses that we shall consider shortly. 

In this paper, we present a higher-order version of def- 
inite clauses that may be used to specify computations, 
and we describe a logic programming language, ,~Prolog, 
that is based on this specification language. We claim that 
~Prolog has several linguistically meaningful applications. 
To bolster this claim we shall show how the syntactic and 
semantic processing used within a simple parser of natu- 
ral language can be smoothly integrated into one logical 
and computational process. We shall first present a defi- 
nite clause grammar that analyses the syntactic structure of 
simple English sentences to produce logical forms in much 
the same way as is done in the Montague framework. We 

shall then show how semantic analyses may be specified 
via operations on such logical forms. Finally, we shall illus- 
trate interactions between these two kinds of analyses by 
considering an example of determining pronoun reference. 

2. H i g h e r - O r d e r  Logic 
The higher-order logic we study here, called T,  can be 

thought of as being a subsystem of either Church's Simple 
Theory of Types [5] or of Montague's intensional logic IL 
[6]• Unlike Church's or Montague's logics, T is very weak 
because it assumes no axioms regarding extensionality, def- 
inite descriptions, infinity, choice, or possible worlds. T 
encompasses only the most primitive logical notions, and 
generalizes first-order logic by introducing stronger notions 
of variables and substitutions. Our use of T is not driven 
by a desire to capture of the meaning of linguistic objects, 
as was the hope of Montague. It is our hope that programs 
written in T will do that. 

The language of T is a typed language. The typing 
mechanism provides for the usual notion of sorts often used 
in first-order logic and also for the notion of functional 
types. We take as primitive types (i.e. sorts) o for booleans 
and i for (first-order) individuals, adding others as needed. 
Functional types are written as a -* fl, where o~ and fl are 
types. This type is intended to denote the type of func- 
tions whose domains are a and whose codomains are /3. 
For example, i --~ i denotes the type of functions which 
map individuals to individuals, and (i --* i) --* o denotes 
the type of functions from that domain to the booleans. In 
reading such expressions we use the convention that  --* is 
right associative, i.e. we read a --* fl --~ -y as ol --~ (fl --~ -~). 

The terms or formulas of T are specified along with 
their respective types by the following simple rules: We 
start with denumerable sets of constants and variables at 
each type. A constant or variable in any of these sets is 
considered to be a formula of the corresponding type. Then, 
if A is of type a --* fl and B is of type a, the function 
application (AB) is a formula of type ft. Finally, if x is a 
variable of type a and C is a term of type fl, the function 
abstraction )~xC is a formula of type a -~ ft. 

We assume that the following symbols, called the log- 
ical constants, are included in the set of constants of the 
corresponding type: true of type o, ~ of type o --* o, A, 
V, and D each of type o --~ o --~ o and II and ~ of type 
(A --~ o) --~ o for each type A. All these symbols except 
the last two correspond to the normal propositional connec- 
tives. The symbols II and Y:, are used in conjunction with 
the abstraction operation to represent universal and exis- 
tential quantification: Vx P is an abbreviation for H(Ax P) 
and 3x P is an abbreviation for G(Ax P).  H and E are 
examples of what are often called generalized quantifiers. 

The type o has a special role in this language. A for- 
mula with a function type of the form tt --* . . .  --~ t~ --~ o 
is called a predicate of n arguments. The i th argument of 
such a predicate is of type ti. Predicates are to be thought 
of as representing sets and relations. Thus a predicate of 
type f --* o represents a set of individuals, a predicate of 
type (i --~ o) --~ o represents a set of sets of individuals, 
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and a predicate of type i --~ (i --* o) ~ o represents a bi- 
nary relation between individuals and sets of individuals. 
Formulas of type o are called propositions. Although pred- 
icates are essentially functions, we shall generally use the 
term function to denote a formula that does not have the 
type of a predicate. 

Derivability in T,  denoted by ~-T, is defined in the fol- 
lowing (simplified) fashion. The axioms of T are the propo- 
sitional tautologies, the formula Vx Bx  D Bt, and the for- 
mula Vx (PxAQ) D Vx PxAQ. The rules of inference of the 
system are Modus Ponens, Universal Generalization, Sub- 
stitution, and A-conversion. The rules of A-conversion that 
we assume here are a-conversion (change of bound vari- 
ables), fl-conversion (contraction), and r/-conversion (re- 
place A with Az(Az) and vice versa if A has type a --* fl, z 
has type a, and z is not free in A). A-conversion is essen- 
tially the only rule in T that is not in first-order logic, but 
combined with the richer syntax of formulas in T it makes 
more complex inferences possible. 

In general, we shall consider two terms to be equal if 
they are each convertible to the other; further distinctions 
can be made between formulas in this sense by omitting the 
rule for rl-conversion, but we feel that such distinctions are 
not important in our context. We say that a formula is a 
A-normal formula if it has the form 

Axi...Ax, (h tl . . .  tin) wheren ,  m > 0 ,  

where h is a constant or variable, (h tl  . . .  t , ,)  has a prim- 
itive type, and, for 1 < i < m, t~ also has the same form. 
We call the list of variables xl , . . . ,x ,~ the binder, h the 
head, and the formulas t l , . . . , t m  the arguments of such a 
formula. It is well known that every formula, A, can be 
converted to a A-normal formula that is unique up to a- 
conversions. We call such a formula a A-normal form of A 
and we use Anorrn(A) to denote any of these alphabetic 
variants. Notice that a proposition in A-normal form must 
have an empty binder and contai9 either a constant or free 
variable as its head. A proposition in A-normal form which 
has a non-logical constant as its head is called atomic. 

Our purpose in this paper is not merely to use a logic as 
a representational device, but also to think of it as a device 
for specifying computations. It turns out that T is too 
complex for the latter purpose. We shall therefore restrict 
our attention to what may be thought of as a higher-order 
analogue of positive Horn clauses. We define these below. 

We shall henceforth assume that we have a fixed set 
of nonlogical constants. The positive Herbrand Universe is 
identified in this context to be the set of all the A-normal 
formulas that can be constructed via function application 
and abstraction using the nonlogical constants and the log- 
ical constants true, A, V and ~; the omission here is of the 
symbols ~,  D, and II. We shall use the symbol )4+ to denote 
this set of terms. Propositions in this set are of special inter- 
est to us. Let G and A be propositions in ~/+ such that A is 
atomic. A (higher-order) definite clause then is the univer- 
sal closure of a formula of the form G D A, i.e. the formula 
Ve (G D A) where • is an arbitrary listing of all the free 
variables in G and A, some of which may be function and 
predicate variables. These formulas are our generalization 

of positive Horn clauses for first-order logic. The formula 
on the left of the D in a higher-order definite clause may 
contain nested disjunctions and existential quantification. 
This generalization may be dispensed within the first-order 
case because of the existence of appropriate normal forms. 
For the higher-order case, it is more natural  to retain the 
embedded disjunctions and existential quantifications since 
substitutions for predicate variables have the potential for 
re-introducing them. Illustrations of this aspect appear in 
Section 4. 

Deductions from higher-order definite clauses are very 
similar to deductions from positive Horn clauses in first- 
order logic. Substitution, unification, and backchaining can 
be combined to build a theorem prover in either case. How- 
ever, unification in the higher-order setting is complicated 
by the presence of A-conversion: two terms t and 8 are unifi- 
able if there exists some substitution ~ such that Us and 
~t  are equal modulo A-conversions. Since fl-conversion is 
a very complex process, determining this kind of equality 
is difficult. The unification of typed A-terms is, in general, 
not decidable, and when unifiers do exist, there need not 
exist a single most general unifier. Nevertheless, it is pos- 
sible to systematically search for unifiers in this setting [8] 
and an interpreter for higher-order definite clauses can be 
built around this procedure. The resulting interpreter can 
be made to resemble Prolog except that it must account 
for the extra degree of nondeterminism which arises from 
higher-order unification. Although there are several impor- 
tant issues regarding the search for higher-order unifiers, 
we shall ignore them here since all the unification problems 
which arise in this paper can be solved by even a simple- 
minded implementation of the procedure described in [8]. 

3. AProlog 
We have used higher-order definite clauses and a 

depth-first interpreter to describe a logic programming lan- 
guage called AProlog. We present below a brief exposition 
of the higher-order features of this language that we shall 
use in the examples in the later sections. A fuller descrip- 
tion of the language and of the logical considerations un- 
derlying it may be found in [9]. 

Programs in AProlog are essentially higher-order defi- 
nite clauses. The following set of clauses that define certain 
standard list operations serve to illustrate some of the syn- 
tactic features of our language. 

append nil K K. 

append (cons X L) K (cons X M) :- append L K M. 

member X (cons X L). 

member X (cons Y L) :- member X L. 

As should be apparent from these clauses, the syntax of 
AProlog borrows a great deal from that of Prolog. Sym- 
bols that begin with capital letters represent variables. All 
other symbols represent constants. Clauses are written 
backwards and the symbol : -  is used for C. There are, 
however, some differences. We have adopted a curried no- 
tation for terms, rather than the notation normally used in 
a first-order language. Since the language is a typed one, 
types must be associated with each term. This is done by 
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either explicitly defining the type of a constant or a vari- 
able, or by inferring such a type by a process very similar 
to that  used in the language ML [7]. The type expressions 
that  are at tached to symbols may contain variables which 
provide a form of polymorphism. As an example cons and 
n i l  above are assumed to have the types A -> ( l i s t  A) 
-> ( l i s t  A) and ( l i s t  A) respectively; they serve to de- 
fine lists of different kinds, but  each list being such that  all 
its elements have a common type. (For the convenience of 
expression, we shall actually use Prolog's notat ion for lists 
in the remainder of this paper ,  i.e. we shall write (cons  X 
L) as [XIL]). In the examples in this paper ,  we shall occa- 
sionally provide type  associations, but  in general we shall 
assume that  the reader can infer them from context when 
it is important .  We need to represent A-abstraction in our 
language, and we use the symbol \ for this purpose; i.e. 
AX A is wri t ten in AProlog as X \ A. 

The following program, which defines the operation of 
mapping a function over a list, i l lustrates a use of function 
variables in our language. 

mapfun F [XIL] [ (F X)IK] : -  mapfun F L K. 
mapfun F [] [ ] .  
Given these clauses, (mapfun F L1 L2) is provable only if 
L2 is a list tha t  results from applying F to each element of 
L1. The interpreter  for AProlog would therefore evaluate 
the goal (mapfun (X\ (g  X X)) [a .  b ] )  L) by returning 
the value [ (g  a a ) .  (g b b ) ]  for L. 

The logical considerations underlying the language 
permit  functions to be t reated as first-class, logic program- 
ming variables. In other words, the values of such variables 
can be computed through unification. For example, con- 
sider the query 

(mapfun F [ a .  b] [ (g  a a ) ,  (g a b ) ] ) .  

There is exactly one subst i tut ion for F, namely X\ (g  a 
X), tha t  makes the above query provable. In searching for 
such higher-order substi tut ions,  the interpreter  for AProlog 
would need to backtrack over choices of substitutions.  For 
example, if the interpreter  a t t empted  to prove the above 
goal by a t tempt ing  to unify (F a) with (g a a ) ,  it would 
need to consider the following four possible substi tutions 
for F: 

X\(g X X) Xk(g a X) X\(g X a) X\(g a a). 

If it chooses any of these other than the second, the inter- 
preter  would fail in unifying (F b) with (g a b) ,  and would 
therefore have to backtrack over that  choice. 

It is impor tant  to notice that  the set of functions that  
are representable using the typed A-terms of AProlog is not 
the set of all computable functions. The set of functions 
tha t  are so representable are in fact much weaker than those 
representable in, for example, a functional programming 
language like Lisp. Consider the goal 

(mapfun F [a. b] [c, d]). 

There is clearly a Lisp function which maps a to c and b 
to d, namely, 

(lambda (x) ( i f  (eq x 'a) 'b 
(if (eq x 'c) 'd 'e))) 

Such a function is, however, not representable using our 
typed A-terms since these donot contain any constants rep- 
resenting conditionals {or fixed point operators needed for 
recursive definitions). It is actually this restriction to our 
term structures that makes the determination of function 
values through unification a reasonable computational op- 
eration. 

The provision of function variables and higher-order 
unification has several uses, some of which we shall exam- 
ine in later sections. Before doing that we consider briefly 
certain kinds of function terms that have a special status 
in the logic programming context, namely predicate terms. 

4. Predicates as Values 
From a logical point of view, predicates are not much 

different from other functions; essentially they are func- 
tions that have a type of the form ai --~ ... --* ~ --~ o. In 
a logic programming language, however, variables of this 
type may play a different and more interesting role than 
non-predicate variables. This is because such variables may 
appear inside the terms of a goal as well as the head of a 
goal. In a sense, they can be used intensionally and exten- 
sionally (or nominally and saturated). When they appear 
intensionally, predicates can be determined through unifi- 
cation just as functions. When they appear extensionally, 
they are essentially "executed." 

An example of these mixed uses of predicate variables 
is provided by the following set of clauses; the logical con- 
nectives A and V are represented in AProlog by the symbols 
• and ;, true is represented by true and Z is represented 
by the symbol sigma that has the polymorphic type (A -> 
O) -> O. 

sublist P [XIL] [XlK] :- P X. sublist P L Z. 

sublist P [XIL] K :- sublist P L K. 
sublist P [] []. 

have_age L K :- sublist Z\(sigma Xk(ags Z X)) L K. 
name_age L K :- sublist Z\(age Z A) L K. 
age bob 9.3. 

age sue 24. 

age ned 23. 

The first three clauses define the predicate sublist whose 
first argument is a predicate a n d  is such that  ( s u b l i s t  P 
L K) is provable if K is some sublist of L and all the mem- 
bers in K satisfy the proper ty  expressed by the predicate 
P. The fourth clause uses s u b l i s t  to define the predicate 
have_age which is such tha t  (have_age L K) is provable 
if K is a sublist of the objects in L which have an age. In 
the definition of have_age a predicate term that  contains 
an explicit quantifier is used to instantiate the predicate 
argument of sublist; the predicate (Z\ (sigma X\ (age Z 
X))), which may be written in logic as Az 3z age(z,z), is 
true of an individual if that individual has an age. This 
predicate term needs to be executed in the course of eval- 
uating, for example, the query (have_age [bob. sue ,ned] 
K). The predicate name_age whose definition is obtained by 
dropping the quantifier from the predicate term defines a 
different property; (same_age L K) is true only when the 
objects in K have the same age. 
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Another example is provided by the following set of 
clauses tha t  define the operation of mapping a predicate 
over a list. 

mappred P [X[L] [Y[K] :- P X Y. mappred P L K. 
mappred P [] []. 

This set of clauses may be used, for example, to evaluate 
the following query: 

mappred (X\Y\(age Y X)) [23.24] L. 

This query essentially asks for a list of two people, the first 
of which is 23 years old while the second is 24 years old. 
Given the clauses that  appear  in the previous example, this 
query has two different answers: [bob.  sue] and [ned.  
sue] .  Clearly the mapping operation defined here is much 
stronger than a similar operation considered earlier, namely 
that  of ,napping a function over a list. In evaluating a query 
that  uses this set of clauses a new goal, i.e. (P X Y), is 
formed whose evaluation may require arbi t rary  computa- 
tions to be performed. As opposed to this, in the earlier 
case only A-reductions are performed. Thus, mappred is 
more like the mapping operations found in Lisp than map- 
fun is. 

In the cases considered above, predicate variables that  
appeared as the heads of goals were fully iustantiated be- 
fore the goal was invoked. This kind of use of predicate 
variables is similar to the use of apply and lambda terms 
in Lisp: A-contraction followed by the goal invocation sim- 
ulates the apply operation in the Prolog context. However, 
the variable head of a goal may not always be fully instanti-  
ated when the goal has to be evaluated. In such cases there 
is a question as to what  substi tutions should be at tempted.  
Consider, for example, the query (P bob 23).  One value 
that  may be returned for P is XkY\ (age X Y), and this may 
seem to be the most "natural" value. There are, however, 
many more substi tutions for P which also satisfy this goal: 
XkY\(X = bob, Y = 23), XkY\(Y = 23), XkY\(age sue 
24), etc. are all terms that could be picked, since if they 
were substituted for P in the query they would result in a 
provable goal. There are, clearly, too many substitutions to 
pick from and perhaps backtrack over. Furthermore several 
of these may have little to do with the original intention of 
the query. A better strategy may be to pick the one sub- 
stitution that has the largest "extension" in such cases; in 
the case considered here, such a substitution for P would 
be the term XkY\true. It is possible to make such a choice 
without adding to the incompleteness of an interpreter. 

Picking such a substitution does not necessarily triv- 
ialize the use of predicate variables. If a predicate occurs 
intensionally as well as extensionally in a goal, this kind of 
a trivial substitution may not be possible. To illustrate this 
let us consider the following set of clauses: 

p r i m r e l  f a t h e r ,  
p r i m r e l  mother .  
primrel wife. 

primrel husband. 

tel R :- primrel R. 

rel XkYk(sigma Zk(R X Z, S Z Y)) :- 

prlmrel R. prlmrel S. 

The first four clauses identify four primitive relations be- 
tween individuals ( p r i m r e l  has type ( i  -> i -> o) -> o). 
These are then used to define other relations that  are a re- 
sult of "joining" primitive relations. Now if (mother  Jane 
mary) and (wi fe  john j a n e )  are provided as addit ional 
clauses, then the query ( r e l  R. R john mary) would yield 
the substi tut ion X\Y\(s igma Zk(wi fe  X Z. mother  Z Y)) 
for R. This query asks for a relation (in the sense of t e l )  
between john  and mary. The answer substi tution provides 
the relation mother-in-law. 

We have been able to show (Theorem 1 [9]) that  any 
proof in T of a goal formula from a set of definite clauses 
which uses a predicate term containing the logical connec- 
tives ~ ,  D, or V, can be converted into another proof in 
which only predicate terms from ~/+ are used. Thus, it is 
not possible for a term such as 

Ax (person(x) ^ Vy (child(x,y) D doctor(y))) 

to be specified by a AProlog program, i.e. be the unique 
substi tut ion which makes some goal provable from some 
set of definite clauses. This is because a consequence of 
our theorem is that  if this term is an answer substi tut ion 
then there is also another A-term that  does not use im- 
plications or universal quantification that  can be used to 
satisy the given goal. If an understanding of a richer set 
of predicate constructions is desired, then one course is to 
leave definite clause logic for a stronger logic. An alterna- 
tive approach, which we use in Section 6, is to represent 
predicates as function terms whose types do not involve o. 
This, of course, means that  such predicate constructions 
could not be the head of goals. Hence, addit ional definite 
clauses would be needed to interpret  the meaning of these 
encoded predicates. 

5. A S i m p l e  P a r s i n g  E x a m p l e  
The enriched term structure o f  AProlog provides two 

facilities that  are useful in certain contexts. The notion of 
A-abstraction allows the representation of binding a vari- 
able over a certain expression, and the notion of appli- 
cation together with A-contraction captures the idea of 
substi tution.  A si tuation where this might be useful is 
in representing expressions in first-order logic as terms, 
and in describing logical manipulations on them. Con- 
sider, for example, the task of representing the formula 
VxBy(P(x,y) D Q(y,x)) as a term. Fragments of this for- 
mula may be encoded into first-order terms, but  there is a 
genuine problem with representing the quantification. We 
need to represent the variable being quantified as a gen- 
uine variable, since, for instance, instantiat ing the quanti- 
fier involves subst i tut ing for the variable. At the same t ime 
we desire to distinguish between occurences of a variable 
within the scope of the quantifier from occurences outside 
of it. The mechanism of A-abstraction provides the tool 
needed to make such distinctions. To illustrate this let us 
consider how the formula above may be encoded as a A- 
term. Let the primitive type b be the type of terms that  
represent first-order formulas. Further  let us assume we 
have the constants & and => of type b -> b -> b, and a l l  
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and some of type ( i  -> b) -> b. These latter two constants 
have the type of generalized quantifiers and are in fact used 
to represent quantifiers. The A-term ( a l l  X\ (some Y\ (p X 
Y => q Y X) ) ) may be used to represent the above formula. 
The type b should be thought of as a term-level encoding 
of the boolean type o. 

A more complete illustration of the facilities alluded to 
above may be provided by considering the task of translat- 
ing simple English sentences into logical forms. As an ex- 
ample, consider translating the sentence "Every man loves 
a woman" to the logical form 

Vx(man(x) D qy(woman(y) A loves(x, y))) 

which in our context will be represented by the A-term 

( a l l  X\(man X => 

(some Y\(woman Y ~ loves X Y)))) 

A higher-order version of a DCG [10] for performing this 
task is provided below. This DCG draws on the spirit of 
Montague Grammars. (See [11] for a similar example.) 

s en tence  (P1 P2) 
np (P1 P2) 
lapP 
nom P 
nom X\(P1 X & P2 X) 

vp X\(P2 (P1 X)) 

vp P 

relcl P 

--> np P1, vp P2, [.]. 

--> determ Pl, hem P2. 

--> propernoun P. 

--> noun P. 

--> noun Pl, relcl~2. 

--> transverb Pl, np P2. 

--> intransverb P. 

--> [that], vp P. 

determ P l \ P 2 \ ( a l l  X \ (P1X => P2 X)) --> 
[ eve ry ] .  

determ PlkP2k(P2 (iota P1)) --> [the]. 

determ Pl\P2\(some xk(PI X & P2 X)) --> [a]. 

noun man 

noun woman 

propernoun john 
propernoun mary 

transverb loves 

transverb likes 

- ->  [man]. 
- ->  [woman]. 
- ->  [ j ohn ] .  
- ->  [mary].  
- ->  [ l o v e s ] .  
--> [likes]. 

intransverb lives --> [lives]. 

We use above the type token  for English words; the DCG 
translates a list of such tokens to a term of some corre- 
sponding type. In the last few clauses certain constants are 
used in an overloaded manner.  Thus the constant man cor- 
responds to two distinct constants, one of type token  and 
another of type i -> b. We have also used the symbol i o t a  
that  has type ( i  -> b) -> i .  This constant plays the role 
of a definite description operator; it picks out an individual 
given a description of a set of individuals. Thus, parsing the 
sentence "The woman that  loves john likes mary" produces 
the term (likes (iota Xk(woman X ~ loves X john)) 

mary), the intended meaning of which is the predication of 
the relationship of liking between an object that is picked 
out by the description X\(woman X & loves  X john) )  and 
mary. 

Using this DCG to parse a sentence illustrates the role 
that abstraction and application play in realizing the no- 

tion of substitution. It is interesting to compare this DCG 
with the one in Prolog that is presented in [10]. The first 
thing to note is that the two will parse a sentence in nearly 
identical fashions. In the first-order version, however, there 
is a need to explicitly encode the process of substitution, 
and considerable ingenuity must be exercised in devising 
grammar rules that take care of this process. In contrast 
in ),Prolog the process of substitution and the process of 
parsing are handled by two distinct mechanisms, and con- 
sequently the resulting DCG is more perspicuous and so 
also easier to extend. 

The DCG presented above may also be used to solve 
the inverse problem, namely that of obtaining a sentence 
given a logical form, and this illustrates the use of higher- 
order unification. Consider the task of obtaining a sentence 
from the logical form ( a l l  X\(man X => (some Y\(woman 
Y ~ loves  X Y))) ). This involves unifying the above form 
with the expression (P1 P2). One of the unifiers for this is 

Pl --> Pk(all X\(man X => P X)) 

P2 --> X\(some Y\(woman Y ~ loves X Y). 

Once this unifier is picked, the task then breaks into that of 
obtaining a noun phrase from P k ( a l l  Xk(man X => P X)) 
and a verb phrase from X\ (some Y\ (woman Y ~ loves  X Y). 
The use of higher-order unification thus seems to provide a 
top-down decomposition in the search for a solution. This 
view turns out to be a little simplistic however, since uni- 
fication permits more structural decompositions than are 
warranted in this context. Thus, another unifier for the 
pair considered above is 

PI --> Zk(all Z) 

P2 --> X\(man X => 

(some Y\(woman Y & loves X Y))) 

which does not correspond to a meaningful decomposition 

in the context of the rest of the rules. It is possible to 
prevent such decompositions by anticipating the rest of 
the grammar rules. Alternatively decompositions may be 
eschewed altogether; a logical form may be constructed 
bottom-up and compared with the given one. The first 
alternative detracts from the clarity, or the specificational 
nature, of the solution. The latter involves an exhaustive 
search over the space of all sentences. The DCG consid- 
ered here, together with higher-order unification, seems to 
provide a balance between clarity and efficiency. 

The final point to be noted is that the terms that 
are produced at intermediate stages in the parsing process 
are logically meaningful terms, and computations on such 
terms may be encoded in other clauses in our language. In 
Section 7, we show how some of these terms can be directly 
interpreted as frame-like objects. 

6. K n o w l e d g e  R e p r e s e n t a t i o n  
We now consider the question of how a higher-order 

logic might be used for the task of representing knowledge. 
Traditionally, certain network based formalisms, such as 
KL-ONE [4], have been described for this purpose. Such 
formalisms use nodes and arcs in a network to encode 
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knowledge, and provide algorithms that  operate on this 
network in order to perform inferences on the knowledge 
so represented. The nature of the information represented 
in the network may be clarified with reference to a logic, 
and the correctness of the algorithms is often proved by 
showing tha t  they perform certain kinds of logical infer- 
ence on the underlying information. Our approach here 
is to encode the relevant notions by using A-terms that  di- 
rectly correspond to their logical nature,  and to use definite 
clauses to specify logical inferences on these notions. We 
demonstrate this approach below through a few examples. 

A key notion in knowledge representation is that  of a 
concept. KL-ONE provides the ability to define primitive 
roles and concepts and a mechanism to put  these together 
to define more complex concepts. The intended interpre- 
tat ion of a role is a two place relation, and of a concept 
is a set of objects characterized by some defining property. 
An appropriate logical view of a concept, therefore, is to 
identify it with a one-place predicate. A particularly apt  
way of modeling the connection between a concept and a 
predicate is to use A-terms of a certain kind to denote con- 
cepts. The following set of clauses that  are used to define 
concepts modelled after examples in [4] serves to make this 
clear. 

prim_role recipient. 

prim_role sender. 

primrole supervisor. 

prim_concept person. 

prim_concept crew. 
prim_concept commander. 

prim_concept message. 

prim_concept important message. 

role R :- prim_role R. 

concept C :- prim_concept C. 

concept (X\(CI X & C2 X)) :- 

concept CI, concept C2.. 

concept (X\(all Y\(R X Y => C1 Y))) :- 

concept CI, role R. 

The type of prim_role and role in the above example is 
(i -> i -> b) -> o and of prim_concept and concept 
is (i -> b) -> o. Any term that can be substituted for R 
so as to make (role R) provable from these clauses is con- 
sidered a role. Similarly, any term that can be substituted 
for C so as to make (concept C) provable is considered 
a concept. The first three clauses serve to define primitive 
roles in this sense, and the next five clauses define primitive 
concepts. The remaining clauses describe a mechanism for 
constructing further roles and concepts. As can be readily 
seen, all roles are primitive roles. An example of a complex 
concept is provided by the term 

(X\(message X a (all Y\(sender X Y => crew Y)))) 

which may he described by the noun phrase "messages all 
of whose senders are crew members." 

One of the purposes for providing a representation for 
concepts is so that inferences that involve them can be de- 

scribed. One kind of inference that  is of part icular  inter- 
est is that  of determining subsumption. A concept C1 is 
said to subsume another concept C2 if every element of the 
set described by C2 is a member of the set described by 
C,.  Given our representation of concepts, the question of 
whether C1 subsumes 6'2 reduces to the question of whether 
Vx(C2(x) D Cl(x)) is valid (i.e. provable). Such an infer- 
ence may be based either on certain primitive containment 
relations, or on an analysis of the structure of the terms 
used to denote concepts. The following set of clauses make 
these ideas precise: 

subsume person crew. 

subsume (X\(all Y\(sender X Y => person Y))) 

message. 

subsume (X\(all Y\(recipient X Y => crew Y))) 

message. 

subsume message important_message. 

subsume (X\(all Y\(sender X Y => commander Y))) 

important_message. 

subsume C C. 

subsume A B :- subsume A C, subsume C B. 

subsume (Z\(A Z & B Z)) C :- 

subsume A C. subsume B C. 

subsume A (Z\(B Z & C Z)) :- subsume A B. 

subsume A (Z\(B Z & C Z)) :- subsume A C. 

subsume (Z\(all (Y\(R Z Y => A Y)))) 

(Z\(all (Y\(R Z Y => B Y)))) :- 

subsume A B. 

The first few clauses specify certain primitive containment 
relations; thus the first clause states that  the set described 
by crew is contained in the set described by person.  The 
later clauses specify subsumption relations based on these 
primitive ones and on the logical structure of the terms 
describing the concepts. One of the virtues of our rep- 
resentation now becomes clear: It is easy to see that  the 
above set of clauses correctly specifies the relation of sub- 
sumption. If a and B are two terms that  represent concepts, 
then rather  elementary proof-theoretic arguments may be 
employed to show that  (subsumes A B) is provable from 
the above clauses if and only if the first-order term (all 

X\ (B X => A X)) is logically entailed by the primitive sub- 
sumption relations. Furthermore,  any sound and complete 
interpreter for AProlog (such as one searching breath-first) 
may be used together with these clauses to provide a sound 
and complete subsumption algorithm. 

Another kind of inference that  is often of interest is 
that  of determining whether an object a is in the set of 
objects denoted by a concept C. This question reduces to 
whether (C a) is a theorem. This inference may be encoded 
in definite clauses in the manner i l lustrated below: 

f a c t  (important_message ml). 

fact (sender ml kirk). 

fact (recipient ml scotty). 

interp A :- fact A. 

253 



interp (A & B) :- interp A, interp B. 

interp (C U) :- 

subsume (X\(all Y\ (R X Y => C Y))) D. 

fact (R V U). interp (D V). 

interp (C U) :- subsume C D. interp (D U). 

In the clauses above, f a c t  and i n t e r p  are predicates of 
type b -> o. The first few clauses state which formulas 
of type b should be considered true; ( f a c t  X) may be 
read as an assertion that  X is true. The last few clauses 
define i n t e r p  to be a theorem-prover that uses subsume 
and f a c t  to deduce additional formulas of type b. The 
only clause that  may need to be explained here is the third 
one pertaining to i n t e r p .  This clause may be explained as 
follows. Let (D V) and (subsume (X\(all Y\ (R X Y => C 
Y) )) D) be true. By virtue of the meaning of subsumption, 
((Xk(all Y\ (R X Y => C Y))) V),i.e. (all Y\ (R V 
Y => C Y)), is true. From this it follows that for any U 
if (R V U) is true then so is (C U). Given the clauses in 
this section, some of the inferences that are possible are the 
following: kirk is a person and a commander, and scotty 
is a crew and a person. That is, (interp (person kirk) ), 
for example, is provable from these definite clauses. 

7. S y n t a x  a n d  S e m a n t i c s  in  P a r s i n g  
In Section 5, we showed how sentences and phrases 

could be translated into logical forms that correspond to 
their meaning. Such logical forms are well defined objects 
in our language and in Section 6 we illustrated the possibil- 
ity of defining logical inferences on such objects. There are 
parsing problems which require semantical analysis as well 
as syntactic analysis and our language provides the ability 
to combine such analyses in one computational framework. 
A common approach in natural  language understanding 
systems is to use one computational paradigm for syntactic 
analysis (e.g. DCGs, ATNs) and another one for seman- 
tic analysis (e.g. frames, semantic nets). An integration of 
these two paradigms is often difficult to explain in a for- 
mal sense. Using the approach that we suggest here also 
results in the syntactic and semantic processing being done 
at two different levels: one is first-order and the other is 
higher-order. Bridging these two levels, however, can be 
very natural.  For example, the query (see Section 4) 

rel R. R john mary 

mixes both aspects. The process of determining a suitable 
instantiation for R is second-order, while the process of de- 
termining whether or not (R john mary) is provable is 
first-order. 

The problem of determining referents for pronouns 
provides a example where such an intermixing of levels is 
necessary, since possible referents for a pronoun must be 
checked for membership in the male or female concepts. 
For example, consider the following sentences: "John likes 
Mary. She loves him." The problem here is that of identify- 
ing "she" with Mary and "him" with John. This processing 
could be done in the following fashion: First, a DCG similar 
to the one in Section 5 could be writ ten which returns not 
only the logical form corresponding to a sentence but  also 

a list of possible referents for pronouns that occur later. In 
this example, the list of proper nouns [ john .  mary] would 
be returned. When pronouns are encountered, the DCG 
would substitute some male or female elements from this 
list, depending on the gender of the pronoun. The process 
of selecting an appropriate referent may be accomplished 
with the following clauses: 

prim_concept male. 

prim_concept female. 

fact (female mary). 

fact (male john). 

select G X [XIL] :- interp (G X). 

select G X [YIL] :- select X L G. 

A call to the goal (select female X [john, mary] ) would 
result in picking mary as a female from the set of proper 
nouns. This is, of course, a very simple example. This 
framework, however, supports the following extension. 

Let sentences contain definite descriptions. Consider 
the following sentences: "The uncle whose children are all 
doctors likes Mary. She loves him." Here, "him" clearly 
refers to the uncle whose children are all doctors. In order 
to modify our above program we need to make only a few 
additions. First, we need to be able to take a concept, 
such as "uncle whose children are all doctors" and encode 
the (unique) individual within it. To do this, we use the 
definite description operator described in Section 5. Hence, 
after parsing the first sentence, the list 

[(iota (X\(uncle X 
(all Y\ (child X Y => doctor Y)) ))) . 

mary] 
would be returned as the list of possible pronoun references. 
Consider the following additional definite clauses. 

prim_concept man. 

prim_concept uncle. 

prim_concept doctor. 

prim_relation child. 

subsume male man. 

subsume man uncle. 

interp (P (iota Q)) :- subsume P Q. 

The first six clauses give properties to some of the lexical 
items in this sentence. Only the last clause is an addition 
to our actual program. This clause, however, is very im- 
portant  since it is one of those simple and elegant ways in 
which the different logical levels can be related. A term 
of the form ( i o t a  Q) represents a first-order individual 
(i.e. some object), but  it does so by carrying with it a de- 
scription of that object (the concept Q). This description 
can be invoked by the following inference: the Q is a P if 
all qs are Ps. Hence, checking membership in a concept is 
transformed into a check for subsumption. 

To find a referent for "him" in our example sentences, 
the goal 

(select male X 

[(iota (X\(uncle X & 

(all Y\(child X Y => doctor Y))))). 

mary] ) 
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would be used to pick the male from the list of possible 
pronoun references. (Notice here that  X occurs both free 
and bound in this query.) In a t tempt ing to satisfy this 
goal, the goal 

(Interp 

(male (iota (X\(uncle X k 

(all Y\(child X Y => doctor Y))))))) 

and then the goal 

(subsume male (X\(uncle X a 

(all Y\(child X Y => doctor Y))))) 

would be a t tempted.  This last goal is clearly satisfied pro- 
viding a suitable referent for the pronoun "him." 

8. C o m p i l i n g  i n to  F i r s t - O r d e r  Logic  
We have suggested tha t  higher-order logic can be used 

to provide a formal specification and justification of certain 
computat ions involving meanings and parsing. We have 
been concerned with explaining a logic programming ap- 
proach to integrating syntactic and semantic processing. 
Higher-order logic is, of course, not needed to perform such 
computations.  In fact, once we have specified algorithms in 
this higher-order setting, it is occasionally the case tha t  a 
first-order re-implementation is possible. For example, all 
the specifications in Section 6 can be transformed or "com- 
piled" into first-order definite clauses. One way of perform- 
ing such a compilation is to define the following constants 
to be the corresponding A-terms: 

and C\D\X\(C X & D X) 
restr RkC\X\(all Y\(R X Y => C Y)) 

Using these definitions, the clauses for role, concept, and 
subsume may be rewritten as the following: 

role R :- prim_role R. 

concept C :- prlm_concept C. 

concept (and CI C2) :- concept C1, concept C2. 

concept (restr R CI) :- concept Cl, role R. 

subsume C C. 

subsume A B :- subsume A C. subsume C B. 

subsume (and A B) C :- subsume A C. subsume B C. 

subsume A (and B C) :- subsume A B. 

subsume A (and B C) :- subsume A C. 

subsume (restr R A) (restr R B) :- subsume A B. 

Introducing the notion of an element of a concept is less 
straightforward. In order to do this, we need to first differ- 
entiate between a fact that  states membership in a concept 
and a fact that  states a relationship between two elements. 
We do this by making the following addit ional definitions: 

is_a C\X\(fact (C X)) 

related R\X\Y\(fact (R X Y)) 

If we assume tha t  i n t e r p  is only used to decide membership 
in concepts, then we may replace ( i n t e r p  (C X)) by ( i s  a 
C X). The remaining clauses in Section 6 can be t ranslated 
into the following: 

is_a important_message ml. 

related sender ml kirk. 

related recipient ml scotty. 

is a (and A B) X :- is_a A X. is_a B X. 

is_a C U :- subsume (restr R C) D. 

related R V U. is_a D V. 

is_a C U :- subsume C D, is_a D U. 

The resulting first-order program is isomorphic to the orig- 
inal, higher-order program. The subsumption algorithm in 
[3] is essentially the one specified by the clauses that  define 
subsume. There are two important  points to make regard- 
ing this program, however. Firs t ,  to correctly specify its 
meaning, one needs to develop the machinery of the higher- 
order program which we first presented. Second, this lat- 
ter program represents a compilation of the first program. 
This compilation relys on simplifing the representation of 
concepts and roles to a point where their  logical structure 
is no longer apparent .  As a result,  it would be harder to 
extend this program with new forms of concepts, roles and 
inferences tha t  involves them. The original program, how- 
ever, is easy to extend. 

Another way to see this comparison is to say that  the 
higher-order program is the formal semantics of the first- 
order program. This way of looking at semantics is very 
similar to the denotat ional  approach to specifying program 
language semantics. There, the correct understanding of 
very simple, low level programming features might involve 
constructions which are higher-order and functional in na- 
ture. 
9. C o n c l u s i o n s  

Our goal in this paper  was to argue tha t  higher-order 
logic has a meaningful role to play in computat ional  lin- 
guistics. Towards this end, we have described a version of 
definite clauses based on higher-order logic and presented 
several examples tha t  i l lustrate their possible use in a nat-  
ural language understanding system. We have built  an ex- 
perimental ,  depth-first  interpreter for AProlog on which we 
have tested all the programs that  appear  in this paper  (and 
many others).  We are currently working on the design and 
implemention of an efficient interpreter  for this program- 

ming language. 
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