A Terminological Simplification Transformation for
Natural Language Question-Answering Systems

David G. Stallard
BBN Laboratories Inc.
10 Moulton St.
Cambridge, MA.

Abstract

A new method is presented for simplifying the logical
expressions used to represent utterance meaning in a

natural language system.' This simplification method
utilizes the encoded knowledge and the limited
inference—-making capability of a taxonomic knowledge
representation system to reduce the constituent
structure of logical expressions. The specific
application is to the problem of mapping expressions of
the meaning representation language to a database
language capable of retrieving actual responses.
Particular account is taken of the model-theoretic
aspects of this problem.

1. Introduction

A common and useful strategy for constructing
natural language interface systems is to divide the
processing of an utterance into two major stages: the
first mapping the utterance to a logical expression
representing its ""meaning” and the second producing
from this logical expression the appropriate response.
The second stage is not neccesarily trivial: the
difficulty of its design is signifigantly affected by the
complexity and generalness of the logical expressions it
has to deal with. If this issue is not faced squarely, it
may affect choices made elsewhere in the system.
Indeed, a need to restrict the form of the meaning
representation can be at odds with particular
approaches towards producing it — as for example the
"compositional” approach, which does not seek to
control expression complexity by giving interpretations
for whole phrasal patterns, but simply combines
together the meaning of individual words in a manner
appropriate to the syntax of the utterance. Such a
conflict is certainly not desirable: we want to have
freedom of linguistic action as well as to be able to
obtain correct responses to utterances.

This paper treats in detail the particular
manifestation of these issues for mnatural-language
systems which serve as interfaces to a database: the
problems that arise in a module which maps the
meaning representation to a second logical language
for expressing actual database queries. A module
performing such a mapping is a component of such

1The work presented here was supported under DARPA
contract §NO2O14-85—C-0016. The views and conclusions
contained in this document are those of the author and

should not be interpreted os necessarily representing the
official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or of the United
Stotes Government.

02238

241

question—answering
and IRUS [1].

systems as TEAM [4], PHLIQA1 [7]
As an example of difficulties which may

be encountered, consider the question "Was the
patient’s mother a diabetic?” whose logical
representation must be mapped onto e particular

boolean field which encodes for each patient whether
or not this complex property is true. Any variation on
this question which a compositional semantics might
also handle, such as "Was diabetes a disease the
patient’s mother suffered from?”, would result in a
semantically equivalent but very different—looking
logical expression; this different expression would also
have to be mapped to this field. How to deal with
these and many other possible variants, without making
the mapping process excessively complex, is clearly a
problem.

The solution which this paper presents is a new level
of processing, intermediate between the other two: a
novel simplification transformation which is performed
on the result of semantic interpretation before the
attempt is made to map it to the database. This
simplification method relies on knowledge which is
stored in a taxonomic knowledge representation system
such as NIKL [5]. The principle behind the method is
that an expression may be simplified by translating its
subexpressions, where possible, into the language of
NIKL, and classifying the result into the taxonomy to
obtain a simpler equivalent for them. The result is to
produce an equivalent but syntactically simpler
expression in which fewer, but more specific, properties
and relations appear. The benefit is that deductions
from the expression may be more easily "read off"; in
particular, the mapping becomes easier because the
properties and relations appearing are more likely to
be either those of the database or composable from
them.

The body of the paper is divided into four sectiomns.
In the first, I will summarize some past treatments of
the mapping between the meaning representation and
the query language, and show the problems they fail to
solve. The second section prepares the way by showing
how to connect the taxonomic knowledge representation
system to a logical lenguage used for meaning
representation. The third section presents the
"recursive terminological simplification” algorithm itself.
The last section describes the implementation status
and suggests directions for interesting future work.

2. A Formal Treatment of the
Mapping Problem

This section discusses some previous work on the
problem of mapping between the logical language used
for meaning representation and the logical language in
which actual database queries are expressed. The

difficulties which remain for these approaches will be
pointed out.

A common organization for a database is in terms of

tables with rows and columns. The standard
formulation of these ideas is found in the relational
model of Codd [3], in which the tables are

characterized as relations over sets of atomic data
values. The elements (rows) of a relation are called
“tuples”, while its individual argument places (columns)
are termed its "attributes”. Logical languages for the
construction of queries, such as Codd’'s relational
algebra, must meke reference to the relations and
attributes of the database.

The first issue to be faced in consideration of the
mapping problem is what elements of the database to
identify with the objects of discourse in the utterance

~ that is, with the non-logical constants? in the
meaning representation. In previous work [9] I have
argued that these should not be the rows of the tables,
as one might first think, but rather certain sets of the
atomic attribute-values themselves. 1 presented an
algorithm which converted expressions of a predicate
calculus—based meaning representation language to the
query language ERL, a relational algebra [3] extended
with second-order operations. The translations of
non-logical constants in the meaning representation
were provided by fixed and local translation rules that
were simply ERL expressions for computing the total
extension of the constant in the database. The
expressions so derived were then combined together in

an appropriate way to yield an expression for
computing the response for the entire meaning
representation expression. If the algorithm
encountered a non-logical constant for which no

translation rule existed, the translation failed and the
user was informed as to why the system could not
answer his question.

By way of illustration, consider the following
relational database, consisting of clinical history
information about patients at a given hospital and of
information about doctors working there:

PATIENTS(PATID, SEX, AGE ,DISEASE,PHYS,DIAMOTHER)
DOCTORS(DOCID,NAME , SEX , SPECIALTY)

where "PHYS" is the ID of the treating physician, and
"DIAMOTHER" is a boolean field indicating whether or
not the patient’'s mother is diabetic. Here are the
rules for the one-place predicate PATIENTS, the one-

place predicate SPECIALTIES, and the two-place
predicate TREATING—-PHYSICIAN:

PATIENTS => (PROJECT PATIENTS OVER PATID)

SPECIALTIES => (PROJECT DOCTORS OVER SPECIALTY)

TREATING-PHYSICIAN => (PROJECT (JOIN PATIENTS
TO DOCTORS
OVER PHYS DOCID)

OVER PATID DOCID)

Note that while no table exists for physician
SPECIALTIES, we can nonetheless give a rule for this
predicate in way that is uniform with the rule given for
the predicate PATIENTS.

2This term, while a standard one in formal logic, may be
confused with other uses of the word “constant”. It simply
refers to the function, predicote ond ordinary constant
symbols, such as "MOTHER" or "JOHN", whose denotations
depend on the interpretation of the longuage, as opposed to
fixed symbols)ike "FORALL","AND", "TRUE".

242

One advantage of such local translation rules is their
simplicity. Another advantage is that they enable us to
treat database question—answering model-theoretically.
The set—theoretic structure of the model is that which
would be obtained by generating from the relations of
the database the much larger set of "virtual” relations
that are expressible as formulas of ERL. The
interpretation function of the model is just the
translation function itself. Note that it is a partial
function because of the fact that some non-logical

constants may not have translations. We speak
therefore of the database constituting a “partially
specified model” for the meaning representation

language. Computation of a response to a user's
request, instead of being characterizable only as a
procedural operation, becomes interpretation in such a
model.

A similar
the work
difficulties

model—-theoretic approach is advocated in
on PHLIQA1 [8], in which a number of
in writing local rules are identified and
overcome. One class of techniques presented there
allows for quite complex and general expressions to
result from local rule application, to which a post-
translation simplification process is applied. Other
special—purpose techniques are also presented, such as
the creation of "proxies” to stand in for elements of a
set for which only the cardinality is known.

A more difficult problem, for which these techniques
do not provide a general treatment, arises when we
want to get at information corresponding to a complex
property whose component properties and relations are
not themselves stored. For example, suppose the query
"List patients whose mother was a diabetic”, is
represented by the meaning representation:

(display t(setof X:PATIENT
(forall Y:PERSON (—>(MOTHER X Y)
(DIABETIC Y)))))

The information to compute the answer may be found in
the field DIAMOTHER above. It is very hard to see how
we will use local rules to get to it, however, since
nothing constructable from the database corresponds
to the non-logical constants MOTHER and DIABETIC.
The problem is that the database chooses to highlight
the complex property DIAMOTHER while avoiding the
cost of storing its constituent predicates MOTHER and
DIABETIC — the conceptual units corresponding to the
words of the utterance.

One way to get around these difficulties is of course
to allow for a more general kind of transformation: a
"global rule” which would match against a whole
syntactic pattern like the univerally quantified sub-
expression above. The disadvantage of this, as is
pointed out in [8], is that the richness of both natural
language and logic allows the same meaning to be
expressed in many different ways, which a complete
“global rule” would have to match. Strictly syntactic
variation is possible: pieces of the pattern may be
spread out over the expression, from which the pattern
matech would have to grab them. Equivalent
formulations of the query may also use completely
different terms. For example, the user might have
employed the equivalent phrase “female parent” in
place of the word "mother”, presumably causing the
semantic interpretation to yield a logical form with the
different predicates ""PARENT” and "FEMALE". This
would not match the pattern. It becomes clear that
the "pattern-matching” to be performed here is not
the literal kind, and that it involves unspecified and
arbitrary amounts of inference.

The alternative approach presented by this paper

takes explicit account of the fact that certain
properties and relations, like "DIAMOTHER"”, can be
regarded as built up from others. In the next section
we will show how the properties and relations whose
extensions the database stores can be axiomatized in
terms of the ones that are more basic in the
application domain. This prepares the way for the
simplification transformation itself, which will rely on a
limited and sound form of inference to reverse the
axiomatization and transform the meaning
representation, where possible, to an expression that
uses only these database properties and relations. In
this way, the local rule paradigm can be substantially
restored.

3. Knowledge Representation and
Question-Answeri

The purpose of this section of the paper is to present
a way of connecting the meaning representation
language to a taxonomic knowledge representation
system in such a way that the inference-making
capability of the latter is available and useful for the
problems this paper addresses. Our approach may be
constrasted with that of others, e.g. TEAM in which
such a texonomy is used mainly for simple inheritance
and attachment duties.

The knowledge representation system used in this
work is NIKL [5]). Since NIKL has been described rather
fully in the references, I will give only a brief summary
here.

NIKL is a taxonomic frame-like system with two basic
data structures: concepts and roles. Concepts are just
classes of entities, for which roles function somewhat
as attributes. At any given concept we can restrict a
role to be filled by some other concept, or place a
restriction on the number of individual "fillers” of the
role there. A role has one concept as its "domain” and
another as its "range”: the role is a relation between
the sets these two concepts denote. Concepts are
arranged in a hierarchy of sub-concepts and
superconcepts; roles are similarly arranged. Both
concepts and roles may associated with names. In
logical terms, a concept may be identified as the one-—
place predicate with its name, and a role as the two-
place predicates with its name.

I will now give the meaning postulates for a term—
forming algebra, similar to the one described in [2] in
which one can write down the sort of NIKL expressions
1 will need. Expressions in this language are
combinable to yield a complex concept or role as their
value.

{CONJ C1 — CN) = (lambda (X) (and (C1 X) — (Cn X)))

(VALUERESTRICT R C) = (lambda (X) (forall Y (-=> (R X Y)
(R 9))]

(NUMBERRESTRICT R 1 NIL) = (lombda (X) (exists Y (R X Y)))
(VRDIFF R C).E (lambda (X Y) (and (R X Y) (C Y)))
(DOMAINDIFF R C) = (lambda (X Y) (and (R X Y) (C X)))

The key feature of NIKL which we will make use of is its
classifier, which computes subsumption and equivalence
relations between concepts, and a limited form of this
among roles. Subsumption is sound, and thus indicates

entailment between terms:
(SUBSUMES €1 €2) -> (forall X (=> (C2 X) (C1 X)))

If the classifier algorithm is complete, the reverse is

243

also true, and entailment indicates subsumption.
Intuitively, this means that classified concepts are
pushed down as far in the hierarchy as they can go.

Also associated with the NIKL system, though not a
part of the core language definition, is a symbol table
which associates atomic names with the roles or
concepts they denote, and concepts and roles with the
names denoting them. If a concept or role does not
have a name, the symbol table is able to create and
install one for it when demanded.

The domain model

In order to be able to use NIKL in the analysis of
expressions in the meaning representation language, we
make the following stipulations for any use of the
language in & given domain. First, any one-place
predicate must name a concept, and any two-place
predicate name a role. Second, any constant, unless a
number or & string, must neme an "individual” concept
— a particular kind of NIKL concept that is defined to
have at most one member. N-ary functions are treated
as a N+1 -~ ary predicates. A predicate of N
arguments, where N is greater than 2, is reified as a
concept with N roles. This set of concepts and roles,
together with the logical reletionships between them,
we call the “"domain model”.

Note that all we have done is to stipulate an one-to-
one correspondence between two sets of things — the
concepts and roles in the domain model and the non-

logical constants of the meaning representation
language. If we wish to include a new non-logical
constant in the language we must enter the

corresponding concept or role in the domain model.
Similarly, the NIKL system's creating a new concept or
role, and creation of a name in the symbol table to
stand for it, furnishes us with a new non-logical
constant.

Axiomatization of the database in terms of
the domain model

The translation rules presented earlier effectively
seek to axiomatize the properties and relations of the
domain model in terms of those of the database. This
is not the only way to bridge the gap. One might also
try the reverse: to axiomatize the properties and
relations of the datebase in terms of those of the
domain model. Consider the DIAMOTHER field of our
sample database. We can write this in NIKL as the
concept PATIENT-WITH-DIABETIC-MOTHER using terms
already present in the domain model:

(CONJ PATIENT
(VALUERESTRICT MOTHER
DIABETIC))

It we wanted to axiomatize the relation implied by the
SEX attribute of the PATIENTS table in our database, we
could readily do so by defining the role PATIENT-SEX in
terms of the domain model relation SEX:

(DOMAINDIFF SEX
PATIENT)

These two defined terms can actually be entered into
the model, and be treated just like any others there.
For example, they can now appear as predicate letters
in meaning representations. Moreover, to the
associated data structure we can attach a translation
rule, just as we have been doing with the original
domain model elements. Thus, will attach to the
concept PATIENT-WITH-DIABETIC-MOTHER the rule:

(PROJECT (SELECT FROM PATIENTS WHERE (EQ DIAMOTHER "YES"))
OVER PATID)

The next section will illustrate how we map from
expressions using '‘original’ domain model elements to
the ones we create for axiomatizing the database, using
the NIKL system and its classifier.

4. Recursive Terminological
Simplification

We now present the actual simplification method. 1t is
composed of two separate transformations which are
applied one after the other. The first, the "contraction
phase”, seeks to contract complicated subexpressions
(particularly nested quantifications) to simpler one—
place predications, and to further restrict the "sorts"
of remaining bound variables on the basis of the one-
place predicates so found. The second part of the
transformation, the ‘'role—tightening” phase, replaces
general relations in the expression with more specific
relations which are lower in the NIKL hierarchy. These
more specific relations are obtained from the more
general by considering the sorts of the variables upon
which a given relational predication is made.

The contraction phase

The contraction phase is an algorithm with three
steps, which occur sequentially upon application to any
expression of the meaning representation. First, the
contraction phase applies itself recursively to each
non—constant subexpression of the expression.
Second, depending upon the syntactic category of the
expression, one of the "pre—simplification”
transformations is applied to place it in a normalized
form. Third and finally, one of the actual simplification
transformations is used to convert the expression to
one of a simpler syntactic category.

Before working through the example, I will lay out the
transformations in detail. In what follows, X and X1,X2
Xn are variables in the meaning representation

language. The symbol "<rest>" denotes a (possibly
empty) sequence of formulae. The expression
"(FORMULA X)" denotes a formula of the meaning

representation language in which the variable X (and
perhaps others) appears freely. The symbol “<quant>"
is to be understood as being replaced by either the

operator SETOF or the quantifier EXISTS.

First, the normalization transformations, which simply
re—arrange the constituents of the expressions to a
more convienent form without changing its syntactic
category:

(1) (ond (Pt X1) (P2 X1) — (PN X1)

(Q1 X2) (@2 x2) — (QN x2)
<rest>)
=> (and (P' X1) (Q' X2) <rest>)

where P' := (CONJ P1 P2 — PN)
and Q' := (CONJ Q1 Q2 — ON)

(2) (<quant> X:S (and (P X) <rest>) =>

(<quant> X:S' (ond <rest>))

where S’ := (CONJ S P)
(3) (<quant> X:8 (P X)) =>

(<quant> X:S')

where S' := (CONJ S P)

(4) (forall X:S (=> (and (P X) <rest>)
(FORMULA X)) ==>

(forail X:S' (-> (ond <rest>)
(FORMULA X))

244

In (2) and (4) above, the conjunction or implication,
respectively, are collapsed out if the sequence <rest>
is empty.

Now the actual simplification transformations, which
seek to reduce a complex sub—-expression to a one-
place predication.

(5) (forall X2:S (-> (R X1 Xx2) (P X2)))
=3 (P’ xt)
where P’ := (VALUERESTRICT (VRDIFF R S) P)

(6) (exists X2:S (R X1 X2)) => (P’ X1)

where P' := (VALUERESTRICT R S)
and R must be a functional role

(7) (exists x2:5 (R X1 X2)) => (P’ X1)
where P' := (NUMBERRESTRICT (VRDIFF R S) 1 NIL)
(8) (and (P X))

(9) (RXC) => (PX)

==> (P X)

where P := (VALUERESTRICT R C)
ond R is functional, C an individual concept

Now, let us suppose that the exercise at the end of the
last section has been carried out, and that the concept
PATIENT-WITH-DIABETIC-MOTHER has been created and
given the appropriate translation rule. To return to
the query "List patients whose mother was a diabetic”,
we recall that it has the meaning representation:

(DISPLAY 1(SETOF X:PATIENTS
(FORALL Y:PERSON
(=> (MOTHER X Y)
(DIABETIC Y)))))

Upon application to the SETOF expression, the
algorithm first applies itself to the inner FORALL. The
syntactic patterns of none of the pre-—simplification
transformations (2) - (4) are satisfied, so
transformation (5) is applied right way to produce the
NIKL concept:

(VALUERESTRICT (VRDIFF MOTHER PERSON)

DIABETIC)
This is given to the NIKL classifier, which compares it
to other concepts already in the hierarchy. Since
MOTHER has PERSON as its range already, (VRDIFF

MOTHER PERSON) is just MOTHER again. The classifier
thus computes that the concept specified above is a
subconcept of PERSON - a PERSON such that his
MOTHER was a DIABETIC. If this is not found to be
equivalent to any pre—existing concept, the system
assigns the concept a new name which no other
concept has, say PERSON-1. The outcome of the
simplification of the whole FORALL is then just the
much simpler expression:

(PERSON-1 X)

The recursive simplification of the arguments to the
SETOF is now completed, and the resulting expression
is:

(DISPLAY t(SETOF X:PATIENT
(PERSON-1 X)))

Transformations can now be applied to the SETOF
expression itself. The pre-—simplification transformation
(3) is found to apply, and a concept expressed by:

(CONJ PATIENT PERSON-1)

is given to the classifier, which recognizes it as
equivalent to the already existing concept PATIENT-
WITH-DIABETIC-MOTHER. Since any concept can serve
as a sort, the final simplification is:

(DISPLAY +(SETOF X:PATIENT-WITH-DIABETIC-MOTHER))

This is the very concept for which we have a rule, so
the ERL translation is:

(PRINT FROM (SELECT FROM PATIENT
WHERE (EQ DIAMOTHER “YES"))
PATID)

Suppose now that the semantic interpretation system
assigned a different logical expression to represent the
query 'List patients whose mother was a diabetic”, in
which the embedded quantification is existential instead
of unjversal. This might actually be more in line with
the number of the embedded noun. The meaning
representation would now be:

(display t(setof X:PATIENT
(exists Y:PERSON (and (MOTHER X Y)
(DIABETIC Y)))

The recursive application of the algorithm proceeds as
before. Now, however, the pre-simplification
transformation (2) may be applied to yield:

(exists Y:DIABETIC (MOTHER X Y))

since a DIABETIC is already a PERSON. Transformation
(6) can be applied if MOTHER is a “functional” role
- mapping each and every person to exactly one
mother. This can be checked by asking the NIKL
system if a number restriction has been attached at
the domain of the role, PERSON, specifying that it have
both a minimum and a maximum of one. If the author
of the domain model has provided this reasonable and
perfectly true fact about motherhood, (6) can proceed
to yield:

(PATIENT-WITH-DIABETIC-MOTHER X)
as in the preceding example.

The role tightening phase

This phase is quite simple. After the contraction
phase has been run on the whole expression, a number
of variables have had their sorts changed to tighter
ones. This transformation sweeps through an
expression and changes the roles in the expression on

that basis. Thus:
(18) (RXY) == (R’ XY)
where S1 is the sort of X

and S2 is the sort of Y
and R’ := (DOMAINDIFF (VRDIFF R $2)
St)

One can see that a use of the relation SEX, where the
sort of the first argument is known to be DOCTOR, can
readily be converted to a use the relation DOCTOR-SEX.

Back conversion: going in the reverse direction

There will be times when the simplification
transformation will "overshoot”, creating and using new
predicate letters which have not been seen before by
classifying new data structures into the model to
correspond to them. The use of such a new predicate
letter can then be treated exactly as would its
equivalent lambda-definition, which we can readily
obtain by consulting the NIKL model. For example, a
query about the sexes of leukemia victims may after
simplification result in a rather strange role being
created and entered into the hierarchy:

PATIENT-SEX—1 := (DOMAINDIFF PATIENT—SEX LEUKEMIA-PATIENT)

This role is a direct descendant of PATIENT-SEYX;
name is system generated.
of DOMAINDIFF given in

its
By the meaning-—postulate
section 3 above, it can be

245

rewritten as the following lambda-abstract:

(lambda (X Y) (ond (PATIENT-SEX X Y)
(LEUKEMIA-PATIENT X)))

For PATIENT-SEX we of course have a translation rule
as discussed in section 2. A rule for LEUKEMIA-
PATIENT can be imagined as involving the DISEASE field
of the PATIENTS table. At this point we can simply call
the translation algorithm recursively, and it will come
up with a translation:

(PROJECT (SELECT FROM PATIENTS
WHERE (EQ DISEASE "LEUK"))
OVER PATID SEX)

This supplies us with the needed rule. As a bonus, we
can avoid having to recompute it later by simply
attaching it to the role in the normal way. The similar
computation of rules for complex concepts and roles
which are already in the domain comes for free.

5. Conclusions, Implementation
Status and Further Work

As of this writing, we have incorporated NIKL into the
implementation of our natural language question-
answering system, IRUS. NIKL is used to represent the
knowledge in a Navy battle-management domain. The
simplification transformation described in this paper
has been implemented in this combined system, and the
axiomatization of the database as described above is
being added to the domain model. At that point, the
methodology will be tested as a solution to the
difficulties now being experienced by those trying to
write the translation rules for the complex database
and domain of the Fleet Command Center Battle
Management Program of DARPA's Strategic Computing
Program.

I have presented a limited inference method on
predicate calculus expressions, whose intent is to place
them in a canonical form that makes other inferences
easier to make. Metaphorically, it can be regarded as

"sinking” the expression lower in a certain logical
space. The goal is to push it down to the "level” of
the database predicates, or below. We cannot

guarantee that we will always place the expression as
low as it could possibly go - that problem is
undecidable. But we can go a good distance, and this
by itself is very useful for restoring the tractability of
the mapping transformation and other sorts of
deductive operations [10].

Somewhat similar simplifications are performed in the
work on ARGON [6], but for a different purpose. There
the database is assumed to be a full, rather than a
partially specified, model and simplifications are
performed only to gain an increase in efficiency. The
distinguishing feature of the present work is its
operation on an expression in a logical language for
English meaning representation, rather than for
restricted queries. A database, given the purposes for
which it is designed, cannot constitute a full model for
such a language. Thus, the terminological simplification
is needed to reduce the logical expression, when
possible, to an expression in a “sub-language” of the
first for which the database is a full model.

An important outcome of this work is the perspective
it gives on knowledge representation systems like NIKL.
It shows how workers in other fields, while maintaining

other logical systems as their primary mode of
representation, can use these systems in practical
ways. Certainly NIKL and NIKL-like systems could

never be used as full meaning representations — they
don't have enough expressive power, and were never
meant to. This does not mean we have to disregard
them, however. The right perspective is to view them
as attached inference engines to perform limited tasks
having to do with their specialty — the relationships
between the various properties and relations that make
up a subject domain in the real world.

Acknowledgements

First and foremost, I must thank Remko Scha, both
for valuable and stimulating technical discussions as
well as for patient editorial criticism. This paper has
also benefited from the comments of Ralph Weischedel
and Jos De Bruin. Beth Groundwater of SAIC was
patient enough to use the software this work produced.
1 would like to thank them, and thank as well the other
members of the IRUS project — Damaris Ayuso, Lance
Ramshaw and Varda Shaked — for the many pleasant
and productive interactions I have had with them.

246

(1]

[2]

(3]

(4]

(s

(6]

(7]

(8]

(9]

[10]

References

Bates, Madeleine and Bobrow, Robert J.

A Transportable Natural Language Interface for
Information Retrieval.

In Proceedings of the 6th Annual International
ACM SIGIR Conference. ACM Special Interest
Group on Information Retrieval and American
Society for Information Science, Washington,
D.C., June, 1983.

Brachman, R.J., Fikes, R.E., and Levesque, H.J.

Krypton: A Functional Approach to Knowledge
Representation.

IEEE Computer, Special Issue on Knowledge
Representation , October, 1983.

Codd,E.F.

A Relational Model of Data for Large Shared Data
Banks.

CACM 13(8), June, 1970.

Barbara Grosz, Douglas E. Appelt, Paul Martin,

and Fernando Pereira.

TEAM: An Experiment in the Design of
Transportable Natural-Language Interfaces.

Technical Report 356, SRI International, Menlo
Park, CA, August, 1985.

Moser, Margaret.

An Overview of NIKL.

Technical Report Section of BBN Report No. 5421,
Bolt Beranek and Newman Inc., 1983.

Patel-Schneider, P.F., H.J. Levesque, and R.J.

Brachman.

ARGON: Knowledge Representation meets
Information Retrieveal.

In Proceedings of The First Conference on
Artificial Intelligence Applications. IEEE
Computer Society, Denver, Colorado,
December, 1984.

W.J.H.J. Bronnenberg, H.C. Bunt, S.P.J.

Landsbergen, R.J.H. Scha, W.J. Schoenmakers and

E.P.C. van Utteren.

The Question Answering System PHLIQA1.

In L. Bole (editor), Natural Language Question
Answering Systems. Macmillan, 1980.

Scha, Remko J.H.

English Words and Data Bases: How to Bridge the
Gap.

In 20th Annual Meeling of the dssociation for
Computational Linguistics, Toronto.
Association for Computational Linguistics,
June, 1982.

Stallard, David G.

Data Modeling for Naturael Language Access.

In Proceedings of the First JEEE Conference on
Applied Artificial Intelligence, Denver,
Colorado. IEEE, December, 1984.

Stallard, David G.

Taxonomic Inference on Predicate Calculus
Expressions.

Submitted to AAAI April 1, 1986.

