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1 Overview

Three central goals of work in the generalized phrase struc-
ture grammar (GPSG) linguistic framework, as stated in the
leading book “Generalized Phrase Structure Grammar” Gaz-
dar et al (1985) (hereafter GKPS), are: (1) to characterize all
and only the natural language grammars, (2) to algorithmically
determine membership and generative power consequences of
GPSGs, and (3) to embody the universalism of natural lan-
guage entirely in the formal system, rather than by statements
made in it.!

These pages formally consider whether GPSG’s weak context-
free generative power (wcfgp) will allow it to achieve the three
goals. The centerpiece of this paper is a proof that it is unde-
cidable whether an arbitrary GPSG generates the nonnatural
language £°. On the basis of this result, I argue that GPSG
fails to define the natural language grammars, and that the gen-
erative power consequences of the GPSG framework cannot be
algorithmically determined, contrary to goals one and two.? In
the process, I examine the linguistic universalism of the GPSG
formal system and argue that GPSGs can describe an infinite
class of nonnatural context-free languages. The paper concludes
with a brief diagnosis of the result and suggests that the problem
might be met by abandoning the weak context-free generative
power framework and assuming substantive constraints.

1.1 The Structure of GPSG Theory

A generalized phrase structure grammar contains five language-
particular components (immediate dominance (ID) rules, meta-
rules, linear precédence (LP) statements, feature co-occurrence

!GKPS clearly outline their goals. One, “to arrive at a constrained met-
alanguage capable of defining the grammars of natural languages, but not
the grammar of, say, the set of prime numbers.”(pA). Two, to construct
an explicit linguistic theory whose formal consequences are clearly and eas-
ily determinable. These ‘formal consequences’ include both the generative
power consequences demanded by the first goal and membership determi-
nation: GPSG regards languages “as collections whose membership is def-
initely and precisely specifiable.”(p.1) Three, to define a linguistic theory
where “the universalism [of natural language] is, ultimately, intended to be
entirely embodied in the formal system, not expressed by stalements made in
it.”(p.4, my emphasis)

2The proof technique make use of invalid computations, and the actual
GPSG constructed is so simple, 80 similar to the GPSGs proposed for actual
natural languages, and so flexible in its exact formulation that the method of
proof suggests there may be no simple reformulations of GPSG that avoid
this problem. The proof also suggests that it is impossible in principle
to algorithmically determine whether linguistic theories based on a wcfgp
framework {e.g. GPSG) actually define the natural language grammars.
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restrictions (FCRs), and feature specification defaults (FSDs))
and four universal components: a theory of syntactic features,
principles of universal feature instantiation, principles of seman-
tic interpretation, and formal relationships among various com-
ponents of the grammar.®

The set of ID rules obtained by taking the finite closure
of the metarules on the ID rules is mapped into local phrase
structure trees, subject to principles of universal feature instan-
tiation, FSDs, FCRs, and LP statements. Finally, these local
trees are assembled to form phrase structure trees, which are
termnated by lexical elements.

The essence of GPSG is the constrained mapping of ID rules
into local trees. The constraints of GPSG theory subdivide
into absolute constraints on local trees (due to FCRs and LP-
statements) and relative constraints on the rule to local tree
mapping (stemming from FSDs and universal feature instan-
tiation). The absolute constraints are all language-particular,
and consequently not inherent in the formal GPSG framework.
Similarly, the relative constraints, of which only universal in-
stantiation is not explicitly language-particular, do not apply
to fully specified ID rules and consequently are not strongly in-
herent in the GPSG framework either. In summary, GPSG
local trees are only as constrained as ID rules are: that is, not
at all.

The only constraint strongly inherent in GPSG theory (when
compared to context-free grammars (CFGs)) is finite feature
closure, which limits the number of GPSG nonterminal symbols
to be finite and bounded.®

1.2 A Nonnatural GPSG

Consider the exceedingly simple GPSG for the nonnatural lan-
guage £*, consisting solely of the two ID rules

3This work is based on current GPSG theory as presented in GKPS. The
reader is urged to consult that work for a formal presentation and thorough
exposition of current GPSG theory.

4] use “strongly inherent” to mean “unavoidable by virtue of the formal
framework.” Note that the use of problematic feature specifications in
universal feature instantiation means that this constraint is dependent on
other, parochial, components (e.g. FCRs). Appropriate choice of FCRs
or ID rules will abrogate universal feature instantiation, thus rendering it
implicitly language particular too.

5This formal constraint is extremely weak, however, since the theory
of syntactic features licenses more than 1077* syntactic categories. See
Ristad, E.S. (1986), “Computational Complexity of Current GPSG Theory”
in these proceedings for a discussion.
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This GPSG generates local trees with all possible subcategoriza-
tion specifications — the SUBCAT feature may assume any value
in the non-head daughter of the first ID rule, and S generates
the nonnatural language *.

This exhibit is inconclusive, however. We have only shown
that GKPS — and not GPSG — have failed to achieve the first
goal of GPSG theory. The exhibition leaves open the possibility
of trivially reformalizing GPSG or imposing ad-hoc constraints
on the theory such that I will no longer be able to personally
construct a GPSG for &*.

2 Undecidability and Generative Power
in GPSG

That “= ¥"?” is undecidable for arbitrary context-free gram-
mars is a well-known result in the formal language literature
(see Hopcraft and Ullman(1979:201-203)). The standard proof
is to construct a PDA that accepts all invalid computations of
a TM M. From this PDA an equivalent CFG G is directly con-
structible. Thus, L(G) = =" if and only if all computations of
M are invalid, i.e. L(M) = 0. The latter problem is undecid-
able, so the former must be also.

No such reduction is possible for a proof that “= £*?” is
undecidable for arbitrary GPSGs. In the above reduction, the
number of nonterminals in G is a function of the size of the
simulated TM M. GPSGs, however, have a bounded number
of nonterminal symbols, and as discussed above, that is the
essential difference between CFGs and GPSGs.

Only weak generative power is of interest for the follow-
ing proof, and the formal GPSG constraints on weak generative
power are trivially abrogated. For example, exhaustive constant
partial ordering (ECPO) — which is a constraint on strong gen-
erative capacity — can be done away with for all intents and
purposes by nonterminal renaming, and constraints arising from
principles of universal feature instantiation don’t apply to fully
instantiated ID rules.

First, a proof that “= £*?” is undecidable for context-free
grammars with a very small number of terminal and nonter-
minal symbols is sketched. Following the proof for CFGs, the
equivalent proof for GPSGs is outlined.

2.1 Outline of a Proof for Small CFGs

Let L(,,) be the class of context-free grammars with at least
z nonterminal and y terminal symbols. I now sketch a proof
that it is undecidable of an arbitrary CFG G € L, ,) whether
L(G) = = for some z,y greater than fixed lower bounds. The
actual construction details are of no obvious mathematical or
pedagogical interest, and will not be included. The idea is
to directly construct a CFG to generate the invalid computa-
tions of the Universal Turing Machine (UTM). This grammar
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will be small if the UTM is small. The “smallest UTM” of
Minsky(1967:276-281) has seven states and a four symbol tape
alphabet, for a state-symbol product of 28 (!}. Hence, it is not
surprising that the “smallest Gyras” that generates the invalid
computations of the UTM has seventeen nonterminals and two
terminals.

Observe that if a string w is an invalid computation of the
universal Turing machine M = (Q,X,T, 8, ¢, B, F) on input z,
then one of the following conditions must hold.

1. w has a “syntactic error,” that is, w is not of the form
Ty#H29# - -+ #Tm#, where each z; is an instantaneous de-
scription (ID) of M. Therefore, some z; is not an ID of
M.

2. z; is not initial; that is, z; & ¢goZ*
3. Zm is not final; that is z,, ¢ T* fT™*
4. z; —py (241)F is false for some odd ¢

5. (2;)F ++as 2i4 is false for some even ¢

Straightforward construction of Gyra will result in a CFG
containing on the order of twenty or thirty nonterminals and
at least fifteen terminals (one for each UTM state and tape
symbol, one for the blank-tape symbol, and one for the instan-
taneous description separator “#”). Then the subgrammars
which ensure that (2;)® — s 241 is false for some even i and
that z; — (z;+1)ﬂ is false for some odd 7 may be cleverly
combined so that nonterminals encode more information, and
S0 on.

The final trick, due to Albert Meyer, reduces the terminals
to 2 at the cost of a lone nonterminal by encoding the n ter-
minals as logn = k-bit words over the new terminal alphabet
{0,1}, and adding some rules to ensure that the final grammar
could generate =* and not (£%)*. The productions

N4 — 0L41L4 ! OOL4 | 01L4 | 11L4 I e

are added to the converted CFG Gy rps, Which generates a
language of the form

Ly — 0000 | 0001 | 0010 | ... | €| LyLy

Where L4 generates all symbols of length 4, and N4 gener-
ates all strings not of length 0 mod k, where k = 4 (i.e. all
strings of length 1,2,3 mod 4). Deeper consideration of the ac-
tual Gyras reveals that the Ng nonterminal is also eliminable.

Note that all the preceding efforts to reduce the number of
nonterminals and terminals increase the number of context-free
productions. This symbol-production tradeoff becomes clearer
when one actually constructs Gyras.

Suppose the distinguished start symbol for Gyras is Surm.
Then we form a new CFG consisting of all productions of the
form



8§ —{Q - go}{ZPF — (M)} Nyu Ly}

and the one production

S — Syrm

where (M) is the length. p encoding of an arbitrary TM M,
and L4, N, are as defined above.

This ensures that strings whose prefix is “qo(M)” will be
generated starting from S if and only if they are generated start-

ing from Syras: that is, they are invalid computations of the
UTM on M.

2.2 Some Details for L., and GPSG

Let the nonterminal symbols I', @, and ¥ in the following CFG
portion generate the obvious terminal symbols corresponding to
the equivalent UTM sets. B is the terminal blank symbol.

Then, the following sketched CF productions generate the
IDs of M such that z; —as (2441)F is false for some odd 1.

The S4 and S nonterminals are used to locate the even and
odd ¢ IDs z; of w. S, generates the language {I' U #}".

Sy — I'Sy | #8S5 | #S0daSok
S5 — I'Ss | #54 | #Sevensok

Soda — S1#
SIHPSIF|SZ|SGIS7
Ss hd FSG | rS;;

S7 — 87T | SsT

52 ad EaES;;I‘bI‘
where a # b, both in &
Sz — agbS3{T* - pca} if 6(¢,) = (p,c, R)
aquS{F3 - cap} if 6(q:b) = (p>C’L)
S; — agB#B{I® — pca} if §(g, B) = (p,c, R)
agB#B{T® — cap} if§(¢,B) = (p,c, L)

S3 — I'S3T' | Q B# BIT | SB#BT

S) and S; must generate a false transition for odd ¢, while Ss
need not generate a false transition and is used to pad out the
IDs of w. The nonterminals Sg, Sy accept IDs with improperly
different tape lengths. The first S, production accepts transi-
tions where the tape contents differ in a bad place, the second S»
production accepts invalid transitions other than at the end of
the tape, and the third S; accepts invalid end of the tape transi-
tions. Note that the last two S; productions are actually classes
of productions, one for each string in I'S — pea, I'S — cap, . . ..

The GPSG for “= £*?” is constructed in a virtually iden-
tical fashion. Recall that the GPSG formal framework does not
bar us from constructing a grammar equivalent to the CFG just
presented. The ID rules used in the construction will be fully
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specified so as to defeat universal feature instantiation, and the
construction will use nonterminal renaming to avoid ECPO.

Let the GPSG category C be fully specified for all features
(the actual values don’t matter) with the exception of, say, the
binary features GER, NEG, NULL and POSS. Arrange those four
features in some canonical order, and let binary strings of length
four represent the values assigned to those features in a given
category. For example, C[0100] represents the category C with
the additional specifications ([-GER], [+NEG], [-NULL], [-
POSS]). We replace S,4¢ by C[0000], S; by C[0001], S; by
C[0010], S3 by C[0011}, Sg by C[0100], and S7 by C[0101]. The
nonterminal T' is replaced by three symbols of the form C{11xx],
one for each linear precedence I' conforms too. Similarly, ¥ is
replaced by two symbols of the form C[100x]|. The ID rules, in
the same order as the CF productions above (with a portion of
the necessary LP statements) are:

C[0000] — C[0001]#

C{0001] — C[1100]C[0001}C{1101] | C[0010] | C[0100] | C[0101]
C{0100] — C[1100]C[0100} | C[1100]C[0011]

C[0101] — C[0101]C[1101} | C[0011]C[1101]

C[0010] — €[1000}aC[1001]C[0011]C[1101]C(1110]
where a # b, both in £
C[0010] — agbC[0011]{I® — pca}

agbC[0011]){T® - cap}
C[0010] — agB# B{T'% — pca}
agB#B{T3 — cap}

if 6(q,b) = (p,c, R)
if 8(¢,b) = (p,¢, L)
if §(¢, B) = (p,c, L)

C[0011] — €[1100]C[0011]C[1101] |
QB#BC[1100|C[1101] |
C[1000] B# BC[1100)

C[1100} < C[0001],C[0011},C[0100],C[0101] < C[1101]
C[1000] < @ < C[1001] < C[0011] < C[1110}

While the sketched ID rules are not valid GPSG rules, just
as the sketched context-free productions were not the valid com-
ponents of a context-free grammar, a valid GPSG can be con-
structed in a straightforward and obvious manner from the
sketched ID rules. There would be no metarules, FCRs or FSDs
in the actual grammar.

The last comment to be made is that in the actual Gyra,
only the number of productions is a function of the size of the
UTM. The UTM is used only as a convincing crutch — i.e. not
at all. Only a small, fized number of nonterminais are needed to
construct a CFG for the invalid computations of any arbitrary
Turing Machine.

3 Interpreting the Result

The preceding pages have shown that the extremely simple non-
natural language ¥* is generated by a GPSG, as is the more
complex language Lyc consisting of the invalid computations of
an arbitrary Turing machine on an arbitrary input. Because



Ljc is a GPSG language, “= £"7?” is undecidable for GPSGs:
there 15 no algorithmic way of knowing whether any given GPSG
generates a natural language or an unnatural one. So, for ex-
ample, no algorithm can tell us whether the English GPSG of
GKPS really generates English or I*.

The result suggests that goals 1, 2, 3 and the context-free
framework conflict with each other. Weak context-free gener-
ative power allows both ©* and Lj¢, yet by goal 1 we must
exclude nonnatural languages. Goal 2 demands it be possi-
ble to algorithmically determine whether a given GPSG gener-
ates a desired language or not, yet this cannot be done in the
context-free framework. Lastly, goal 3 requires that all nonnat-
ural languages be excluded on the basis of the formal system
alone, but this looks to be impossible given the other two goals,
the adopted framework, and the technical vagueness of “natural
language grammar.” )

The problem can be met in part by abandoning the context-
free framework. Other authors have argued that natural lan-
guage is not context-free, and here we argue that the GPSG
theory of GKPS can characterize context-free languages that
are too simple or trivial to be natural, e.g. any finite or reg-
ular language.® The context-free framework is both too weak
and too strong — it includes nonnatural languages and excludes
natural ones. Moreover, CFL’s have the wrong formal proper-
ties entirely: natural language is surely not closed under union,
concatenation, Kleene closure, substitution, or intersection with
regular sets!” In short, the context-free framework is the wrong
idea completely, and this is to be expected: why should the ar-
bitrary generative power classifications of mathematics (formal
language theory) be at all relevant to biology (human language)?

Goal 2, that the naturalness of grammars postulated by’

linguistic theory be decidable, and to a lesser extent goal 3,
are of dubious merit. In my view, substantive constraints aris-
ing from psychology, biology or even physics may be freely in-
voked, with a corresponding change in the meaning of “natural
language grammar” from “mentally-representable grammar” to

something like “easily learnable and speakable mentally-representable

grammar.” There is no a priori reason or empirical evidence to
suggest that the class of mentally representable grammars is not
fantastically complex, maybe not even decidable.?

One promising restriction in this regard, which if properly
formulated would alleviate GPSG’s actual and formal inability
to characterize only the natural language grammars, is strong
nativism — the restrictive theory that the class of natural lan-

SWhile ‘natural language grammar’ is not defined precisely, recent work
has demonstrated empirically that natural language is not context-free, and
therefore GPSG theory will not be able to characterize all the human lan-
guage grammars. See, for example, Higginbotham(1984), Shieber(1985),
and Culy(1985). For counterarguments, see Pullum(1985). Nash(1980),
chapter 5, discusses the impossibility of accounting for free word order lan-
guages (e.g. Warlpiri) using ID/LP grammars. I focus on the goal of
characterizing only the natural language grammars in this paper.

"The finite, bounded number of nonterminals allowed in GPSG theory
plays a linguistic role in this regard, because the direct consequence of finite
feature clogure is that GPSG languages are not truly closed under union,
concatenation, or substitution.

8See Chomsky(1980:120) for a discussion.
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guages is finite. This restriction is well motivated both by the
issues raised here and by other empirical considerations.® The
restriction, which may be substantive or purely formal, is a for-
mal attack on the heart of the result: the theory of undecidabil-
ity is concerned with the existence or nonexistence of algorithms
for solving problems with an infinity of instances. Furthermore,
the restriction may be empirically plausible.1%1!

The author does not have a clear idea how GPSG might be
restricted in this manner, and merely suggests strong nativism
as a well-motivated direction for future GPSG research.

Acknowledgments. The author is indebted to Ed Barton,
Robert Berwick, Noam Chomsky, Jim Higginbotham, Richard
Larson, Albert Meyer, and David Waltz for assistance in writ-
ing this paper, and to the MIT Artificial Intelligence Lab and
Thinking Machines Corporation for supporting this research.

4 References

Chomsky, N. (1980) Rules and Representations. New York:
Columbia University Press.

Gazdar, G., E. Klein, G. Pullum, and 1. Sag (1985) General-
1zed Phrase Structure Grammar. Oxford, England: Basil
Blackwell.

Higginbotham, J. (1984) “English is not a Context-Free Lan-
guage,” Linguistic Ingquiry 15: 119-126.

°Note that invoking finiteness here is technically different from hiding
intractability with finiteness. Finiteness is the correct generalization here,
because we are interested in whether GPSG generates nonnatural languages
or not, and not in the computational cost of determining the generative
capacity of an arbitrary GPSG. A finiteness restriction for the purposes of
computational complexity is invalid because it prevents us from properly
using the tools of complexity theory to study the computational complexity
of a problem.

1%See Osherson et. al. (1984) for an exposition of strong nativism and
related issues. The theory of strong nativism can be derived in formal
learning theory from three empirically motivated axioms: (1) the ability of
language learners to learn in noisy environments, (2) language learner mem-
ory limitations (e.g. inability to remember long-past utterances), and (3)
the likelihood that language learners choose simple grammars over more
complex, equivalent ones. These formal results are weaker empirically
than they might appear at first glance: the equivalence of “learned” gram-
mars is measured using only weak generative capacity, ignoring uniformity
considerations.

1 An alternate substantive constraint, suggested by Higginbotham (per-
sonal communication) and not explored here, is to require natural language
grammars to generate non-dense languages. Let the denaity of a class of lan-
guages be an upper bound (across all languages in the class) on the ratio
of grammatical utterances to grammatical and ungrammatical utterances,
in terms of utterance lengths. If the density of natural languages was small
or even logarithmic in utterance length, as one might expect, and a decid-
able property of the reformulated GPSG’s, then undecidability of “= £°7”
would no longer reflect on the decidability of whether the GPSG framework
characterized all and only the natural language grammars. The exact spec-
ification of this density constraint is tricky because unit density decides
“= £°?” | and therefore density measurements cannot be too accurate.
Furthermore, £" and L;c can be buried in other languages, i.e. concate-
nated onto the end of an arbitrary (finite or infinite) language, weakening
the accuracy and relevance of density measurements.



Hopcroft, J.E., and J.D. Ullman (1979) Introduction to Au-
tomata Theory, Languages, and Computation. Reading,
MA: Addison-Wesley.

Minsky, M. (1967) Computation: Finite and Infinite Machines.
Englewood Cliffs, N.J: Prentice-Hall.

Nash, D. (1980) “Topics in Warlpiri Grammars,” M.I.T. De-
partment of Linguistics and Philosophy Ph.D dissertation,
Cambridge.

Osherson, D., M. Stob, and S. Weinstein (1984) “Learning The-
ory and Natural Language,” Cognition 17: 1-28.

Pullum, G.K. (1985) “On Two Recent Attempts to Show that
English is Not a CFL,” Computational Linguistics 10: 182-
186.

Shieber, S.M. (1985) “Evidence Against the Context-Freeness of
Natural Language,” Linguistics and Philosophy 8: 333-344.

44





