Explanat.... Structures in XSEL

Karen Kukich

Computer Science Department

Carnegie-Mellon University
Pittsburgh. PA 15213
412-578-2621
Kukich@CMU-CS-A

1. Introduction

Expert systems provide a rich testbed from which to develop
and test techniques for natural language processing. These
systems capture the knowledge needed to soive real-world
problems in their respective domains, and that knowiedge can
and should be exploited tor testing computational procedures for
natural language processing. Parsing, semantic interpretation,
dialog monitoring, discourse organization, and text generation
are just a few of the language processing problems that might
take advantage of the pre-structurec! semantic knowiedge of an
expert system. In particular, the need for explanation generation
facilities for expert systems provides an opportunity to explore
the relationships between the underlyin.g knowledge structures
neeced for automated reasoning and those needed for natural
language processing. One such exploration was the
cdevelopment of an explanation generator for XSEL, which is an
expert system that helps a salesperson in producing a purchase
order for a computer system[10]. This paper describes a
technique called "link-dependent message generation” that

forms the basis for explanation generation in XSEL.

1.1. Overview of XSEL

Briefly, the function of the XSEL system is to assist a
salesperson in configuring a custom-tailored purchase order for
a Digital Equipment Corporation VAX computer system. XSEL
works with the salesperson to elicit the functional computing
requirements of the individual customer, and then goes on to
select the components that pest fit those requirements. The
output of an XSEL session is a purchase order consisting of a list

of line-items that specify hardware and software components.

228

There are two main phases to XSEL's processing, a fact
gathering phase and a component selection phase. During the
fact gathering phase XSEL carries on an interactive dialog with
the salesperson to elicit values for facts that determine the
customer’'s functional computing requirements. These might
include requirements for total disk space, percent of removable
disk storage, number of terminals, lines-per-minute of printing.
etc. Natural language processing during the fact gathering
dialog is minimal; XSEL displays menues and pre-formulated

queries and accepts one- aor two-word answers from the user.

Once enough facts have been collected XSEL begins a silent
phase of processing. During this phase a set of candidate
components that satisfy the customer’s basic requirements is
retrieved from the DEC parts database. Within each class of
component, i.e., processor, disk, terminal. etc., candidates are
ranked according to their scare on an evaluation function that
measures the degree to which a candidate satisfies the
customer’'s weighted functional requirements. The candidate
with the highest score is selected and placed on the purchase

order.

The most important knowledge structure used by XSEL during
the fact gathering phase is a fact. A fact is simply a list of
attribute-value pairs that rep}esent knowledge about one of the
customer's functional computing requirements. Figure 1-1
depicts a sampie fact.

(FACT tATTRIBUTE TOTAL-DISK-SPACE
tSTATUS INFERENCE tCLASS DISK

TUNITS MEGASYTE 3 tMEAN 3800
+TOKEN G:29)

Figure 1-1: Sample XSEL Fact

The fact collection process is driven by backward-chaining
rules. A top-level rule deposits a few “core” facts for which XSEL
must obtain values. such as “total-disk-space”, "total-number-of-
terminais”, etc. One at a time, XSEL solicits a value for these
core facts from the salesperson. |[f the salesperson answers
“unknown” to a solicitation, another rule fires to deposit some
additional facts that would enable XSEL to infer a value for the
unknown fact. The cycle is then repeated as XSEL solicits values
for each of the newly deposited facts. Any time a newly
instantiated fact completes the set of facts required to infer a
value for some other fact, the appropriate inference rule is
automaticaily triggered and the value for another fact is inferred.
This backward-chaining process continues untit XSEL obtains
values for all of the core facts, or until no more data can be
collected and no more inferences can be made, in which case

some default value rules fire to instantiate values for any

remaining unknown facts.

The most important knowledge structure used by XSEL during

the component selection phase is a rank element. Like a fact, a

rank element is simply a list of attribute-value pairs. in this case

the attribute-vaiue pairs represent knowledge about a candidate’s
score for one term in the evaluation function. A different
evaluation function is associated with each class of component,
and each evaluation function is a sum of some weighted terms.
The terms of the evaluation function for the class disk, for
example, include price, disk-pack-type, storage-capacity,
average-access-time, peak-transfer-rate, and handedness. For
every candidate, XSEL computes a rank value for each term in
the evaluation function. The rank value for a term is the product

of the cancidate's normalized score for the term and a weight
which represents an importance factor. The essential information

needed to compute a rank value for a term for a candidate is
stored in a rank element. an example of which is shown in Figure
1-2.
(RANK tRANK-NAME AVERAGE -ACCESS.-TIME
tNAME RA60-AA* +CLASS DISK
tRANK-VALUE -3 tCOEFFICIENT 1

tVALUE S0 tIMPORTANCE 1
tTOKEN G:9)

Figure 1-2: Sampie XSEL Rank

After all the rank values have been computed for a candidate they
are summed to obtain a total score for the candidate. The
candidate with the highest total score is selected and placed on

the purchase order.

The component selection phase is driven by forward-chaining
rules. These rules perform the subtasks of first, retrieving
candidates from the database. next, determining a quantity and
cost for each of the candidates. next, computing a total rank
score for each candidate, and finaily, selecting the candidate with

the highest rank score.

At present, the entire XSEL system consists of over three
thousand OPSS (2] rules. The expianation generator, which will
be described shortly, comprises an additional five hundred rules.
Anywhere from approximately five hundred to five thousand rules
may fire during the fact gathering phase to create from fifty to five
hundred facts, and roughly three thousand rules will fire during
the component selection phase to create around one thousand
rank elements. The whole process can take anywh;:re from ten to
thirty minutes of real time, depending on how XSEL's queries are

answered.

1.2. Sample Explanations

Three of the most obvious types of queries a user might ask
were largeted for initial explanation development. Sample
explanations from each of those types are given in this section.
The following sections describe the knowledge structures and
processes within both XSEL and the explanation generator that
produced those explanations. as well as the goals and rationale

behind them.

One type of query that is likely to be asked is why a particular
component appears on a purchase order. We refer to queries of
this type as "why-choice” queries. To answer a why-choice
query the explanation generator must compare the rank elements
for each candidate on each term of the evaluation function in
order to determine which attributes w;ere responsibie for the
higher score of the component that was actually selected. The
following are sample explanations from the why-choice class of

queries.

229

? why ra81

THE RA81 IS CHEAPER THAN ANY
ALTERNATIVE FIXED PACK DISK,
POSSIBLY BECAUSE T HAS A SMALLER
TOTAL STORAGE CAPACITY AND A
SLOWER AVERAGE-ACCESS-TIME .

7 ? why rm0S

ALTHOUGH THERE ARE LESS EXPENSIVE
DISK S, THE RMO05 HAS A LARGER

DISK PACK THAN ANY ALTERNATIVE
REMOVABLE PACK DISK .

Figure 1-3: Sample Why-Choice Explanations

A second obvious type of query asks why a certain fact has
whatever value it has. e.g.. why totul-disk-épace is 3600
megabytes. We refer to queries in this class as "why-fact”
quenes. In the case of why-fact queries, the explanation
generator must examine the facts that were created during the
fact gathering phase, and it must determine how those facts are
related through the backward-chaining process. An example of
an explanation that was generated in response to a why-fact
query follows:

? why q total-disk-space

XSEL INFERRED A VALUE OF 3600 MEGABYTES
FOR TOTAL-DISK-SPACE . 3574 MEGABYTES
ARE REQUIRED FOR TOTAL-USER-DISK-SPACE .
THE REMAINDER IS ACCOUNTED FOR BY OTHER
FACTORS, SUCH AS SUM-OF-SYSTEM-DISK-
SPACE.

3574 MEGABYTES WAS INFERRED FOR
TOTAL-USER-DISK-SPACE BECAUSE 2859
MEGABYTES ARE REQUIRED FOR USER-DISK-
SPACE AND THAT VALUE IS MULTIPLIED

BY 125 FOR PERCENT-FOR-EXPANSION .

XSEL INFERRED A VALUE OF 25 MEGABYTES

FOR SUM-OF-SYSTEM-DISK-SPACE FROM 1
SYSTEM-DISK-SPACE REQUIREMENT OF 25
MEGABYTES FOR THE VMS OPERATING-SYSTEM.

Figure 1.4: Sample Why-Fact Explanation

This explanation would have ended immediately following the

first paragraph had not the user previously asked for longer

explanations. But because the user had earlier typed "explain
more”, the explanation generator went on to explain the terms
“total-user-disk-space” and "sum-of-system-disk-space”, which
were introduced in the first paragraph. If the user were to type

“explain more” a second time, and then ask the same question
“why quantity totai-disk-space”, the expianation generator would

not stop where it did. Instead, it would go on to explain the terms
user-disk-space, percent-for-expansion, and system-disk-space.

which were introduced in the second and third paragraphs.

There is no upper bound on the number of levels of explanation
the user may request. If the number of levels to explain is high.
XSEL will keep explaining until it reaches those facts whose
values were set either by user input or by default, in which case
there is nothing further to explain. The user can also type
“explain less” at any time, thus decreasing the number of levels
to explain. The lower bound on the number of levels to expiain is

one.

The mechanism for determining which term to explain next is a
queue. As new terms are introduced they are placed in the
queue. The queue was originally implemented as a stack, but as
explanations got longer they began to sound less coherent using
the stack mechanism. So the queue was implemented, but the
stack was retained. Now one can toggle between them by typing
“explain queue” or "explain stack”, thus producing alternatively

structured explanations for the sake of comparison.

The third obvious class of queries asks why a certain quantity is
needed for any line-item. We refer to these as "why-line-item”
queries, Why-line-item gqueries require the most compiicated
processing because the expianation generator must understand
how the line-item that was selected relates back to the facts that
determine the quantity needed, and there is usuaily a long
sequence of forward-chaining rules as well as the whoie
evaluation function mechananism between the creation of the
tacts and the creation of the line-items. Figure 1-5 shows a
sample explanation from the why-line-item class. In this example.
the number of levels to explain was set at two. The first two

paragraphs comprise the first level, so the explanation could have

230

stopped there; the remaining two paragraphs were generated in

response to terms introduced in the first two paragraphs.

?why q raé0

4 RA60-AA* 'S WERE SELECTED INORDER TO
SATISFY A REMOVABLE-DISK-SPACE
REQUIREMENT OF 900 MEGABYTES .

EACH RA60-AA* PROVIDES A CAPACITY OF 205
MEGABYTES . THEREFORE , 4 RA60-AA* 'S ARE
REQUIRED TO YIELD AT LEAST 90 PERCENT OF
THE REMOVABLE-DISK-SPACE CAPACITY OF 900
MEGABYTES .

900 MEGABYTES OF THE TOTAL-DISK-SPACE
REQUIREMENT OF 3600 MEGABYTES WERE
ALLOCATED TO REMOVABLE-DISK-SPACE .

XSEL INFERRED A VALUE OF 900 MEGABYTES
FOR REMOVABLE-DISK-SPACE BECAUSE 3600
MEGABYTES ARE REQUIRED FOR TOTAL.-DISK-
SPACE AND 2700 FIXED-DISK ARE

SUBTRACTED FROM IT TO GET THE DIFFERENCE .

THE VALUE OF 205 MEGABYTES FOR REMOVABLE-
DISK-UNIT-CAPABILITY WAS RETRIEVED FROM
THE DATABASE .

Figure 1-5: Sample Why-Line-item Explanation

2. XSEL Explanation Design Goals

2.1. Related Explanation Work

The design of the XSEL explanation generator was motivated
by three goals: first, that explanations should be accurate,
second. that explanations should be direct, and third, that some

degree of generality should be attempted.

Most early attempts at explanation generation adopted either a
canned text or an execution trace approach. The canned text
approach led to accuracy problems and the execution trace
approach led to directness problems. These problems are

described in detail by Swartout{12]. In brief, canned
explanations can suffer from a lack of accuracy in the event that
any modifications or additions are made to the performance
program without the corresponding modifications or additions
being made to the canned text. Execution trace explanations

tend to suiffer from a lack of cirectness because every step during

231

program execution gets reported, including what Swartout has
referred to as “"computer artifacts”, as in "Variable X was
initialized to 0".

Another common early approach to explanation generation
was the goal tree approach, which is very.similar to the execution
trace approach. The original explanations produced by the
MYCIN system were goal tree explanations [1]. This approach
allowed the user to question any request for information made by
the system, and the system would simply locate the goal
immediately above the current one in the goal tree and report that
it needed the information to resolve that higher goal. Goal tree

explanations tend to suffer from the same lack of directness

problems that execution trace explanations suffer from.

Swartout's work on an explanation generator for the Digitalis
Therapy Advisor attacked the accuracy and directness problems
successfully. His approach was to redesign the DTA, separating
descriptive facts from domain principles and from the abstract
goats of the system. This allowed the perfarmance program to be
generated by an automatic programmer, which aiso created a
goal refinement structure in the process. The goal refinement
structure captures the knowledge that goes into writing the
performance program, and makes it accessible to the explanation
generator, where it can be used to produce explanations that are
both accurate and direct. Furthermore, as Swartout points out,
such explanations can be viewed as "justifications” for the

system’s behavior.

One of the major contributions of the DTA work was to
demonstrate that a single explicit representation of knowledge
can and should drive both the automatic program generation
process and the explanation generation process. Further
research supporting the "shared explicit knowledge” approach
to automatic knowledge acquisition, rule generation, and
explanation generation is underway for at least three other

projects (8] (4] (5] {6).

2.2. The XSEL Explanation Approach

XSEL's approach to explanation generation differs from all of

the approaches discussed above. The sheer size of XSEL would
make implementing canned responses tedious. Similarly, the
number of rule firings on any run would make reading execution
trace explanations laborious even, or perhaps especiaily, if they
were transiated into natural lanaguage. The approach taken by

Swartout of extracting the regularities and representing them
separately as domain principles would work for the backward-
chaining rules used during XSEL's fact gathering phase. but the
forward-chaining rules used during the component selection
phase are so irrequiar that attempting to extract regularities
would result in the duplication of neariy the entire set of rules.
Some other common denominator needed to be found in order to
achieve some computational power for explanation generation.
For about two thirds of XSEL's explanation facilities, that
computational power was bought by the creation of links, which
are simpie knowledge structures that establish relations between
elements in XSEL's working memory. The role of links will be the
focus of the remainder of this paper. But first a brief general

overview of all the explanation facilities is gi\)en.

There is a simple variant of a goal tree explanation facility built
into XSEL, so that the system can always state why it wants a
value for any fact it requests during the fact gathering dialog. But
the explanation samples shown in the previous section were
generated by an entirely different mechanism, a message-based
explanation generator. A message-based explanation generator
is a two-phase processor that first generates and organizes
messages based on the contents of working memory, and then
maps those messages into surface strings. Two different types of
message generator have been implemented for XSEL. The
message generator used to answer why-choice queries may be
called a comparative message generator; it examines and
compares the rank elements produced by the evaluation
functions to determine what roles they play in the selection of the
chosen component, and then it creates appropriate messages.
The message generators used to answer the why-fact and why-

line-item queries may be called link-dependent message
generators: they examine the facts and the links between facts to

determine what relations hold among them, and then they create

appropriate messages.

232

Explanations produced by both the comparative message
generator and the link-dependent message generators are
certain t0 be accurate because they always originate from the
contents of working memory. Special steps had to be taken to
ensure the directness of the link-dependent message generators.
however. Those steps will be discussed in the following sections.
which describe the workings of the -link-dependent message
generators in some detail. Discussion of the. comparative

message generator and the surface generator will be reserved for

other occasions.

3. Link-dependent Message Generation

3.1. Generic vs. Relational Explanations

Both of the link-dependent message generators are capable of
operating in two modes. generic mode and refational mode. (The
user can toggle between modes by typing “explain generic” or
“explain relational”.) The explanations shown above in Figures
1-4 and 1-5 are relational explanations: they explicate the
relations that hold between facts. Some of those relations are
arithmetic relations, such as sum and product, and some are
abstract relations, such as satisfaction and allocation relations.
Contrast the relational explanation for the query “why g total-
disk-space” shown in Figure 3-1 with the generic explanation for
the same query shown in Figure 1-4. Generic explanations do not
explicate the relations that hold between facts; they simply state
that some generic dependencies exist. The same message
generator is used to generate both generic and relational
-explanations. (Notice that the same queuing mechanism is used
to explain subsequent terms in both generic and relational
explanations.) The difference between generic and relational
explanations resuits from the fact that there are two different

types of links in XSEL's memory, generic links and relational
links. Bath types ot links estabiish a connection between two or
more facts. The difference is that generic links are aiways
unnamed. binary links, whereas relational links are always
named, n-ary links, where the name may be an arithmetic retation
such as sum or product, or an abstract relation. such as

satisfaction or allocation. Both types of links are deposited into

? why q total-disk-space

THE VALUE OF 3600 MEGABYTES FOR TOTAL-DISK
IS DEPENDENT

ON 1424 KILOBYTES FOR TOTAL-APPLICATION-DIS
110592 KILOBYTES FOR PROGRAMMER-DISK-SPAC
2816000 KILOBYTES FOR TOTAL-DATA-FILE-DISK-S
600 KILOBYTES FOR PAGE-AND-SWAP-SPACE

AND 25600 KILOBYTES FOR SYSTEM-DISK-SPACE .

THE VALUE OF 25600 KILOBYTES FOR SYSTEM-DIS
IS DEPENDENT
ON VMS FOR OPERATING-SYSTEM .

THE VALUE OF 600 KILOBYTES FOR PAGE-AND-SW
IS DEPENDENT
ON 200 KILOBYTES FOR CODE-SKZE .

THE VALUE OF 2816000 KILOBYTES FOR TOTAL-DA
IS DEPENDENT)
ON 2816000 KILOBYTES FOR DATA-FILE-DISK-SPAC

THE VALUE OF 110592 KILOBYTES FOR PROGRAM
IS DEPENDENT

ON 2048 KILOBYTES FOR EDITOR-DISK-SIZE ,
2816000 KILOBYTES FOR LARGEST-DATA-FILE ,

4 PROGRAMMERS FOR NUMBER-OF -PROGRAMME
AND 102400 KILOBYTES FOR LANGUAGE-USE-DISK

THE VALUE OF 1424 KILOBYTES FOR TOTAL-APPLI

IS DEPENDENT :

ON 1024 KILOBYTES FOR SOFTWARE-DEDICATED-

AND 150 KILOBYTES FOR APPLICATION-DISK-SPAC

Figure 3-1: Sampie Generic Explanation

XSEL's working memory by the reasoning rules that fire during
program execution. As links are deposited during XSEL's
execution, two dynamically growing networks are built up: the
generic network is a simple dependency network, and the
relational network is an augmented semantic network. These
networks are the main source of knowledge for the link-

dependent message generators.

A generic link is a very simple memary element consisting of
only two attributes, a source attribute and a sink attribute. The
value of the source attribute is the token (i.e., unique identifier) of
some fact that entered into the inference of the resultant fact; the
value of the sink attribute is the token of the resuitant fact. For

example, the rules that fire to infer a vaiue for the fact total-disk-

233

space will deposit into working memory at least five generic links,
each having the token of the fact total-disk-space in its sink
attribute and each having the token of a fact that entered into the
calculation of the value for total-disk-space, such as total-
application-disk-space, programmer-disk-space, etc., in its
source attribute. An example of a generic link is shown in Figure
3-2. A relational link is a slightly richer memory element which
not only names the relation that holds between two or more facts,
but aiso categorizes it. Figure 3-3 displays one arithmetic
relational link and one abstract relation link.
{generic-link

tsource <total-application-disk-space-token>
tsink <total-disk-space-token>

Figure 3-2: Sample Generic Link

(refational-link
trelation sum
tcategory arithmetic
tsink {total-disk-space-token>
rsource! <lotal-user-disk-space-token>
tsource2 <sum-of-system-disk-space-token>
rsourced <sum-of-page-and-swap-space-token>

{relational-tink
trefation satisfaction
rcategory reason
tsink <quantity-of-disks-token>
rsource <total-disk-space-token>
)

Figure 3-3: Sample Arithmetic and Abstract Relational Links

The network formed by relational links is in some places more
dense and in other places less dense than the network formed by
generic links; arithmetic relational links create more levels thus
making the relational network denser, while abstract links tend to
bridge long chains of facts, thus making the network sparser. To
see this distinction, consider the arithmetic formuia used by XSEL

to calculate the total-disk-space reguirement:

total-disk-space =
((totai-application-disk-space
+ programmer-disk-space
+ total-data-file-disk-space)
*125%)
+ sum of system-disk-space
+ sum of page-and-swap-space

The rules that execute this formula create at least five generic

links linking totai-disk-space to total-application-disk-space,
programmer-disk-space. total-data-file-disk-space, one or more

system-disk-space facts, and one or more page-and-swap-space
facts. At the same time they create one relational link linking
total-disk-space to three new intermediate level facts, total-user-
disk-space, sum-of-system-disk-space, and sum-of-page-and-
swap-space, and they createé additional relational links linking
each of the intermediate facts to their subfacts. Total-user-disk-
space is a newly created intermediate fact, and a relational link,
with trelation percent, is created linking it {0 two more new
intermediate facts, user-disk-space and percent-for-expansion.
Another reiational link i3 in turn created linking user-disk-space to
the three facts total-application-disk-space, programmer-disk-

space. and total-data-file-disk-space.

On the other hand, the rules that determine how many RA60
disk drives are needed, for exampie, create a dense generic
network linking ail the facts that enter into the calculation of total-

disk-space to the facts that ailocate some portion of that amount

to fixed-disk-space. From there the network would get even

denser as fixed-disk-space is linked to the fixed-disk-unit-
capabibity and quantity-of-fixed-disks facts for each candidate. In
fact, these generic links are not currently created due to
limitations of working memory space. In contrast to the
potentially dense generic network, the relational network
contains only a few abstract relation links, such as satisfaction
and allocation links, that bridge many of the generic links, thus

resuiting in a sparser network (and in more direct explanations).

There are good reasons for the existence of two complete
networks. Essentiaily, the tradeoff is that while generic links are
trivial to create, they do not facilitate satisfying explanations. On
the other hand, the creation of relational links often requires
manual intervention, but relational links facilitate direct
explanations. Compare again the generic explanation in Figure

3-1 to its corresponding relational explanation in Figure 1-4.

Generic links require little effort to create because they simply

incorporate the tokens of the facts that are used in an inference

234

rule. In fact, an automatic rule generator was developed for
automatically creating most of XSEL's backward-chaining fact-
gathering rules from simple arithmetic formulas such as the
formuia for total-disk-space discussed above. It was a trivial task
to have the automatic rule generator include the actions required

to have the inference rules create the generit links.

The task of augmenting the fact-gaihering rules to create
arithmetic relational links was also automatable, for the most part.
An automatic link-creator was written tb parse the arithmetic
formulas that were input to the rule generator and create the
appropriate links. This parser identified the main arithmetic
operations, created names for intermediate facts, and moditied
XSEL's rules to have them create the arithmetic relational links.
The output of the automatic link-creator required only minor
manual retouching in those cases where its heuristics for
creating names for intermediate facts fell short.? But the task of
augmenting the component selection rules to create the abstract
relational links between facts has so far resisted an automatic
solution. These links are now being added manually. They
require the effort of someone who understands the workings of

XSEL and recognizes what explanations might be called for and.
consequently, which rules should be modified to create relationai

links.

3.2. Overview of Processing

The processing of a query by a link-dependent message
generator goes as follows. When the initial query is input. a
query-interpretation context is entered. In this context some
rules fire to identify and locate the fact in question, to create a
query-term with the same token as the fact, and to place that
query-term in the query-queue. Following query-in.terpretation, a
message generation cycle consisting roughly of the following five
steps reiterates: 1) focus on the next query-term in the queue, 2)
locate the links related to that query-term, 3) select an

explanation st:hnema:l based on the links found, 4) create

1X$El.'summiemhmawrm~menby$mdyuum

%sa’smmwmmmmuymm

additional query-terms and messages suggested by the selected
schema, and 5) turn control over to the surface generator. Each
time a new query-term is created, queue-control rules decide
whether to place it in the query-queue, depending on such
factors as whether the term has already been expiained and how
many levels of explanation the user has requested. As long as
the query-queue is not empty, the message generation cycle is

reiterated.

When the message generator is in generic mode, it is
constrained to locating generic links during step 2 of the cycle,
and it is constrained to selecting the generic schema during step
3 of the cycle. A simplified version of the generic schema is

depicted in Figure 3-4. The first directive of the generic schema

{Schema-directives::Generic-schema

(make goal tgoal-name create-extra-query-terms
tstatus reiterate)

(make goal tgoal-name create-message
tpredicate IS-DEPENDENT
ttermt <current-focus>)

(make goal tgoal-name create-message
tpredicate ON
rterm1 <link-focus>
tstatus reiterate)

Figure 3-4: The Generic Schema

directs the message generator to create additional query-terms
for all the facts that are linked to the current query-term. The
second direclive directs the message generator to create one
message with the predicate "1S-DEPENDENT” and with the
focus-token of termi1, which is the current query-term. The
surface realization of this message will be the clause "THE
VALUE OF 3600 MEGABYTES FOR TOTAL-DISK-SPACE IS
DEPENDENT ". The third directive of the generic schema directs
the message generator to create one additional message with the
predicate "ON" and the focus-token of term1 for each of the link
terms found. These messages will emerge as prepositional
phrases in their surface form, such as " ON 1424 KILOBYTES
FOR TOTAL-APPLICATION-DISK-SPACE , 110592 KILOBYTES

%N!mumawudomﬁ'mﬂnmdﬂm(ﬂ].mm
similar structures for discourse organization.

FOR PROGRAMMER-DISK-SPACE , 2816000 KILOBYTES FOR
TOTAL-DATA-FILE-DISK-SPACE , 600 KILOBYTES FOR PAGE-
AND-SWAP-SPACE AND 25600 KILOBYTES FOR SYSTEM.DISK-
SPACE .”

When the message generator is in relational mode, it is
constrained to locating relational links and using relational
schemas. There are a variety of each. Currently, relational links
are categorized as being either reasons, elaborations, or
arithmetic links. During step 2 of the message-generation cycle,
the message generator searches first for reason links, next for
elaboration links, and finally for arithmetic links. In some cases.
the search for arithmetic links may be suppressed. For example,
some links whose relation is allocation are subcategorized as
being arithmetic operations, as in "75 percent of the total-disk-
space requirement was allocated to removable-pack disks”. In
these cases, expressing the arithmetic relation also would be

redundant.

When a relational link is located, a corresponding schema is
selected. In contrast to the single generic schema, there are a
variety of arithmetic and abstract refational schemas. Figure 3-5
illustrates the arithmetic "plus” schema that was used to
generate the messages for the first ;;aragraph of the "why
quantity total-disk-space” relationai expla_naﬁon shown in Figure
1-4. It contains five directives, one to create the new query-terms
found in the arithmetic reasoning trace and four to create
messages. The second message creation directive will create as
many messages as are needed to account for at least 80 percent
of the total value of the fact being explained. (The 80 percent
factor was implemented in order to filter out insignificant facts,
thus making the explanation more concise. Another process that
contributes to more readable explanations is the conversion of all
units in different clauses of the explanation to the same highest
common denominator, eg. megabytes.) Following that, two
additional messages will be created, one to mention that the
remainder of the total is accounted for by other terms and

another to give an exampie.

Figure 3-6 illustrates the “satisfaction” schema that was used

235

(Schema-directives:plus-schema

(make goal tgoal-name create-extra-query-terms
tstatus reiterate)

{make goal tgoai-name create-message
tfocus-token <token1>
tpredicate CAPACITY-REQUIREMENT
tsubname RECOMMENDED)

(make goal rgoal-name create-message
tfocus-token new
tpredicate CAPACITY-REQUIREMENT
tsubname GENERAL
ramount 80)

{make goal tgoai-name create-message
tpredicate REMAINDER)

{make goal tgoal-name éreate-message tfocus-token new

tpredicate EXAMPLE)

Figure 3-5: Sample Arithmetic Schema

to create the messages for the first sentence of the "why quantity
RA60" explanation shown in Figure 1-3. 1t contains one directive
to create an extra query-term matching the token of the new term
identified in the “satisfaction” link, and three actions making the
three messages which surface as three clauses of text in the

expianation.

4. Rationale

The knowledge structures just described, including messages,
query-terms, the query-queue, schemas and links, serve as
intermediate structures between the reasoning knowledge of the
expert system and the l.inguistic knowledge needed for language
generatior!.4 Some of the terminology used to describe these
structures, e.g., "reason” and “elaboration” relations, is derived
from the work of Mann{7] and Hobbs[3] on discourse
organization. Mann and Hobbs independently postulate that
discourse relations, such as reason and elaboration relations

among others, are responsibie for coherence in well-organized

4

See Mauidin (3} for anather view of i iate & 9

o Innniane Anneratinn

(Schema-directives:satisfy-schema

(make goal tgoal-name create-extra-query-term
tfocus-token <{term2))

(make goal tgoal-name create-message
tpredicate QUANTITY-SELECTED
tterm1 {term1>)’

(make goal tgoal-name create-message
tpredicate INORDER
tmtype refational-prop)

(make goal tgoal-name create-message
+predicate CAPACITY-REQUIREMENT
trsubname SATISFY
tterm2 <term2>)

Figure 3-6: Sample Satisfaction Schema

natural language text. One of the premises of this work on
explanation generation is that the .relations. or links, that are
embodied in the inference rules of a successful reasoning system
are the same ones that give coherence to natural language
explanations. An immediate goal of this research is to identify
those relations. At the present time only twenty-six different
reasoning relations, have been identified in XSEL. As more types
of reasoning relations are identified and corresponding links are
added to XSEL's rules. more of XSEL's reasoning will be
explainable. A long term goal of this work is to continue to
identify and add reasoning links and schemas until we see some
generalities begin o emerge. Perhaps some domain-
independent set of reasoning relations and schemas might be
found. Furthermore. such refations and schemas might facilitate
the design of a knowledge acquisition system that wouid elicit
knowledge from an expert, represent it as relations, and generate
inference rules from relations. We realize that this could be a
very long term goal, but it also has the short term benefit of

providing useful explanations.

Acknowledgements

Many people at CMU and DEC have contributed to the
development of XSEL. Some of these include John McDermott,
Tianran Wang, and Kim Smith who developed XSEL's sizing and
selection knowledge; Robert Schnelbach and Michael Browne
who worked on explanation facilities; Sandy Marcus, who wrote
XSEL's rule generator; George Wood, Jim Park, and Mike
Hannon who provided technical support; and Dan Offutt who is
extending XSEL's sizing knowledge with a view towards

developing knowledge acquisition facilities.

References

1. R. Davis. Applications of meta level knowledge to the
construction, maintenance, and use of large knowledge bases.
Ph.D. Th., Stanford University, 1976. Stanford Artificial
Intelligence Laboratory Memo 283, Stanford, CA.

2. C. L. Forgy. OPS-5 User's Manual. CMU-CS-81-135, Dept of
Computer Science. Carnegie-Mellon University, Pittsburgh, PA
15213, July 1981.

3. Jerry R. Hobbs. Towards an Understanding of Coherence in
Discourse. In W. G. Lehnert and M. H. Ringle, Ed., Strategies for
Natural Language Processing, Lawrence Eribaum Associates.
New Jersey, 1982, pp. 223-243.

4. Gary Kahn, Steve Nowlan, and John McDermott. A
Foundation for Knowledge Acquisition. Proceedings of the IEEE
Workshop on Principles of Knowledge-Based Systems, 1EEE,
Denver, CO, 1984, pp. .

S. Gary Kahn and David Gelier. MEX: An OPS-based approach
to explanation. 1984,

6. Karen Kukich, John McDermott and Tianran Wang. XSEL as
Knowledge Acquirer and Explainer. 1985.

7. William C. Mann and Sandra A. Thompson. Relational
Propositions in Discourse. 1983.

8. Sandra |.. Marcus, John McDermott and Tianran Wang. A
Knowledge Acquisition System for VT. Proceedings of the AAAI,
AAAl, Los Angeles, CA, 1985, pp. .

9. Michael Mauidin. Semantic Rule Based Text Generation.
Proceedings of the 10th International Conference on
Computational Linguistics, ACL, Stanford University, Stanford,
CA, 2-6 July 1984, pp. 376-380.

10. John McDermott. Building Expert Systems. Proceedings of
the 1983 NYU Symposium on Artificial Intelligence Applications
for Business, New York University, New York City, April 1983.

11. Kathleen Rose McKeown. Generating Natural Language
Text in Response to Questions about Database Structure. Ph.D.
Th., University of Pennsyivania Computer and Information
Science Department, 1982.

12, William R. Swartout. "XPLAIN: a System for Creating and
Explaining Expert Consuiting Programs”. Artificial intelligence
21 (1983), 285-325.

