MOVEMENT IN ACTIVE PRODUCTION NETWORKS

Mark A. Jones
Alan S. Driscoll

AT&T Bell Laboratories
Murray Hiil, New Jersey 07974

ABSTRACT

We describe how movement is handled in a class of
computational devices called active production networks
(4PNs). The APN model is a parallel, activation-based
framework that has been applicd to other aspects of
natural language processing. The model is briefly defined,
the notation and mechanism for movement is explained,
and then several examples are given which illustrate how
various conditions on movement can naturally be explained
in terms of limitations of the APN device.

1. INTRODUCTION

Movement is an important phenomenon in natural
languages. Recently, proposals such as Gazdar's derived
rules (Gazdar, 1982) and Pereira's extraposition grammars
(Pereira, 1983) have attempted to find minimal extensions
to the context-free framework that would allow the descrip-
tion of movement. In this paper, we describe a class of
computational devices for natural language processing,
called active production networks (APNs), and explore
how certain kinds of movement are handled. In particular,
we are concerned with left extraposition, such as Subject-
auxiliary [nversion, Wh-movement, and NP holes in rela-
tive clauses. In these cases, the extraposed constituent
leaves a trace which is inserted at a later point in the pro-
cessing. This paper builds on the research reported in
Jones (1983) and Jones (forthcoming).

2. ACTIVE PRODUCTION NETWORKS
21 The Dervice .

Our contention is that only a class of parallel devices
will prove to be powerful enough to ailow broad contextual
priming, t0 pursue alternative hypotheses, and to expiain
the paradox that the performance of a sequential system
often degrades with new knowledge, whereas human per-
formance usually improves with learning and experience.!
There are a number of new parailel processing (connection-
ist) models which are sympathetic to this view=—Anderson
(1983), Feldman and Ballard (1982), Waltz and Pollack
(1985), McClelland and Rumeihart (1981, 1982), and
Fahiman, Hinton and Sejnowski (1983).

Many of the connectionist models use iterative relaxa-
tion techniques with networks containing excitatory and
inhibitory links. They have primarily been used as best-fit
categorizers in large recognition spaces, and it is not yet
clear how they will implement the ruie-governed behavior
of parsers or problem solvers. Rule-based systems nced a
strong notion of an operating state, and they depend
heavily on appropriate variable binding schemes for opera-
tions such as matching (e.g., unification) and recursion.
The APN model directly supports a rule-based interpreta-
tion, while retaining much of the general flavor of

1. The buman ability to perform computationally expensi ions using
ively siow, paraliel hard inforces this belief.
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connectionism. An active production network is a rule-
oriented, distributed processing system based on the follow-
ing principles:

1. Each node in the network executes a uniform activa-
tion algorithm and assumes states in response to mes-
sages (such as expectation, inhibition, and activation)
that arrive locally; the node can, in turn, relay mes-
sages, initiate messages, and spawn new instances to
process message activity. Although the patterns that
define a node’s behavior may be quite idiosyncratic or
specialized, the algorithm that interprets the pattern
is the same for each node in the network.

2. Messages are relatively simple. They have an associ-
ated time, strength, and purpose (e.g., to post an
expectation). They do not encode complex structures
such as entire binding lists, parse trees, feature lists,
or meaning representations.? Conseguently, no struc-
ture is explicitly built; the “resuit” of a computation
consists entirely of the activation trace and the new
state of the network.

Figure | gives an artificial, but comprehensive exampie
of an APN grammar in graphical form. The grammar
generates the strings—a, b, acd, ace. bed, bee, fg and gf—
and illustrates many of the pattern language features and
grammar writing paradigms. The network responds to
sources which activate the network at its leaves. Activa-
tion messages spread ‘“‘upward” through the network. At
conjunctive nodes (seq and and), expectation messages are
posted for the legal continuations of the pattern; inhibition
messages are sent down previous links when new activa-
tions are recorded.
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Figure 1. A Sample APN

In parsing applications, partially instantiated nodes are
viewed as phrase structure rules whose next constituent is
expected. The sources primarily arise from exogenous

2. For & sinuiar connectionist view, ses Feldman and Baitard (1982) or
Waltz and Poilack (1985). A comparison of marker passing, vaiue
passing and unrestrivied message passing systems is given in Fahiman,
Hiatoa and Sejnowski (1983).



strobings of the network by external inputs. In generation
or problem solving applications, partially instantiated nodes
are viewed as partially satisfied goals which have outstand-
ing subgoals whose solutions are desired. The sources in
this case are endogenously generated. The compatibility of
these two views not only allows the same network to be
used for both parsing and generation, but also permits
processes to share in the interaction of internal and exter-
nal sources of information. This compatibility, somewhat
surprisingly, turned out to be crucial to our treatment of
movement, but it is also clearly desirable for other aspects
of natural language processing in which parsing and prob-
lem solving interact {e.g., reference resolution and infer-
ence).

22 The Pattern Language

Each node in an APN is defined by a pattern, written
in the pattern language of Figure 2. A pattern describes
the messages to which a node responds, and the new mes-
sages and internal states that are produced. Each subpat-
tern of the form (S v binding-pat) in the pattern for node
N is a variable binding site; a variable binding takes place
when an instance of a node in binding-pat activates a
reference to variable v of node N. Implicitly, a pattern
defines the set of states and state transitions for a node.
The ? (optionality), + (repetition) and * (optional repeti-
tion) operators do not extend the expressiveness of the
language, but have been added for convenience. They can
be replaced in preprocessing by equivalent expressions.’
Formal semantic definitions of the message passing
behavior for each primitive operator have been specificd.

pattern ::= binding-site
| {seq pattern ..
I (and partern ...)
| (or pattern ..)
1 (? pattern)
| (+ binding-site)
! (o binding-site)

binding-site ::= ($ var binding-pattern)

binding-pattern ::= node
| (and binding-patiern ...)
| (or binding-pattern ...)

Figure 2. The APN Pattern Language

An important distinction that the pattern language
makes is in the synchronicity® of activation signals. The
pattern (and ($ v/ X) ($ v2 Y)) requires that the activa-
tion from X and Y cmanate from distinct network sources,
while the pattern ($ v (and X Y)) insists that instances of
X and Y are activated from the same source. In the

3. The exact chowe of operators in the pattern language is & somewhat
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graphical representation of an APN, synchrony is indicated
by a short tail above the subpattern expression; the
definition of U in Figure { illustrates both conventions:
(and ($ vi (and T ) (S v2 g)).

2.3 As Example

Figure 3 shows the stages in parsing the string acd. An
exogenous source Exog-srcO first activates a, which is not
currently supported by a saurce and, hence, is in an inac-
tive state. The activation of an inactive or inhibited node
gives rise 10 a new instance (a0) to record the binding.
The instance is effectively a new node in the network, and
derives its pattern from the spawning node. The activation
spreads upward to the other instances shown in Figure
3(a). The labels on each node indicate the current activa-
tion level, represented as an ioteger between 0 and 9,
inclusive.
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(c) trace structure after acd

Figure 3. Stages in Parsing acd



The activation of a node causes its pattern to be
(re)instantiated and a variable to be (re)bound. For exam-
ple. in the activation of RO, the pattern (seq (S v/ Q) ($
v2 C)) is replaced by (seq ($ vi (or Q Q0)) ($ v2 C)), and
the variable vI is bound to Q0. For simplicity, only the
active links are shown in Figure 3. RO posts an expecta-
tion message for node C which can further its pattern.
The source Exog-src0 is said to be supporting the activa-
tion of nodes a), Q0, RO and PO above it, and the expecta-
tions or inhibitions that are generated by these nodes. For
the current paper we will assume that exogenous sources
remain fully on for the duration of the sentence.’

In Figure 3(b), another exogenous source Exog-src!
activates ¢, which furthers the pattern for RO. RO sends an
inhibition message to QO0, posts expectations for S, and
relays an activation message to PO, which rebinds its vari-
able to RO and assumes a new activation value. Figure
3(c) shows the final situation after d has been activated.
The synchronous conjunction of SO is satisfied by TO and
d0. RO is fully satisfied (activation value of 9), and PO is
re-satisfied.

2.4 Grammar Writing Parndigme

The APN in Figure 1 illustrates several grammar writ-
ing paradigms. The situation in which an initial prefix
string (a or b) satisfies a constituent (P), but can be foi-
lowed by optional suffix strings (cd or ce) occurs frequently
in natural language grammars. For example, noun phrase
heads in English have optional prenominal and postnominal
modifiers. The synchronous disjunction at P allows the
local role of @ or & to change, while preserving its interpre-
tation as part of a P. It is also simple to encode optional
prefixes.

Another common situation in natural language gram-
mars is specialization of a constituent based on some inter-
nal feature. Noun phrases in English, for exampic, can be
specialized by case; verb phrases can be specialized as par-
ticipial, tensed or infinitive. In Figure 1, node S is a spe-
cialization which represents “Ts with d-ness or e-ness, but
not f-ness.” The specialization is constructed by a synchro-
nous conjunction of features that arise from subtrees some-
where below the node to be specialized.

The APN model also provides for node outputs to be
partitioned into independent classes for the purpases of the
activation algorithm. The nodes in the classes form levels
in the network and represent orthogonal systems of
classification. The cascading of expectations from different
levels can implement context-sensitive behaviors such as
feature agreement and s—mantic sclectional restrictions.
This is described in Jones (forthcoming). In the next sec-
tion, we will introduce a grammar writing paradigm to
represent movement, another type of non-context-free

behavior.
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3. MOVEMENT

From the APN perspective, movement (limited here to
left-extraposition) necessitates the endogenous reactivation
of a trace that was created earlier in the process. To cap-
ture the trace so that expectations for its reactivation can
be posted, we use the following type of rule: (seq (§ v/ ...
X...) (8 v2 .. (and X X-src V) ..). When an instance,
XO, first activates this rule, v/ is bound to X0; the second
occurrence X in the rule is constrained to match instances
of X0, and expectations for X0, X-src and Y are created.
No new exogenous source can satisfy the synchronous con-
junction; only an endogenous X-src can. The rule is simi-
lar to the notion of an X followed by a ¥ with an X hole in
it (cf. Gazdar, 1982).
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Figure 4. A Grammar for Relative Clauses

Figure 4 defines a grainmar with an NP hole in a reia-
tive clause; other types of left-extraposition are handled
analogously. OQur treatment of relatives is adapted from
Chomsky and Lasnik (1977). The movement rule for S is:
(seq ($ v/ (and Comp Rel (or Exog-src PRO-src)) (S v2
(and Rel Rei-src §))). The rule restricts the first instance
of Rel to arise either from an exogenous relative pronoun
such as which or from an endogenously generated (phono-
logically nuil) pronoun PRO. The second variable is
satisfied when Rei-src simultaneously reactivates a trace of
the Rel instance and inserts an NP-trace into an S.

It is instructive to consider how phonologically nuli pro-
nouns are inserted before we discuss how movement occurs
by trace insertion. The phrase, [Np the mouse { § PRO;
that ..]J}, illustrates how a relative pronoun PRO is
inserted. Figure 5(a) shows the network after parsing the
cat. When the complementizer thar appears next in the
input, PRO-src receives inhibition (marked by downward
arrows in Figure 5(b)) from Rel-Comp0. Non-exogenous



sources such as PRO-src and Rel-src are activated in con-
texts in which they are expected and then receive inhibi-
tion. Figure 5(c) shows the resuiting network after PRO-
src has been activated. The inserted pronoun behaves pre-
cisely as an input pronoun with respect to subsequent
movement.

The trace generation necessary for movement uses the
same insertion mechanism described above. Figures 6(a)-
(d) illustrate various stages in parsing the phrase, [Np the
cat [ which; [s & ranlll. In Figure 6(a), after parsing
the cat which, synchronous expectations are posted for an
S which contains a reactivation of the Rel0 trace by Rei-
src. The signal sent to S by Rel-sre will be in the form of
an NP (through NP-trace).

Figure 6(b) shows how the input of ran produces inhi-
bition on Rel-src from SI. The inhibition on Rel-src
causes it to activate (just as in the ruil pronoun insertion)
to try to satisfy the current contextual expectations. Fig-
ure 6(c) shows the network after Rel-src has activated to
supply the trace. The only remaining probiem is that
Rel-src is actively inhibiting itself through $0¢ When
Rel-src activates again, new instances are created for the
inhibited nodes as they are re-activated; the uninhibited
nodes are simply rebound. The final structure is shown in
Figure 6(d).

It is interesting that the network automatically enforces
the restriction that the relative pronoun, complementizer
and subject of the embedded sentence cannot ail be miss-
ing. PRO must be gencrated before its trace can be
inserted as the subject. Furthermore, since expectations
are strongest for the first link of a sequence, expeciations
will be much weaker for the VP in the relative clause
(under S under ) than for the top-level VP under SO.

The fact that the device blocks certain structures,
without explicit well-formedness constraints, is quite
significant. Wherever possible, we would like to account
for the complexity of the data through the composite
behavior of a universal device and a simple, general gram-
mar. We consider the description of a device which embo-
dies the appropriate principles more parsimonious than a
list of complex conditions and filters, and, to the extent
that its architecture is independently motivated by process-
ing (i.c., performance) considerations, of greater theorctical
interest.’

As we have seen, certain interpretations can be
suppressed by expectations from eisewhere in the network.
Furthermore, the occurrence of traces and empty consti-
tuents is severely constrained because they must be sup-
plicd by endugenous sources, which can oniy suppurt a sin-
gle constituent at any given time. For NP movement,
these two properties of the device, taken together,
cifectively enforce Ross’s Complex NP Constraint (Ross,
1967), which states that, “No efement contained in a

6. Another way of suating this is that the non-synchronicity of the two
variables in the patiern has been violated. The seifl-inbibition of & source
oocurs in other contexts in the APN [ramework, even for czogenous
sources. s nelworks that contaim left-recursive cycles or ambiguous

eif-inhibits i

h {eg.. PP ] ), wel can arise y a8
the resuit of Yy d ini R ivation of a seil-inhibited
source cffectively preserves the yachromicily of p

7. Tbe work of Marcus (1980) is in this same spirit.
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sentence dominated by an NP with a lexical head noun
may be moved out of that NP by a transformation.”

To see why this constraint is enforced, consider the two
kinds of sentences that an NP with a lexical head noun
might dominate. If the embedded sentence is a relative
clause, as in, [Np the rat [5 which; [s the cat [g‘ which;
[s t) chased ;1] likes fishl), then Rel-sre cannot support
both traces. If the embedded sentence is a noun comple-
ment (not shown in Figure 4), as in, [np the rat [3'
which; [s he read a report [g‘ that s the cat chased
t;1111], then there is only one trace in the intended
interpretation, but there is nondeterminism during parsing
between the noun complement and the relative clause
interpretation. The interference causes the trace to be
bound to the innermost relative pronoun in the relative
clause interpretation. Thus, the combined properties of
the device and grammar consistently block those structures
which violate the Complex NP Constraint. Our prelim-
inary findings for other types of movement (e.g., Subject-
auxiliary Inversion, Wh-movement, and Raising) indicate
that they also have natural APN explanations.

4. IMPLEMENTATION asd FUTURE DIRECTIONS

Although the research described in this summary is pri-
marily of a theoretic nature, the basic ideas involved in
using APNs for recognition and generation are being
implemented and tested in Zetalisp on 2 Symbolics Lisp
Machine. We have also hand-simulated data on movement
from the literature to design the theory and aigorithms
presented in this paper. We are currently designing net-
works for a broad coverage syntactic grammar of English
and for additional, cascaded levels for NP role mapping
and case frames. The model has also been adapted as a
general, context-driven problem solver, although more work
remains to be done.

We are considering ways of integrating iterative relaxa-
tion techniques with the rule-based framework of APNs.
This is particulariy necessary in helping the network to
identily expectation coalitions. In Figure 5(a), for exam-
ple, there should be virtually no expectations for Rel-src,
since it cannot satisfy any of the dominating synchronous
conjunctions. Some type of non-activating [eedback from
the sources seems to be necessary.

S. SUMMARY

Recent linguistic theories have attempted to induce
general principies (e.g., CNPC, Subjacency, and the Struc-
ture Preserving Hypothesis) from the detailed structural
descriptions of carlier transformational theories (Chomsky,
1981). OQur research can be viewed as an attempt to
induce the machine that embodies these principles. In this
paper, we have described a class of candidate machines,
called active production networks, and outlined how they
handle movement as a natural way in which machine and
grammar interact.

The APN framework was initially developed as a plau-
sible cognitive model for language processing, which would
have real-time processing behavior, and extensive

8. Due 10 recency considerations which relste (0 expoctation streagth, races
are bound in & way that prescrves nesting.
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Figure 5. Relative Pronoun Insertion

contextual processing and-learning capabilities based on a
formal notion of expectations. That movement also scems
naturally expressible in a way that is consistent with
current linguistic theories is quite intriguing.
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