New Approaches to Parsing Conjunctions Using Prolog

Sandiway Fong
Robert C. Berwick
Artificial Intelligence Laboratory
M.LT.
545 Technology Square
Cambridge MA 02139, (J.S.A.

Abstract

Conjunctions are particularly dillicult to parse in tra-
ditional, phrase-based granunars. This paper shows how
a different represcntation, not based on tree structures,
markedly improves the parsing problem for conjuunctions.
It modifies the union of phrase marker model proposed by
Goodall [1984], where conjunction is considered as the lin-
carization of a three-dimensional union of a non-tree based
phrase marker representation. A PROLOG grammar for con-
junctions using this new approach is given. It is far simpler
and miore transparent than a recent phrase-based extra-
position parser conjunctions by Dahl and McCord [1934].
Unlike the Dakl and McCord or ATN SYSCONJ approach,
no special trail machinery is needed for conjunction, be-
yond that required for analyzing simple sentences. While
of comparable efficiency, the new approach unifies nnder a
single analysis a host of related constructions: respectively
sentences, right node raising, or gapping. Another advan-
tage is that it is also completely reversible (without cuts),
and therefore can be used to generate sentences.

Introduction

The problem addressed in this paper is to construct
a griunmatical device for handling coordination in natural
language that is well founded in linguistic theory and yet
coniputationally attractive. The lingunistic theory should
be powerful enough to describe all of the phenomenon in
coordination, but also constrained enough to reject all un-
grammatical examnples without undue complications. It is
difficult to achieve such a fine balance - espectally since the
term grammatical itself is highly subjeclive. Sowme exan-
ples of the kinds of phenonienon that must be handled are
shown in Gg. 1
Thic theory should also be amenable Lo computer
implementation. For example, the represeutation of the
plirase marker should be conducive to both clean process
description and ellicient implementation of the associated
operations as defined in the linguistic theory.

118

John and Mary went to the pictures
Simple constituent coordination

The fox and the hound lived in the fox hole and

kennel respectively
Coustitnent coordination with the ‘respectively’

reading

John and | like to program in Prolog and Hope
Sitple constituent coordination but can have a col-
lective or respectively reading

John likes but | hate bananas

Noun-constituent coordination

Bill designs cars and Jack acroplanes
Gapping with ‘respectively’ reading

The fox. the hound and the horse all went to market
Multiple conjuncts

* John sang loudly and a carol
Violation of coordination of likes

*Who did Peter see and the car?
Violation of coordinate strneture constraint
*1 will catch Peter and John might the car

Gapping, but component scntences coutain unlike
auxiliary verbs

?The president left before noon and at 2, Gorbachey

Fig 1: Example Sentences

The goal of the computer implementation is to pro-
dunce a device that can both generate surface sentences given
a phrase marker representation and derive a phrase marker
representatlion given a surface sentences. The implementa-
tion should be as cfficient as possible whilst preserving the
essential properties of the linguistic theory. We wiil present
an implementation which is transparent to the grammar
and perhaps cleaner & more modular than other systems
such as the interpreter for the Modilier Structure Cram-
mars (MSGs) of Dahl & McCord [1983).

The MSG systemn will be compared with a simplitied
implementalion of the proposed device. A table showing
the exccution time of both systems for some samnple sen-

tences will be presented. Furthermore, the advantages and
disadvantages of our device will bhe discussed in relalion to
the MSG implementation.

Finally we can show how the simplified device can
be extended to deal with the issues of extending the sys-
temn to handle multiple conjuncts and strengthening the
constraints of the system.

The RPM Representation

The phrase marker representation used by the theory
described in the next section is essentially that of the Re-
duced Phrase Marker (RPM) of Lasnik & Kupin {1977]. A

reduced phrase marker can be thought of as a set consist-

ing of monostrings and a terminal string sitisfying certain
predicates. More formally, we have (fig. 2) :-

Let ¥ and N denote the sct of terminals and
non-terminals respectively.

Let o, 9, x € (SZUN)*.

Let z,y,z € E°.

Let A be a single non-terminal.
Let P be an arbitrary set.

Then is a monostring w.rt. £ & N if p €
T°.NZ.

Suppose © = zAz and that o,) € P where P
is a some sct of strings. We can also define the
following predicates :-

yisa* pin Pifzyze P

v dominates ¢ in P if v = zxy. x # 0 and
X # A

© precedes ¥ in P if 3y sit. y isa® v in P.
Y ==zyx and x # z.

Then :-

P is an RPM if 34,z s.t.
Y{y,p} C P then

A,z ¢ P and

¥ dominates @ in P or ¢ dominates ¥ in P
or Y precedes ¢ in P or » precedes v in P.

Fig 2: Definition of an RPM

119

This representation of a phrase marker is cquiva-
lent to a proper subset of the more cuommon syntactic tree
representation. This means that some trees may not be
representable by an RPM and all RPMs may be re-cast as
trees. (For example, trees with shared nodes representing
overlapping constituents are not allowed.) An example of
a valid RPM is given in fig. 3 :-

Sentence: Alice saw Bill

RPM representation:

{S. Alice.saw.Bill. NP.saw Bill. Alice.V Biil.
Alice.VP Alice.saw.NP}

Fig 3: An example of RPPM representation

This RPM representation forins the basis of {he
linguistic theory described in the next section. The set
representation has some desirable advantages over a tree
representation in terms of both simplicity of description
and implementation of the operations.

Goodall’s Theory of Coordination

Goodall’s idea in his draft thesis [Goodall??] was to
extemd the definition of Lasnik and Kupin's RPM to cover
coordination. The main idea behind this theory is to ap-
ply the notion that coordination results from the union of
phirase markers to the reduced phrase marker. Since RPMs
are scts, this bas the desirable property that the union of
RPPMs would just be the lamiliar set union operation. For
a computer implementation, Lhe set union operation can be
realized inexpensively. In coatrast, the corresponding op-
eration for trees would necessitate a much less simple and
cfficicnt union operation than set union.

However, the original definition of the RPM did
not envisage the union operation necessary for coordina-
tion. The RI’M wasg used to represent 2-dimensional struc-
ture only. But under set union the RPM becomes a rep-
rescatation of 3-dimensional structure. The admissibility
predicates dominates and precedes defined on a set of
nonustrings with a single non-terminal string were inade-
quate to describe 3-dimensional structure.

Basically, Goodall's original idea was to extend the
dominates and precedes predicates to handle RPMs un-
der the set union operation. This resulted in the relations
e-dominates and e-precedes as shown in fig. 4 :-

Assuming the definitions of fig. 2 and in addition
let w,1,0 € (SUN)* and q,r,5,t,v € L°, then
p e-dominates ¢ in P if » dominates ¢' in
P xzw=¢. Oyfl=ypandz=yin P.

@ e-precedes ¢ in P if y isa® pin P, v isa®
Yin P . qyr =svtin P, y # qyr and v # sut

where the relation = (terminal equivalence) is
defined as :-
z=yin P if xzw € P and xyw € P

Figure 4: Extended definitions

This extended definition, in particular - the notion
of cqnivalence forms the basis of the computational device
described in the next section. However since the size of the
RPM may be large, a direct implementation of the above
definition of equivalence is not computationally feasible. In
the actnal systein, an optimized but equivalent alternative
definition is used.

Although these definitions suflice for most examples
of coordination, it is not sufliciently constrained enough to
reject some ungrammatical exammples. For example, fig. 5
gives the RPM rcpresentation of “*John sang loudly and
a carol” in terms of the union of the RPMs for the two
coastituent sentences :-

{John.sang.loudly, S,
John.V.loudly, John VP,
John.sang AP,

NP .sang.loudly }

John sang Ibudly

{John.sang.a.carol, S,
John.V.a.carol, John.VP,
John.sang.NP,
NP.sang.a.carol}

John sang a carol

(When these two RPMs are merged some of the clements
of the set do not satisiv Lasnik & Kupin's onginal defi-
nition - these pairs are :-)

{John . sang.loudly. John sang.a.carol}
{John.V loudly. John V.a.carol}
{NP.sang.loudly, NP.sang.a.carol}

(None of the above pairs satisfy the e-dominates predi-
cate - but they all satisfy e-precedes and hence the sen-
lence is aceepted as an RIPM.)

Fig.5: An example of union of RPMs

120

The above example indicates that the extended RPM
detinition of Goodall allows some ungrammatical sentences
to slip through. Although the device preseuted in the next
section doesn’t make direct use of the extended definitions,
the notion of ecquivalence is central to the implementation.
The basic systemn described in the next scction does have
this deficiency bui a less simplistic version described later
is more constrained - al the cost of some computational
efliciency.

Linearization and Equivalence

Although a theory of coordination has been described
in the previous sections - in order for the theory to be put
into practice, there remain two important questions to be
answered :-

o How to produce surface strings from a set of sentences
to be conjoined?

e How to produce a set of simple sentences (i.e. sen-
tences without conjunctions) from a conjoined surface
string?

This section will show that the processes of lin-
earisation and finding equivalences provide an answer to
both questions. For simplicity in the following discussion,
we assume that the number of simple sentences to be con-
joined is two only.

The processes of linearization and finding cquiva-
lences for generation can be defined as :-

Given a sct of scntences and a set of candidates
which represent the set of conjcinable pairs for
those sentences, linearization will output one or
more surface strings according to a fixed proce-
dure. ’

Given a set of sentences. finding equivalences
will produce a set of conjoinable pairs according
to the definition of cquivalence of the linguistic
theory.

For generation the sccond process (finding equiva-
lences) is called first to generate a set of candidates which
is then used in the first process (lincarization) to generate
the surface strings. For parsing, the definitions still hold -
but the processes arc appliced in reverse order.

To illustrate the procedure for lincarization, con-
sider the following example of a sct of simple sentences

(Gg. 6) :-

{ John liked ice-cream, Mary liked chocolate}
sat of simple scnteuces

{{John. Mary}. {ice-cream. chocolate}}
set of conjoinable pairs

Fig 6: Example of a set of simple sentences

Consider the plan view of the 3-dimensional repre-
sentation of the union of the two simple sentences shown in
fig. 7 :-

John ice-cream

~.
~

T liked

/ <
Mary -

~chocolate

Fig 7: Example of 3-dimensional structure

The procedure of linearization would take the fol-
lowing path shown by the arrows in fig. 8 :-

_ice-cream

chocolate

Fig 8: ixample of lincarization

Following the path shown we obtain the surface
string "John and Mary liked ice-cream and chocolate™.

The sct of conjoinable pairs is producett by the pro-
cess of finding equivalences. "The delinition of cquivalence
as given in the description of ihe extended RI’M requires
the generation of the combined RI'M of the constituent sen-
tences. However it can be shown [Iong??] by considering
the constraints imposed by the definitions of equivalence
and linearization, that the same set of equivalent terminal
strings can be produced just by nsing the terminal strings of
the RI’M alone. There are considerable savings of compu-

121

tational resources in not having to compare every element
of the set with every other element to generate all possible
equivalent strings - which would take O(n?) time - where
n is the cardinality of the set. The corresponding term for
the modified definition (given in the next section) is O(1).

The Implementation in Prolog

This section describes a runnable specification written
in Prolog. The specification described also forms the basis
for comparison with the MSG interpreter of Dahl and Mec-
Cord. The syntax of the clauses to be presented is similar
to the Dec-10 Prolog [Bowen ct al.1982] version. The main
differences are :-

“

o The symbols “-" and “” have been replaced by the
more meaningful reserved words “if” and “and” re-
spectively.

”

The symbol “” is used as the list constructor and

“nil” is nsed to represent the empty list.

An an example, a Prolog clause may have the form :-

a(XY..2)ifb(UV..W)and (RS .. T)

where a,b & ¢ are predicate names and R,S,...,7 may
represent variables, constants or terms. (Variubles
are distinguished by capitalization of the first charac-
ter in the vartable name.) The intended logical read-
ing of the clause is :-

(1]

119
2 .

(4

holds if “b” both hold
for consistent bindings of the arguments

X,Y,..2, UV,.,W,R,S,..T

and

Comnents (shown in italics) may be interspersed be-
tween the arguments in a clause.

Parse and Generate

In the previous section the processes of lincarization
and finding equivalences are described as the two compo-
nents necessary for parsing and generating conjoined sen-
tences. We will show how these processes can be combined
to produce a parser and a generator. The device nsed for
comparison with Dahl & McCord schone is a simplified
version of the device presented in this section.

First, difference lists are used to represent strings
in the following sections. For example, the pair (fig. 9) :-

{ john.liked.ice-cream. Coutinuation, Continuation}

Fig 9: Exanple of a difference list

is a dilference list representation of the sentence “John
liked ice-cream”.

We can now introduce two predicates linearize and
equivalentpairs which correspond to the processes of lin-
carization and finding equivilences respectively (fig. 10) :-

linearize(pairs S1 El and 52 E2 candidates Set
yives Sentence)

Linearize holds when a pair of difference lists
({S1. E1} & {S2. E2}) and a set of candidates
(Set} are consistent with the string (Sentence)
as defined by the procedure given in the previ-
ous section.

equivalentpairs(X Y from S1 S2)

Equivalentpairs holds when a substring X of
S1 is equivalent to a substring Y ol S2 according
to the delinition of equivalence in the linguistic
theocy.

Fig 10: Predicates linearize & equivalentpairs

Additionally, let the meta-logical predicate setof
as in “sctof(Element Goal Set)” hold when Sct is coniposed
of elewents of the form Element and that Set coutains all
instances of Element that satisfy the goal Goal. The pred-
icates generate can now be defined in terms of these two
processes as follows (lig. 1t} :-

gencrate{Sentence from S1 S2)
il sctof(X.Y.nil in equivalentpairs(X Y
fromn S1 52) 13 Set)
andlincarize(pairs S1 nil and S2 nil
candidutes Set gives Sentence)

parsc! Sentence giving S1 E1)
if Lnearize(pairs S1 E1 und S2 E2
candidates SubSet gives Sentence)
andsctoi(X.Y nil in cquivalentpairs(X Y
jromn S1 S2) is Set)

Fig Ll: Prolog dcfinition [or generate & parse

122

The definitions for parsing and gencrating are al-
mosl logically equivalent. Ilowever the sub-goals for pars-

ing are in reverse order to the sub-goals for generating -
since the Prolog interpreter would attempt to solve the
sub-goals in a left to right manner. Furthermore, the sub-
set relation rather than set equality is used in the delinition
for parsing. We can interpret the two definitions as follows

(Gg. 12) :-

Generate holds when Sentence is the con-
Joined sentence resulting from the linearization
of the pair of diflerence lists {S1. nil) and (S2.
nil) using as candidate pairs for conjoining, the
set of non-redundant pairs of cquivalent termi-
nal strings (Set).

Parse holds when Sentence is the conjoined
sentence resulting from the linearization of the
pair of difference lists (S1. E1) and (S2. E2)
provided that the set of candidate pairs for con-
Jjoining (Subsct) is a subset of the set of pairs
of equivalent terminal strings (Set).

Fig 12: Logical reading for generate & parse

The subset relation is necded for the above defini-
tion of parsing hecause it can be shown [Fong??] that the
process of linearization is more coustrained (in terms of the
permissible conjoinable pairs) than the process of finding
equivalences.

Linearize

We can also fashion a logic specilication for the process
of linearization in the same manner. In this section we
will describe the cases corresponding Lo each Prolog clause
necessary in the specification of linearization. However, {otr
simplicity the actual Prolog code is not shown here. (Sce
Appendix A for the definition of predicate linearize.)

In the following discussion we assume that the tem-
plate for predicate linearize has the form “linearize(pairs
St El and 52 E2 cundrdutes Sct gives Sentence)” shown
previousty in fig. 10. There are three independent cases to
consider duriry linearization :-

l. The Base Case.
Il the two difference lists ({S1. E1} & {52. E2}) are
both empty then the conjoined string (Sentence) is
also emptly. This simply states thal if two cmpty
strings are cenjoined then the resull is also an emipty
string.

2. Identical Leading Substrings. what linearizations the system would produce for an ex-
The second case occurs when the two (nou-empty) ample sentence. Consider the sentence “John and Bill liked
difference lists have identical leading non-emply sub- Mary” (fg. 15) :-
strings. Then the conjuined string is identical to the
concatenation of that leading substring with the lin-
carization of the rest of the two diflerence lists. For
example, consider the lincarization of the two frag- {Jobn and Bill liked Mary}

ments “likes Mary” and “likes Jill” as shown in fig. 13
would producce the strings:-

{John and Bill liked Mary,
John and Bill liked Mary}

with candidate set {}
{likes Mary. likes Jill}

{ John liked Mary, Bill liked Mary}
with candidate set {(John, Bill}}

which can be linearized as :-

{likes X} {John Mary. Bill liked Mary}
where X is the linearization with candidate set {{John. Bill liked)}

of strings {Mary. Jil} {John. Bill liked Mary}

with candidate set {(John. Bill liked Mary)}
Fig.13: Example of ideatical leading substrings

Fig.15: Example of linearizations

3. Conjoining.

The last case occurs when the two pairs of (non-
empty) difference lists have no common leading sub-
string. Ilere, the conjoined string will be the con-
catenation of the conjunction of one of the pairs from
the candidate set, with the conjoined string resulting
from the linearization of the two strings with their re-
spective candidate substrings deleted. For example, Finding Equivalences
consider the linearization of the two sentences “John
likes Mary” and “Bill likes Jill" as shown in fig. 14 :-

All of the strings arc then passed to the predicate
findequivalences which should pick out the second pair
of strings as the only grammatically correct linearization.

Goodall’s definition of equivalence was that two termi-
nal sirings were said to be equivalent if they had the sane
left and right contexts. Furthermore we had previously as-
serted that the equivalent pairs could be produced without
searching the whole RI’M. For example consider the equiv-

{John likes Mary. Bill likes Jill}

alent terminal strings in the two sentences “Alice saw Bill”

Given that the selectod vandidate patr is {John, Bill}, and “Mary saw Bill” (fig. 16) :-

the coijoined sendoner wonld be -

{John and Bill X} {Alice saw Bill. Mary saw Bill}
where X
is Lhe linearization of strings {likes Mary, likes Jill} would produce tie equivalent pairs -

{Alice saw Bill. Mary saw Bill}
{Alice. Mary}

Fig. Lt: Exampie of conjoining substrings

{Alice saw. Mary saw}

I'ig.16: EExample of cquivalent pairs
There are some implementation details that are dif-
ferent for parsing Lo generating. (See appendix A.) However
the theee cases are the siuue {or hoth. We also make the following restrictions on Goodall’s

We can illustrate the above definition by showing definition :-

123

o If there exists two terminal strings X & Y such that
X=xx§2 & Y =xy11, then x & Q2 shonld be the strongest
possible left & right contexts respectively - provided
x & y are both nonempty. In the above example,
x=nil and Q=“saw Bill”, so the first and the third
pairs produced are redundant.

In general, a pair of terminal strings are redundant
il they have the form (uv, uw) or (uv, zv), in which
case - they may be replaced by the pairs (v, w) and
(u, z) respectively.

In Goodall’s definition aay two terminal strings them-
selves are also a pair of equivalent terminal strings
(when x & Q are both null). We exclude this case as
il produces simple string concatenation of sentences.

The above restrictions imply that in fig. 16 the only
remaining equivalent pair ({Alice. Mary})is the correct one
for this example.

However, before finding equivalent pairs for two
simple sentences, the process of finding equivalences must
check that the two sentences are actually grammatical. We
assuine that a recognizer/parser (c.g. a predicate parse(S
E)) already exists for determining the grammaticality of
simple sentences. Since the process only requires a yes/no
answer to grammaticality, any parsing or recoguition sys-
tem for simple senlences can be used.

We can now specily a predicate findeandidates{X Y
S1.52) that holds when {X. Y} is an cquivalent pair from
the two grammatical simple sentences {S1. S2} as fullows

(fig. 17) -

findcandidates(X and Y in Sl and S2)
if parse{S1 nil)

and parse(S2 nil)

and equiv({X Y S1 S2)

where equiv is defined as :-

aquiv(X Y X1 Y1)

if append3(Chi X Omega X1)

and terminals{X)

and append3{Chi Y Omega Y1)

and ternyinals{Y)
wheee append3{L1 L2 L3 1 1) holds when L iy cqual
to the concatenation of LIL2 & L3 leeminals(X)
holds when Xis alist of terminal sywbols ouly

Fig 17: Logic definition of Fin:lcandidates

Then the predicate findequivalences is simply de-
fined as (fig. 18) :-

findequivalences(X and Y in S1 and $2)
if findcandidates(X and Y in S1 and S2)
and not redundant(X Y)

where redundant implements the two restrictions describerd |

Fig.18: Logic definition of Findequivalences

- Comparison with MSGs

124

The following table (fig. 19) gives the execution times
in milliscconds for the parsing of some sample sentences
mostly taken from Dahl & McCord {1083]. Both systems
were exccuted using Dec-20 Prolog. The times shown for
the MSG interpreter is based on the Lime taken to parse and
build the syntactic tree only - the tiine for the subsequent
uansformations was not included.

Sample MSG | RPM
sentences system | device
Each man ate an apple and a pear 662 292
)| John ate an apple and a pear 613 233
T A ran and @ woman saw cach train 319 506
Each man and each woman ate 320 503
an apple
John saw and the woman heard 788 834
a wan that laughed
John drove the car throngh and 275 1032
compleiely demolished i window
;.—'Fhv woran who g:wo'::?mnk to 1007 3375
| Jolin and deove a car through a
; window laughed
] Johin saw the man that Mary saw 139 311
{ and Bill gave a book to laughed
1ol saw the man that heaed the 636 323
wotan that langhed and saw Bill i
1 The man that M.'u'—y—s;nv and heard 501 ‘g_’.
! wave au apple to cach woman i
ii John saw a and Mary saw the red 726 770 |
| pear !

Fig.id: Timings for some sample sentences

From the timings we can conclude that the pro-
posed device is comparable to the MSG system in terms
of compniational efficiency. [lowever, there are some other
advantages such as :-

e Transparency of the grammar - There is no need for
phrasal rules such as S — S and S”. The device also
allows non-phrasal conjunction.

e Since no special grammar or particular phrase marker
representation is required, any parser can be used -
the device only requires an accept/reject answer.

e The specification is not biased with respect to pars-
ing or generation. Thc implementation is reversible
allowing il to generate any sentence it can parse and
vice versa.

Modularity of the device. The griunmaticality of sen-
tences with conjunction is determined by the defini-
tion of equivalence. For instance, if needed we can
filter the cqnivalent terminals using semantics.

A Note on SYSCONJ

It is worthwhile to compare the phrase marker approach
to the ATN-based SYSCONIJ mcchanisin. Like SYSCONJ, our
analysis is extragrammatical: we do not tamper with the
hasic grammar, but add a new component that handles
conjunction. Unlike SYSCONJ, our approach is based on a
precise definition of “equivalent phrases” that attempts to
unify under one analysis many diflerent types of coordina-
tion phenomena. SYSCONJ relied ou a rather complicated,
interrnpt-driven method that restarted sentence analysis in
some previously recorded macuine configguration, but with
This cap-
tures part of the “multiple planes” analysis of the phrase
marker approach, but without a precise notion of equiva-
lent phrases. Perhaps as a result, SYSCONJ handled only
ordinary conjunction, and not respectively or gapping read-

the input sequence following the conjunction.

ings. [n our approach, a simple change to the lincarization
process allows u- te liandle gapping.

IIxtensions to the Basic Device

The device described in the previous section is a sim-
plified version for rough comparison with the MSG inter-
preter. [lowever, the system can easily he generalized to
handle multiple conjuncts. The only additional phase re-
quired is to generate templites for multiple readings. Also,
gapping can be handled just by adding clauses to the defi-
nition of linearize - which allows a different path from that
ol fig. 3 to be taken.

The simplilied device permits some examples of un-
gramuutical seotences to e parced as if coreeet (lig. 5).
The modularity of the system allows us Lo constrain the
definition of equivalence still further. The extended defini-
tions in Qoodall’s dealt theory were not included in his the-
sis Cloadallddl presumibly because it was nol constrained
enongh. However in his thesis he proposes another defini-
tion of srannmaticality using RI?Ms. This definition can be
used to constrain equivalence still frther in onr system at
a loss ol some elficiency and generality. PFor example, the
required additional predicate will need to make explicit use

125

of the combined RPM. Therefore, a parser will nced to pro-
duce a RI’M representation as its phrase marker. The mod-
ifications necessary to produce the representation is shown
in appendix B.

Acknowledgements

This work describes research done at the Artificial Intel-
ligence Laboratory of the Massachusetts Institute of Tech-
nology. Support for the Laboratory’s artificial intelligence
research has been provided in part by the Advanced Re-
search Projects Agency of the Depurtment of Defense un-
der Office of Naval Rescarch contract N00014-30-C-0505.
The first author is also funded by a scholarship from the
Kennedy Memorial Trust.

References

Bowen et al: D.L. Bowen (ed.), L. Byrd, F.C.N. Porciea. L. M.
Percira, D.H.ID. Warren. Decsystem- 10 Prolog User’s Man-
ual. University of Edinburgh. 1982,

Dahl & McCord: V. Dahl and M.C. McCord. Treating Coordi-
nation in Logir Grammars. American Journal of Compu-
tational Linguistics. Vol. 9, No. 2 (1983).

Fong??: Sandiway Fonyg. To appear in S.M. thesis - “Specifying
Coordination in Logic” - 1985

Goodall??: Grant Todd Goodall. Draft - Chapter 2 (sections 2.1,
to 2.7)- Coordination.

Goodull$4: Grant Todd Goodall. Parallel Structires in Syntax.
DD thesis. University of California. San Dicgo (1984).

Lasnik & Kupin: 1. Lassik and J. Rupin. A restrictive theory
of iransformational sranunar.
(1977).

Theoretical Lingnistics 4

Appendix A: Linearization

The full Prolog specification for the predicate lineavize iy
siven below.,

/ Lineurize for yeneration /
/ terminating condition /
linearize{ puirs St S1 and 82 82
candidales List giving nil) if nonvar(List)
/ upplicable when we have « common substring /
hnearize{patrs SUISL and S2 152
candidales List giving Sentenee)
il var(Sentence)
aad not same(S1 as El)
and not same(S2 as E2)

and similar(S1 to S2 common Siwmilar)

and not same(Similar as nil)

and remove(Similar from S1 leaving NewS1)

and remove(Similar from 52 leaving NewS2)

and linearize(patrs NewS1 Bl und NewS2 E2
randidates List qiring RestOfScntence)

and append(Simitar RestOfSentence Seutence)

/ conjoin two substrings /

linearize(pairs S1 Bl and S2 £2
candidates List giving Sentence)
if var(Sentence)
and member{Cand1.Cand2.nil of List)
and not same(S1 as E1)
and not same(8§2 as E2)
and remove(Candl from S1 lraving NewS1)
and remove(Cand?2 from 82 {saving NewS2)
and conjoin{list Cand1l.Cand2.nil ustng 'and’
giving Conjoine:l)

and delete{Cand 1.Cand2.nil from List leaving NewList)
and lincarize(patrs NewS1 El and New§2 E2

candidates NewList giving RestofSentence)
and append{Conjuined RestofSentence Sentesnce)

/ Linearize for pursing /
/ Termninating cuse /

linearize{ pasrs nil nil aund nil nil
candidates List giving nil)

if var(List)

and sane(List as nil)

/ Cuase for common substring /

lineariac(patrs Common.NewS1 nil and Common.New82 nil
randidates List giving Sentence)
if nonvar(Sentenee)
aud same{Comuon. Rest OfSentcier as Sentenee)
and lincarizef{ pairs NewST nil and NewsS2 nil
candidates List quing RestOfSentence)

J Case for conjoin /
linearize{ pairs SU nil and 52 nil
candidates Elemeut.Rest giving Sentence)
if nonvar(Seatence)
and append’ (Conjoined o RestOF3entence giving Sentence)
and conjoin{list Element waimg and’ gieing Conjoined)
and same{Element as CandL.Cand2.ail)
aned not zame{Candl as nil)
and not sune{Ciund2 us nil)
and lincarize{puires NewS1 nil and NewS?2 nil
candidates Rest gimnyg Rest OfSentenee)
and append{Candl NewS1 SU)
and appendfCand2 Newh?2 52)
Joappendt s a spectad foru of append sueh Lhat
the Jirst Ust must be nor-crpty

append H(Head.nil to Tail giving Head Tail)

append” (First.Second.Others to Tail gioing Fiest.Rest)
if append (Second Others o Tadl giving Rest)
Amitar{ailte nil rommon ail)

ainilar{ Head L Tail L Lo Head2 T2 cormon nil)

if not scane (el l ws Head?2)

b { Qead Tail b to Hea Tail2 common Head Rest)
if ~unilar(Caill Lo Tail2 corminen Raost)

126

/ conjoin is reversible /

conjoin(list First.Second.nil using Conjunct giving Coujoined)
if nonvar(First)

and nonvar(Second)

and append(First Conjnunct.Second Conjoined)

conjoin(list First.Second.nil using Conjunct giving Conjoined)
if nonvar(Conjoined)

and append(First Conjunct.Second Conjoined)

remove(nilfromn List leaving List)
remove(Head. Tail from Head.Rest leaving List)
if remove(Tail from Rost leaving List)

delete{Hcead from nil leaving nil)

delete(Head from Head. Tail leaving Tail)
delete{ Hoad from First . Rest leaving First, Tail)
if not same{Head as First)

and delete{Head from Rest leaving Tail)

Appendix B: Building the RPM

A BPM representaiion can be built by adding three extra
paratneters to each grammae mile together with a call to a con-
catenation routine. For example, consider the verh plirase “liked
Mary™ from the simple senience ~John liked Mary”. The monos-
tring correspouding to the non-terminal VP is constructed by
taking the left and right contexts of “liked Mary and placing the
nonsterminal symbol VP inbelween them. [n general, we have
something of the form -

phrase{ from Pointl to Point2
using Start Lo End yiving MS.RPM)
if isphrase{Pointl to Point2 RPM)
and bulddmonostring(Start Pointl plus 'VP°
Point2 End MS)

where dilference pairs {Start. Pointl}. {Point2. End} and
{Start. End} represent. the teft context, the right context and the
sentence string respectively. The concatenation routine build-
monostring is just :-

buildmonostring(Start Point} plus NonTerminal
Point2 End MS)

if append(Pointl Left Start)

and append(Point2 Right End)

anul append(Lelt NonTerminal Right MS)

