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ABSTRACT 

This report describes a logic grammar formalism, 
Modular Logic Grammars, exhibiting a high degree 
of modularity between syntax and semantics. There 
is a syntax rule compiler (compiling into Prolog) 
which takes care of the building of analysis 
structures and the interface to a clearly separated 
semantic interpretation component dealing with 
scoping and the construction of logical forms. The 
whole system can work in either a one-pass mode or 
a two-pass mode. [n the one-pass mode, logical 
forms are built directly during parsing through 
interleaved calls to semantics, added automatically 
by the rule compiler. [n the two-pass mode, syn- 
tactic analysis trees are built automatically in 
the first pass, and then given to the (one-pass) 
semantic component. The grammar formalism includes 
two devices which cause the automatically built 
syntactic structures to differ from derivation trees 
in two ways: [I) There is a shift operator, for 
dealing with left-embedding constructions such as 
English possessive noun phrases while using right- 
rezursive rules (which are appropriate for Prolog 
parsing). (2) There is a distinction in the syn- 
tactic formalism between strong non-terminals and 
weak non-terminals, which is important for distin- 
guishing major levels of grammar. 

I. INTRODUCTION 

l'he term logic grammar will be used here, in 
the context of natural language processing, to mean 
a logic programming system (implemented normally 
in P£olog), which associates semantic represent- 
ations Cnormally in some version of preaicate logic) 
with natural language text. Logic grammars may have 
varying degrees on modularity in their treatments 
of syntax and semantics. Th, ere may or may not be 
an isolatable syntactic component. 

In writing metamorpilosis grammars (Colmerauer, 
1978), or definite clause grammars, DCG's, (a spe- 
cial case of metamorphosis grammars, Pereira and 
Warren. 1980), it is possible to build logical forms 
directly in the syntax rules by letting non- 
terminals have arguments that represent partial 
logical forms being manipulated. Some of the ear- 
ties= logic grammars (e.g., Dahl, 1977) used this 
approach. There is certainly an appeal in being 
dicect, but there are some disadvantages in this 
lack of modularity. One disadvantage is that it 
seems difficulZ to get an adequate treatment of the 

scoping of quantifiers (and more generally 
focalizers, McCord, 1981) when the building of log- 
ical forms is too closely bonded to syntax. Another 
disadvantage is just a general result of lack of 
modularity: it can be harder to develop and un- 
derstand syntax rules when too much is going on in 
them. 

The logic grammars described in McCord (1982, 
1981) were three-pass systems, where one of the main 
points of the modularity was a good treatment of 
scoping. The first pass was the syntactic compo- 
nent, written as a definite clause grammar, where 
syntactic structures were explicitly built up in 
the arguments of the non-terminals. Word sense 
selection and slot-filling were done in this first 
pass, so that the output analysis trees were actu- 
ally partially semantic. The second pass was a 
preliminary stage of semantic interpretation in 
which the syntactic analysis tree was reshaped to 
reflect proper scoping of modifiers. The third pass 
took the reshaped tree and produced logical forms 
in a straightforward way by carrying out modification 
of nodes by their daughters using a modular system 
of rules that manipulate semantic items -- consist- 
ing of logical forms together with terms that de- 
termine how they can combine. 

The CHAT-80 system (Pereira and Warren, 1982, 
Pereira, 1983) is a three-pass system. The first 
pass is a purely syntactic component using an 
extrapositJon grammar (Pereira, 1981) and producing 
syntactic analyses in righ~ost normal form. The 
second pass handles word sense selection and slot- 
filling, and =he third pass handles some scoping 
phenomena and the final semantic interpretation. 
One gets a great deal of modularity between syntax 
and semantics in that the first component has no 
elements of semantic interpretation at all. 

In McCocd (1984) a one-pass semantic inter- 
pretation component, SEM, for the EPISTLE system 
{Miller, Heidorn and Jensen, 1981) was described. 
SEM has been interfaced both to the EPISTLE NLP 
grammar (Heidorn, 1972, Jensen and Heidorn, 1983), 
as well as to a logic grammar, SYNT, written as a 
DCG by the author. These grammars are purely syn- 
tactic and use the EPISTLE notion (op. cir.) of 
approximate parse, which is similar to Pereira's 
notzon of righ~s~ normal form, but was developed 
independently. Thus SYNT/SEM is a two-pass system 
with a clear modularity between syntax and seman- 
tics. 
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In DCG's and extraposition grammars, the 
building of analysis structures .(either logical 
forms or syntactic trees) must be specified ex- 
plicitly in the syntax rules. A certain amoun~ of 
modularity is then lost, because the grammar writer 
must be aware of manipulating these structures, and 
the possibility of using the grammar in different 
ways is reduced. [n Dahl and McCord (1983), a logic 
grammar formalism was described, modifier structure 
grammars  (HSG's), in which structure-building (of 
annotated derivation trees) is implicit in the 
formalism. MSG's look formally like extraposition 
grammars, with the additional ingredient that se- 
mantic items (of the type used in McCord (1981)) 
can be indicated on the left-hand sides of rules, 
and contribute automatically to the construction 
of a syntactico-semantic tree much like that in 
HcCord (1981). These MSG's were used interpretively 
in parsing, and then (essentially) the two-pass 
semantic interpretation system of  McCord (1981) was 
used to get logical forms. So, totally there were 
three passes in this system. 

[n this report, [ wish t o  describe a logic 
grammar system, modular logic grammars (MLG's), 
with the following features: 

There is a syntax rule compiler which takes care 
of the building of analysis structures and the 
interface to semantic interpretation. 

There is a clearly separated semantic inter- 
pretation component dealing with scoping and 
the construction of logical forms. 

The whole system (syntax and semantics) can work 
optionally in either a one-pass mode or a two- 
pass mode. 

In the one-pass mode, no syntactic structures 
are built, but logical forms are built directly 
during parsing through interleaved calls to the 
semantic interpretation component, added auto- 
matically by the rule compiler. 

in the two-pass mode, the calls to the semantic 
interpretation component are not interleaved, 
but are made in a second pass, operating on 
syntactic analysis trees produced (automat- 
ically) in the first pass. 

The syntactic formalism includes a t device, 
called the shift operator, for dealing with 
left-embedding constructions such as English 
possessive noun phrases ("my wife's brother's 
friend's car") and Japanese relative clauses. 
~ne shift operator instructs the rule compiler 
to build the structures appropriate for left- 
embedding. These structures are not  derivation 
trees, because the syntax rules are right-re- 
cursive, because of the top-down parsing asso- 
ciated with Prolo E. 

There is a distinction in the syntactic 
formalism between strong non-terminals and weak 
non-terminals, which is important for distin- 
guishing major levels of grammar and which 
simplifies the. working of semantic interpreta- 
tion. This distinction also makes the (auto- 

matically produced) syntactic analysis trees 
much more readable and natural linguistically. 
In the absence of shift constructions, these 
trees are like derivation trees, but only with 
nodes corresponding to strong non-terminals. 

[n an experimental MLG, the semantic component 
handles all the scoping phenomena handled by 
that in McCord (1981) and more than the semantic 
component in McCord (1984). The logical form 
language is improved over that in the previous 
systems. 

The MLG formalism allows for a great deal of modu- 
larity in natural language grammars, because the 
syntax rules can be written with very little 
awareness of semantics or the building of analysis 
structures, and the very same syntactic component 
can be used in either the one-pass or the two-pass 
mode described above. 

Three other logic grammar systems designed with 
modularity in mind are Hirschman and Puder (1982), 
Abramson (1984) and Porto and Filgueiras (198&). 
These will be compared with MLG's in Section 6. 

2. THE MLG S Y N T A C T I C  FORMALISM 

The syntactic component for an MLG consists 
of a declaration of the s t r o n g  non-terminals, fol- 
lowed by a sequence of MLG syntax rules. The dec- 
[aration of strong non-terminals is of the form 

strongnonterminals(NTI.NT2 ..... NTn.nil). 

where the NTi are the desired strong non-terminals 
(only their principal functors are indicated). 
Non-terminals that are not declared strong are 
called weak. The significance of the strong/weak 
distinction will be explained below. 

MLG s y n t a x  rules are of the form 

A ~---> B 

where A is a n o n - t e r m i n a l  and B is a ru le  b o d y .  A 
ru le  b o d y  is any comb ina t i on  o f  surlCace t e r m i n a l s ,  
logical terminals, goals, sh i f t ed  n o n - t e r m i n a l s ,  
non-tprminals, the symbol 'nil', and the cut symbol 
'/', using the sequencing operator ':' and the 'or' 
symbol 'l' (We represent left-to-right sequencing 
with a colon instead of a comma, as is often done 
in logic grammars.) These rule body elements are 
Prolog terms (normally with arguments), and they 
are distinguished formally as follows. 

A su~e terminal is of the form +A, where A 
is any Prolog term. Surface terminals corre- 
spond to ordinary terminals in DCG's (they match 
elements of the surface word string), and the 
notation is often [A] in DCG's. 

A log ica l  t e rm ina l  is  o f  the  form 0p-L~,  where 
Op is  a mod i f i ca t i on  o p e r a t o r  and LF is  a l o g i c a l  
form. Logical terminals a r e  special cases of 
semant ic  i tems,  the significance of which will 
be explained below. Formally, the rule compiler 
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recognizes them as being terms of the form A-B. 
There can be any number of them in a rule body. 

A goal is of the form $A, where A is a term re- 
presenting a Prolog goal. (This is the usual 
provision for Prolog procedure calls, which are 
often indicated by enclosure in braces in 
DCG's.) 

A s h i f t e d  non-terminal is either of the form%A, 
or of the form F%A, where A i s  a weak non- 
terminal and F is any ~erm. (In practice, F 
will be a list of features.) As indicated in 
the introduction, the shift operator '~' is used 
to handle left-embedding constructions in a 
right-recursive ~ule system. 

Any rule body element not of the above four 
forms and not 'nil' or the cut symbol is taken 
to be a non-terminal. 

A terminal is either a surface terminal or a 
logical ~erminal. Surface ~erminals are building 
blocks for the word string being analyzed, and 
logical terminals are building blocks for the 
amalysis structures. 

A syntax rule is called strong or weak, .,u- 
cording as the non-terminal on its left-hand side 
is strong or weak. 

It can be seen that on a purely formal level, 
the only differences between HLG syntax rules and 
DCG's are (1) the appearance of logical terminals 
in rule bodies of MLG's, (2) the use of ~he shift 
operator, and (3) the distinction between strong 
and weak non-terminals. However, for a given lin- 
guistic coverage, the syntactic component of an MLG 
will normally be more compact than the corresponding 
DCG because structure-building must be ,~xplicit in 
DCG's. In this report, the arrow '-->' (as opposed 
to ':>') will be used for for DCG rules, and the 
same notation for sequencing, terminals, etc.. will 
be used for DCG's as for MLG's. 

What is the significance of the strong/weak 
distinction for non-terminals and rules? Roughly, 
a strong rule should be thought of as introducing 
a new l®vel of grammar, whe[eas a weak rule defines 
analysis within a level. Major categories like 
sentence and noun phrase are expanded by strong 
rules, but auxiliary rules like the reoursive rules 
that find the postmodifiers of a verb are weak 
rules. An analogy with ATN's (Woods, 1970) is t~at 
strong non-tecminals are like the start categories 
of subnetworks (with structure-building POP arcs 
for termination), whereas weak non-terminals are 
llke internal nodes. 

In the one-pass mode, the HLG rule compiler 
makes the following distinction for strong and weak 
rules. In the Horn clause ~ranslatiDn of a strong 
~11e, a call to the semantic interpretation compo- 
nent is compiled in at the end of the clause. The 
non-terminals appearing in rules (both strong and 
weak) are given extra arguments which manipu!aKe 
semantic structures used in the call to semantic 
interpretation. No such call to semantics is com- 
piled in for weak rules. Weak rules only gather 

information to be used in the call to semantics made 
by the next higher strong rule. (Also, a shift 
generates a call to semantics.) 

In the two-pass mode, where syntactic analysis 
trees are built during the first pass, the rule 
compiler builds in the construction of a tree node 
corresponding to every strong rule. The node is 
labeled essentially by the non-terminal appearing 
on the left-hand side of the strong rule. (A shift 
also generates the construction of a tree node.) 
Details of rule compilation will be given in the 
next section. 

As indicated above, logical terminals, and more 
generally semantic items, are of the form 

Operator-LogicalForm. 

The Operator is a term which determines how the 
semantic item can combine with other semantic items 
during semantic interpretation. (In this combina- 
tion, new semantic items are formed which ;ire no 
longer logical terminals.) Logical terminals are 
most typically associated with lexical items, al- 
though they ar~ also used to produc~, certain non- 
lexical  ingredients  in logical form ana lys i s .  An 
example for the lexical item "each" might be 

Q/P - e a c h ( P , Q ) .  

Here the operator Q/P is such that when the "each" 
item modifies, say, an item having logical form 
man(X), P gets unified with man(X), and the re- 
sulting semantic item is 

@Q - each(~.an(X),Q) 

w h e r e  @q is an operator which causes Q t o  get uni- 
fied wi~h the logical form of a further modificand. 
Details ,Jr the dse of semantic items will be given 
in Section A. 

Now let us look at the syntactic component of 
a sample HLG which covers the same ground as a 
welt-known DCG. The following DCG is taken essen- 
tially from Pereira and Warren (1980). It is the 
sort of DCG that builds logical forms directly Dy 
manipulating partial logical forms in arguments of 
the grammar symbols. 

sentfP) --> np(X,PI,P): vp(X,Pl). 
np(X,P~,P) --~ detfP2,PI,P):  noun(X,P3): 

r e l c l a u s e ( X , P 3 , P 2 ) .  
n p ( X , P , P )  - - >  name(X) .  
v p ( X , P )  - ->  t r a n s v e r b f X , Y , P l ) :  n p ( Y , P l , P ) .  
vpfX,P~ - - >  i n t r a n s v e r b ( X , P ) .  
r e l c b t u s e ( X , P l , P l & P 2 )  - - >  + t h a t :  v p ( X , P 2 ) .  
r e l c ~ a u s e ( * , P , P )  - - >  n i l .  
d e t ( P I , P 2 , P )  - ->  +D: $ d t ~ D , P I , P 2 , P ) .  
nounfX,P) --> +N: SnfN,X,P). 
name(X) - - >  +X: $nm(X).  
t r a n s v e r b ( X , Y , P )  - - >  +V: $ t v ( V , X , Y , P ) .  
i n t r a n s v e r b ( X , P )  - - >  +V: $ i v ( V , X , P ) .  

/ ~  Lex icon  * /  

n(maa,X,man(X) ).  n(woman, X,woman (X)) .  
~ ( j o h n ) .  nm(mary). 
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d t ( e v e r y , P 1 , P 2 , a l l ( P 1 , P 2 ) ) .  
dt(a,PI,P2,ex(Pl,P2)). 
tv(loves,X,Y,love(X,Y)). 
iv(lives,X,live(X)). 

The syntactic component of an analogous HLG is as 
follows. The lexicon is exactly the same as that 
of the preceding DCG. For reference below, this 
grammar will be called MLGRAH. 

strongnonterminals(sent.np.relclause.det.nil). 

sent ~> np(X): vp(X). 
np(X) => dec: noun(X): relclause(X). 
np(X) ~> name(X). 
vp(X) ~> transverb(X,Y): np(Y). 
vp(X) ~> intransverb(X). 
relclause(X) ~> +that: vp(X). 
relclause(*) ~> nil. 
d e t  ~ >  +O: S d t ( D , P 1 , P 2 , P ) :  P Z / P I - P .  
noun(X)  ----> +N: S n ( N , X , P ) :  I - P .  
name(X) ~> +X: Snm(X). 
transverb(X,Y) :> +V: $tv(V,X,Y,P): I-P. 
intransverb(X) = >  +V: $iv(V,X,P): l-P 

This small grammar illustrates all the ingredients 
of HLG syntax rules except the shift operator. The 
shift will be illustrated below. Note that 'sent' 
and 'np' are strong categories but 'vp' is weak. 
A result is that there will be no call to semantics 
at the end of the 'vp' rule. Instead, the semantic 
structures associated with the verb and object are 
passed up to the 'sent' level, so that the subject 
and object are "thrown into the same pot" for se- 
mantic combination. (However, their surface order 
is not forgotten.) 

There are only two types of modification op- 
erators appearing in the semantic items of this MLG: 
'I' and P2/PI. The operator 'i' means 'left- 
conlotn . Its effect is to left-conjoin its asso- 
ciated logical form to the logical form of the 
modificand (although its use in this small grammar 
is almost trivial). The operator P2/PI is associ- 
ated with determiners, and its effect has been il- 
lustrated above. 

The semantic component will be given below in 
Section &. A sa~_ple semantic analysis for the 
sentence "Every man that lives loves a woman" is 

all(man(Xl)&live(Xl),ex(woman(X2),love(Xl,X2))). 

This is the same as for the above DCG. We will also 
show a sample parse in the next section. 

A fragment of an MLG illustrating the use of 
the shift in the treatment of possessive noun 
phrases is as follows: 

np ~---> deC: n p l .  
np l  = >  premods:  noun:  np2. 
vp2 ~ >  pos tmods .  
np2 ~ >  poss :  %npl .  

_The idea of this fragment can be described in a 
rough procedural way, as follows. In parsing an 
np, one reads an ordinary determiner (deC), then 

goes t o  n p l .  In  n p l ,  one r e a d s  several premodifiers 
(premods), say adjectives, then a head noun, then 
goes to np2. [n np2, one may either finish by 
reading postmodifiers (postmods), OR one may read 
an apostrophe-s (poss) and then SHIFT back to npl. 
Illustration for the noun phrase, "the old man's 
dusty hat": 

the old man 's 
np det npl premods noun np2 poss %npl 

dusty hat (nil) 
premods noun np2 postmods 

When the shift is encountered, the syntactic 
structures (in the two-pass mode) are manipulated 
(in the compiled rules) so that the initial np ("the 
old man") becomes a left-embedded sub-structure of 
the larger np (whose head is "hat"). But if no 
apostrophe-s is encountered, then the structure for 
"the old man" remains on the top level. 

3.  C O M P I L A T I O N  OF MLG S Y N T A X  R U L E S  

In describing rule compilation, we will first 
look at the two-pass mode, where syntactic struc- 
tures are built in the first pass, because the re- 
lationship of the analysis structures to the syntax 
rules is more direct in this case. 

The syntactic structures manipulated by the 
c o m p i l e d  rules are represented as s y n t a c t i c  i t ems ,  
wh ich  a re  terms o f  the  form 

syn(Features,Oaughters) 

where Features is a feature list (to be defined), and 
Daughters is a list consisting of syntactic items 
and terminals. Both types of terminal (surface and 
logical) are included in Daughters, but the dis- 
playing procedures for syntactic structures can 
optionally filter out one or the other of the two 
types. A f e a t u r e  l i s t  is of the form nt:Argl, where 
nt is the principal fun=tot of a strong non-terminal 
and Argl is its first argument. (If nt has no ar- 
guments, we take Argl=nil.) It is convenient, in 
large grammars, to use this first argument Argl to 
hold a list (based on the operator ':') of gram- 
matical features of the phrase analyzed by the 
non-terminal (like n u m b e r  and p e r s o n  for noun 
phrases). 

[n compiling DCG rules into Prolog clauses, 
each non-terminal gets two extra arguments treated 
as a difference list representing the word string 
analyzed by the non-terminal. In compiling MLG 
rules, exactly the same thing is done to handle word 
strings. For handling syntactic structures, the 
MLG rule compiler adds additional arguments which 
manipulate 'syn' structures. The number of addi- 
tional arguments and the way they are used depend 
on whether :he non-terminal is strong or weak. If 
the original non-terminal is strong and has the form 

nt(Xl .... , Xn) 

then in the compiled version we will have 
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nt(Xl ..... Xn, Syn, Strl,Str2). 

Here there is a single syntactic structure argument, 
Syn, representing the syntactic structure of the 
phrase associated by nt with the word string given 
by the difference list (Strl, Sir2). 

On the other hand, when the non-terminal nt 
is weak, four syntactic structure arguments are 
added, producing a compiled predication of the form 

nt(Xl, .... Xn, SynO,Syn, Hodsl,Hods2, Strl,Str2). 

Here t h e  pair (Hodsl, Hods2) holds a difference list 
for the sequence of structures analyzed by the weak 
non-terminal nt. These structures could be 'syn' 
structures or terminals, and they will be daughters 
(modifiers) for a 'syn' structure associated with 
the closest higher call to a strong non-terminal 
-- l e t  us call this higher 'syn structure the ma- 
t r i x  'syn'  s t ruc tu re .  The other pa i r  (SynO, Syn) 
represents the changing view o f  what the matr ix  
'syn'  s t ruc tu re  ac tua l l y  should be, a view that may 
change because a s h i f t  is encountered whi le s a t i s -  
fy ing  nt.  SynO represents the version before sat -  
i s f y i ng  nt ,  and Syn represents the vers ion a f t e r  
satisfying nt. If no shift is encountered while 
satisfying nt, then Syn will just equal SynO. But 
if a shift is encountered, the old version SynO will 
become a daughter node in the new version Syn. 

In compiling a rule with several non-terminals 
in the rule body, linked by the sequencing operator 
':', the argument pairs (SynO, Syn) and (Hodsl, 
Hods2) for weak non-terminals are linked, respec- 
tively, across adjacent non-terminals in a manner 
similar to the linking of the difference lists for 
word-string arguments. Calls to strong non- 
terminals associate 'syn' structure elements with 
the modifier lists, just as surface terminals are 
associated with elements of the word-string lists. 

Let us look now at the compilation of a set 
of rules. We will take the noun phrase grammar 
fragment illustrating the shift and shown above in 
Section 2, and repeated for convenience here, to- 
gether with declarations of strong non-terminals. 

strongnon~erminals(np.det.noun.poss.nil). 

np => det: npl. 
npl => premods: noun: np2. 
np2 ----~-> postmods. 
rip2 => poss: %npl. 

The compiled rules are as follows: 

np[Syn, Strl,Str3) <- 
det(Hod, Strl,Str2) & 
npl(syn(np:nil,Hod:Hods),Syn, 

Hods,nil, Str2,Str3). 

npl(Synl,Syn3, Hodsl,Hods3, Strl,Str4) <- 
premods(Synl,Syn2, Hodsl,Hod:Hods2, 

Strl,Str2) & 
noun(Hod, Str2,Str3) & 
np2(Syn2,Syn3, Hods2,Hods3, Str3,Str4). 

np2(Synl,Syn2, Hodsl,Hods2, Strl,Str2) < -  

postmods(Synl,Syn2, Hodsl,Hods2, Strl,Str2). 

np2(syn(Feas,HodsO),Syn, Hod:Hodsl,Hodsl, 
Strl,Str3) <- 

p o s s ( M o d ,  Strl,Str2) & 
npl(syn(Feas,syn(Feas,HodsO):Hods2),Syn, 

Hods2,nil, Str2,Str3). 

In the first compiled rule, the structure Syn 
to be associated with the call to 'np' appears again 
in the second matrix structure argument of 'npl' 
The first matrix structure argument of 'npl' is 

syn(np:n i l ,Mod:Hods) .  

and this will turn out to be the value of Syn if 
no shifts are encountered. Here Hod is the 'syn' 
structure associated with the determiner 'det', and 
Hods is the list of modifiers determined further 
by 'npi'. The feature list np:nil is constructed 
from the leading non-terminal 'np' of this strong 
rule. (It would have been np:Argl if np had a 
(first) argument Argl.) 

[n the second and third compiled rules, the 
matrix structure pairs (first two arguments) and 
the modifier difference list pairs are linked in a 
straightforward way to reflect sequencing. 

]'be fourth rule shows the effect of the shift. 
Here syn(Feas,HodsO), the previous "conjecture" for 
the matrix structure, is now made simply the first 
modifier in the larger structure 

syn(Feas,syn(Feas,HodsO):Hods2) 

which becomes the new "conjecture" by being placed 
in the first argument of the further call to 'npl'. 
If the shift operator had been used in its binary 
form FO%npl, then the new conjecture would be 

syn(NT:F,syn(NT:FO,Mods0):Hods2) 

where the old conjecture was syn(NT:F,HodsO). [n 
larger grammars, this allows one to have a com- 
pletely correct feature list NT:FO for the left- 
embedded modifier. 

To illustrate the compilation of terminal 
symbols, let us look at the rule 

det => +O: Sdt(D,PI,P2,P): P2/Pt-P. 

from the grammar HLGRAM in Section 2. The compiled 
rule is 

det(syn(det:nil,+D:P2/PI-P:nil), D.Str,Str) <- 
dt(D,PI,P2,P). 

Note that both the surface terminal +D and the 
logical terminal P2/PI-P are entered as modifiers 
of the 'det' node. The semantic interpretation 
component looks only at the logical terminals, but 
in certain applications it is useful to be able to 
see the surface terminals in the syntactic struc- 
tures. As mentioned above, the display procedures 
for syntac=i¢ structures can optionally show only 
one type of terminal. 
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The display of the syntactic structure of the 
sentence "Every man loves a woman" produced by 
MLGRAM is as follows. 

sentence:nil 
np:Xl 

det:nil 
X2/X3-alI(X3,X2) 

l-man(Xl) 
l-love(Xl,XA) 
np:XA 

det:nil 
XS/X6-ex(X6,XS) 

l-woman(X&) 

Note that no 'vp' node is shown in the parse tree; 
'vp' is a weak non-terminal. The logical form 
produced for this tree by the semantic component 
given in the next section is 

all(man(Xl), ex(woman(X2),love(XI,X2))). 

Now let us look at the compilation of syntax 
rules for the one-pass mode. In this mode, syn- 
tactic structures are not built, but semantic 
structures are built up directly. The rule compiler 
adds extra arguments to non-terminals for manipu- 
lation of semantic structures, and adds calls to 
the top-level semantic interpretation procedure, 
'semant'. 

The procedure  'semant' builds complex semantic 
structures out of simpler ones, where the original 
building blocks are the logical terminals appearing 
in the MLG syntax rules. In this process of con- 
struction, it would be possible to work with se- 
mantic items (and in fact a subsystem of the rules 
do work directly with semantic items), but it ap- 
pears to be more efficient to work with slightly 
more elaborate structures which we call augmented 
semantic items. These' are terms of the form 

sem(Feas,Op,LP), 

where Op and [2 are such that Op-LF is an ordinary 
semantic item, and Fees is either a feature list 
or the list terminal:nil. The latter form is used 
for the initial augmented semantic items associated 
with logical terminals. 

As in the two-pass mode, the number of analysis 
structure arguments added to a non-terminal by the 
compiler depends on whether the non-terminal is 
strong or weak. If the original non-terminal is 
strong and has the form 

nt(Xl, . . . ,  Xn) 

then in the compiled version we will have 

nt(Xl, ..., Xn, Semsl,Sems2, Strl,Str2). 

Here (Semsl, Sems2) is a difference list of aug- 
mented semantic items representing the list of se- 
mantic s~ruotures for the phrase associated by n~  

with the word s~ring given by the difference list 
(Strl, Sir2). In the syntactic (two-pass) mode, 
only one argument (for a 'syn') is needed here, but 

now we need a list of structures because of a 
raising phenomenon necessary for proper scoping, 
which we will discuss in Sections A and 5. 

When the non-terminal nt is weak, five extra 
arguments are added, producing a compiled predi- 
cation of the form 

nt(Xl, ..., Xn, Fees, SemsO,Sems, Semsl,Sems2, 
Strl,Str2). 

Here Fees is the feature list for the matrix strong 
non-terminal. The pair (SemsO, Sems) represents 
the changing "conjecture" for the complete list of. 
daughter (augmented) semantic items for the matrix 
node, and is analogous to first extra argument pair 
in the two-pass mode. The pair (Semsl, Sems2) holds 
a difference list for the sequence of semantic items 
analyzed by the weak non-terminal nt. Semsl will 
be a final sublist of SemsO, and Sems2 will of 
course be a final sub|ist of Semsl. 

For each strong rule, a cal-i to 'semant' is 
added at the end of the compiled form of the rule. 
The form of the call is 

semant(Feas, Sems, Semsl,Sems2). 

Here teas is the feature list for the non-terminal 
on the left-hand side of the rule. Sems is the final 
version of the list of daughter semantic items 
(after all adjustments for shifts) and (SemsL, 
Sems2) is the difference list of semantic items 
resulting from the semantic interpretation for this 
level. (Think of Fees and Sems as input to 
'semant', and (Semsl, Sems2) as output.) CSemsl, 
Sems2) will be the structure arguments for the 
non-terminal on the left-hand side of the strong 
rule. A call to 'semant' is also generated when a 
shift is encountered, as we will see below. The 
actual working of 'semant' is the topic of the next 
section. 

For the shift grammar fragment shown above, 
the compiled rules are as follows. 

np(Sems,Sems0, Strl,Str3) <- 
det(Semsl,Sems2, Strl,Str2) & 
npl(np:nil, Semsl,Sems3, Sems2,nil, Str2,Scr3) a 
semant(np:nil, Sems3, Sems,SemsO). 

npl(Feas, Semsl,Sems3, Semsa,Sems7, Strl,St[~) <- 
premods(Feas, Semsl,Sems2, SemsA,Sems5, 

Strl,Str2) & 
noun(Sems5,Sems6, Str2,Str3) & 
np2(Feas, Sems2,Sems3, Sems6,SemsT, Str3,StrA). 

np2(Feas, Semsl,Sems2, Sems3,Semsd, Strl,Str2) <- 
postmods(Feas, Semsl,Sems2, Sems3,SemsA, 

Strl,Str2). 

npE(Feas, Semsl.SemsA, SemsS,Sems6, Strl,Str3) <- 
poss(SemsS,Sems6, Strl,Str2) & 
semant(Feas, Semsl, Sems2,Sems3) & 
npl(Feas, Sems2,Sems~, Sems3,nil, Str2,Str3). 

In the first compiled rule (a strong rule), the pair 
(Seres, SemsO) is a difference list of the semantic 
items analyzing the noun phrase. (Typically there 
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will just be one element in this list, but there 
can be more when modifiers of the noun phrases 
contain quantifiers that cause the modifiers to get 
promoted semantically to be sisters of the noun 
p h r a s e . )  T h i s  d i f f e r e n c e  l i s t  i s  t h e  o u t p u t  o f  t h e  
c a l l  to  ' s e m a n t '  c o m p i l e d  in  a t  t h e  end o f  t h e  f i r s t  
rule. The input to this call is the list Sems3 
(along with the feature list np:nil). We arrive 
at Sems3 as follows. The list Semsl is started by 

, ! 

the call to det ; its first element is the 
determiner (if there is one), and the list is con- 
tinued in the list Sems2 of modifiers determined 
further by the call to 'npl'. In this call to 'npl', 
the initial list Semsl is given in the second ar- 
gument of 'npl' as the "initial verslon for the 
final list of modifiers of the noun phrase. Sems3, 
being in the next argument of 'npl', is the "final 
version" of the np modifier list, and this is the 
list given as input to 'semant'. [f the processing 
of 'npl' encounters no shifts, then Sems3 will just 
equal 5ems I. 

[n the second compiled rule (for 'npl'), the 
"versions" of the total list of modifiers are [inked 
in a chain 

(Semsl, 5ems2, Sems3) 

in the second and third arguments of the weak non- 
terminals. The actual modifiers produced by this 
rule are linked in a chain 

(SemsA, Sems51 Sems6, SemsT) 

in the fourth and fifth arguments of the weak non- 
terminals and the first and second arguments of the 
strong non-terminals. A similar situation holds 
for the first of the 'np2' rules. 

[n the second 'npZ' rule, a shift is encount- 
ered, so a call to 'semant' is generated. This is 
necessary because of the shift of levels; the mod- 
ifiers produced so far represent all the modifiers 
in an np, and these must be combined by 'semant' 
to get the analysis of this np. As input to this 
call to 'semant', we take the list Semsl, which is 
the current version of the modifiers of the matrix 
np. The output is the difference list .(Sems2, 
gems3). Sems2 is given to the succeeding call to 
'npl' as the new current version of the matrix 
modifier list. The tail Sems3 of the difference 
list output by 'semant' is given to 'npl' in its 
fourth argument to receive further modifiers. SemsA 
is the f~.nal uersion of the matrix modifier list, 
determined by 'npi I , and this information is also 
put in the third a,'gument of 'np2'. The difference 
list (Sems5, Semsb) contains the single element 
produced by 'poss', and this list tails off the list 
Semsl. 

When a semantic item Op-LF occurs in a rule 
body, the rule compiler inserts the augmented se- 
mantic item sem(terminal:nil,Op,LF). As an example, 
the weak rule 

transverb(X,Y) ~ >  +V: $tv(V,X,Y,P): I-P. 

compiles into the clause 

transverb(X,Y, Feas, Semsl,Semsl, 
sem(terminal:nil,l,P):Sems2,Sems2, 

V.Str,Str) <- 
tv(V,X,Y,P). 

The strong rule 

det -----> +D: Sdt(D,PI,P2,P): P2/PI-P. 

compiles into the clause 

det(Semsl,Sems2, D.SemsA,Sems&)<- 
dt (D,P1,P2,P)  & 
semant(det:nil, 

sem(terminal:nil,P2/PI,P):nil, 
Semsl,Sems2). 

4. SEMANTIC INTERPRETATION FOR MLG'S 

The semantic interpretation schemes for both 
the one-pass mode and the two-pass mode share a 
large core of common procedures; they differ only 
at the top level. In both schemes, augmented se- 
mantic items are combined with one another, forming 
more and more complex items, until a single item 
is constructed which represents the structure of 
the whole sentence. In this final structure, only 
the logical form component is of interest; the other 
two components are discarded. We will describe the 
top levels for both modes, then describe the common 

core. 

The top level f o r  the one-pass mode is simpler, 
because semantic interpretation works in tandem with 
the parser, and does not itself have to go through 
the parse tree. The procedure 'semant', which has 
interleaved calls in the compiled syntax rules, 
essentially is the top-level procedure, but there 
is some minor cleaning up that has to be done. If 
the top-level non-terminal is 'sentence' (with no 
arguments), then the top-level analysis procedure 
for the one-pass mode can be 

analyzeCSent) <- 
sentence(Sems,nil,Sent,nil) & 
semant(top:nil,Sems,sem(*,e,iF):nil,nil) & 
outlogform(LF). 

Normally, the first argument, Sems, of 'sentence' 
will be a list containing a single augmented se- 
mantic item, and its logical form component will 
be the desired logical form. However, for some 
grammars, the ~dditional call to 'semant' is needed 
to complete the modification process. The procedure 
'outlogform' simplifies the logical form and outputs 
it. 

~ne definition of 'semant' itself is given in 
a single clause: 

s e m a n t ( F e a s , S e m s , S e m s 2 , S e m s 3 )  <- 
r e o r d e r ( S e m s , S e m s l )  & 
modlist(Semsl,sem(Feas,id,t), 

Sem,Sems2,Sem:Sems3). 

Here ,  t h e  p r o c e d u r e  ' r e o r d e r '  t a k e s  t h e  l i s t  Sems 
of augmented semantic items to be combined and re- 
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orders it (permutes it), to obtain proper (or most 
likely) scoping. This procedure belongs to the 
common core of the two methods of semantic inter- 
pretation, and will be discussed further below. 
The procedure 'modlist' does the following. A call 

modlist(Sems,SemO,Sem,Semsl,Sems2) 

takes a list Sems of (augmented) semantic items and 
combines them with (lets them modify) the item SemO, 
producing an item Sem (as the combination), along 
with a difference list (Semsl, Sems2) of items which 
are promoted to be sisters of gem. The leftmost 
member of Sems acts as the outermost modifier. 
Thus, in the definition of 'semant', the result list 
Semsl of reordering acts on the trivial item 
sem(Feas,id,t) to form a difference list (gems2, 
Sem:Sems3) where the result Sem is right-appended 
to its sisters. 'modlist' also belongs to the 
common core, and will be defined below. 

The top level for the two-pass system can be 
defined as follows. 

analyze2(Sent) <- 
sentence(gyn,Sent,nil) & 
synsem(Syn,Sems,nil) & 
semant(top:nil,gems,sem(*,e,LF):nit,niI) & 
outlogform(LF). 

The only difference between this and 'analyze' above 
is that the call to 'sentence' produces a syntactic 
item Syn, and this is given to the procedure 
'synsem'. The latter is the main recursive proce- 
dure of the two-pass system. A call 

synsem(Syn,SemsI,Sems2) 

takes a syntactic item Syn and produces a difference 
list (Semsl, Sems2) of augmented semantic items 
representing the semantic structure of Syn. (Typ- 
i c a l l y ,  this list will just have one element, but 
it can have more if modifiers get promoted to sis- 
ters of the node.) 

The definition of 'synsem' is as follows. 

synsem(syn(Feas,Mods),Sems2,Sems3) <- 
synsemlist(Mods,Sems) & 
reorder(Sems,Semsl) & 
modlist(Semsl,sem(Feas,id,t), 

Sem,Sems2,Sem:Sems3). 

Note that this differs from the definition of 
'semant' only in that 'synsem' must first 
recursively process the daughters Mode of its input 
syntactic item before calling 'reorder' and 
'modlist' The procedure 'synsemlist' that proc- 
esses the daughters is defined as follows. 

synsemlist(syn(Feas,Mods0):Mods,Semsl) <- /& 
synsem(syn(Feas,ModsO),SemsI,Sems2) & 
synsemlist(Mods,Sems2). 

synsemlist((Op-LF):Mods, 
sem(terminal:nil,Op,LF):Sems) <- /& 

synsemlist(Mods,Sems). 
synsemlist(Nod:Mods,Sems) <- 

synsemlist(Mods,Sems). 
synsemlist(nil,nil). 

The first clause calls 'synsem' recursively when 
the daughter is another 'syn' structure. The second 
clause replaces a logical terminal by an augmented 
semantic item whose feature list is terminal:nil. 
The next clause ignores any other type of daughter 
(this would normally be a surface terminal). 

Now we can proceed to the common core of the 
two semantic interpretation systems. The procedure 
'modlist' is defined recursively in a straightfor- 
ward way: 

modlist(Sem:Sems, Sem0, Sem2, Semsl,Sems3) <- 
modlist(Sems, SemO, Seml, Sems2,Sems3) & 
modify(Sem, Seml, Sem2, Semsl,Sems2). 

modlist(nil, Sem, gem, Sems,Sems). 

Here 'modify' takes a single item Sem and lets it 
operate on Seml, giving Sem2 and a difference list 
(Semsl, Sems2) of sister items. Its definltion is 

modify(Sem, Seml, Seml, Sem2:Sems,Sems~ <- 
raise(Sem,Seml,Sem2) &/. 

modify(sem(*,Op,LF), 
sem(Feas,Opl,LFI), 
sem(Feas,Op2,LF2), Sems,Sems) <- 

mod(Op-LF, OpI-LFI, Op2-LF2). 

Here 'raise' is responsible for raising the 
item Seml so that it becomes a sister of the item 
Seml; gem2 is a new version of Seml after the 
raising, although in most cases, gem2 equals geml. 
Raising occurs for a noun phrase like "a chicken 
in every pot", where the quantifier "every" has 
higher scope than the quantifier "a". The semantic 
item for "every pot" gets promoted to a left sister 
of that for "a chicken". 'raise' is defined bas- 
ically by a system of unit clauses which look at 
specific types of phrases. For the small grammar 
MLGRAM of Section 2, no raising is necessary, and 
the definition of 'raise' can just be omitted. 

The procedures 'raise' and 'reorder' are two 
key ingredients of reshaping (the movement of se- 
mantic items to handle scoping problems), which was 
discussed extensively in McCord (1982, 1981). [n 
those two systems, reshaping was a separate pass 
of semantic interpretation, but },ere, as in McCord 
(198&), reshaping is interleaved with the rest of 
semantic interpretation. In spite of the new top- 
level organization for semantic interpretation of 
MLG's, the low-level procedures for raising and 
reordering are basically the same as in the previous 
systems, and we refer to the previous reports for 
further discussion. 

The procedure 'mod', used in the second clause 
for 'modify', is the heart of semantic interpreta- 
tion. 

mod(Sem, Seml, Sem2) 

means that the (non-augmented) semantic item Sem 
modifies (combines with) the item Semi to give the 
item Sem2. 'mod' is defined by a system consisting 
basically of unit clauses which key off the mod- 
ification operators appearing in the semantic items. 
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In the experimental MLG described in the next sec- 
tion, there are 22 such clauses. For the grammar 
MLGRAM of Section 2, the following set of clauses 
suffices. 

mod(id -~, Sem, Sem) <- / .  
mod(Sem, id -~, Sem) <- /. 
mod(l-P, Op-Q, Op-R) <- and(P,Q,R). 
mod(P/Q-R, Op-Q, @P-R). 
mod(@P-Q, Op-P, Op-Q). 

The first two clauses say that the operator 'id' 
acts like an identity. The second clause defines 
'i' as a left-conjoining operator (its corresponding 
logical form gets left-conjoined to that of the 
modificand). The call and(P,Q,R) makes R=P&Q, ex- 
cept that it treats 't' ('true') as an identity. 
The next clause for 'mod' allows a quantifier se- 
mantic item like P/Q-each(Q,P) to operate on an item 
like I-man(X) to give the item @P-each(man(X),P). 
The final clause then allows this item to operate 
on I-live(X) to give l-each(man(X),live(X)). 

The low-level procedure 'mod' is the same (in 
purpose) as the procedure 'trans' in HcCord (1981), 
amd has close similarities to 'trans' in McCord 
(1982) and 'mod' in McCord (198&), so we refer to 
this previous work for more illustrations of this 
approach to modification. 

For MLGRAH, the only ingredient of semantic 
interpretation remaining to be defined is 'reorder'. 
We can define it in a way that is somewhat more 
general than is necessary for this small grammar, 
but which employs a technique useful for larger 
grammars. Each augmented semantic item is assigned 
a precedence number, and the reordering (sorting) 
is done so that wh@n item B has higher precedence 
number than item A, then B is ordered to the left 
of A; otherwise items are kept in their original 
order. The following clauses then define 'reorder' 
in a way suitable for MLGRAM. 

reorder(A:L,H) <- 
reorder(L,Ll) & insert(A,Li,M). 

reordef(nit,n£1). 

insert(A,B:L,S:Ll) <- 
prec(A,PA) & prec(B,PB) & gt(PB,PA) &/& 
insert(A,L,Li). 

insert(A,L,a:L~. 

prec(sem(term~nal:*,e,~),2) <- /. 
pruc(sem(relc!ause:e,e,e),l) <- /. 
prec(e,3). 

~nus terminals are ordered to the end, excep t  not 
after relative clauses. In particular, the subject 
and object of a sentence are ordered before the verb 
(~ terminal in the sentence), and this allows the 
ssraightforward process of modification in :mod' 
to scope the quantifiers of the subject and object 
over the material of the verb. One can alter the 
definition of 'prec' to get finer distinctions in 
~coping, and for this we refer to McCord (1982, 
1981). 

For a grammar as small as MLGRAM, which has 
no treatment of scoping phenomena, the total tom- 

plexity of the MLG, including the semantic inter- 
pretation component we have given in this Section, 
is certainly greater than that of the comparable 
DCG in Section 2. However, for larger grammars, 
the modularity is definitely worthwhile -- concep- 
tually, and probably in the total size of the sys- 
tem. 

5. AN E X P E R I M E N T A L  MLG 

This section describes briefly an experimental 
MLG, called HODL, which covers the same linguistic 
ground as the grammar (called HOD) in HcCord (198l). 
The syntactic component of HOD, a DCG, is essen- 
tially the same as that in HcCord (1982). One 
feature of these syntactic components is a system- 
atic use of slot-filling to treat complements of 
verbs and nouns. This method increases modularity 
between syntax and lexicon, and is described in 
detail in McCord (1982). 

One purpose of HOD, which is carried over to 
MODL, is a good treatment of scoping of modifiers 
and a good specification of logical form. The 
logical form language used by >IODL as the target 
of semantic interpretation has been improved some- 
what over that used for HOD. We describe here some 
of the characteristics of the new logical form 
language, called LFL, and give sample LFL analyses 
obtained by MODL, but we defer a more detailed de- 
scription of LFL to a later report. 

The main predicates of LFL are word-senses for 
words in the natural language being analyzed, for' 
example, believel(X,Y) in the sense "X believes that 
Y holds". Quantifiers, like 'each', are special 
cases of word-senses. There are also a small number 
of non-lexJcal predicates in LFL, some of which are 
associated with inflections of words, like 'past' 
for past tense, or syntactic constructions, like 
'yesno' for yes-no questions, or have significance 
at discourse level, dealing for instance with 
topic/comment. The arguments for predicates of LFL 
can be constants, variables, or other logical forms 
(expressions of LFL). 

Expressions of LFL are either predications (in 
the sense just indicated) or combinations of LFL 
expressions using the conjunction '&' and the in- 
dexing operator ':'. Specifically, if P is a log- 
ical form and E is a variable, then P:E (read "P 
indexed by E"~ is also a logical form. When an 
indexed logical form P:E appears as part of a larger 
logical form Q, and the index variable E is used 
elsewhere in Q. then E can be thought of roughly 
as standing for P together with its "context". 
Contexts include references to time and place which 
are normally left implicit in natural language. 
When P specifies an event, as in see(john,mary), 
writing P:E and subsequently using E will guarantee 
that E refers to the same event. In the logical 
form language used in McCord (1981), event variables 
(as arguments of verb and noun senses) were used 
for indexing. But the indexing operator is more 
powerful because it can index complex logical forms. 
For some applications, it is sufficient to ignore 
contexts, and in such cases we just think of P:E 
as verifying P and binding E to an instantiation 
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of P. In fact, for PROLOG execution of logical 
forms without contexts, ':' can be defined by the 
single clause: P:P <- F. 

A specific purpose of the MOD system in McCord 
(1981) was to point out the importance of a class 
of predicates called focai izers,  and to offer a 
method for dealing with them in semantic interpre- 
tation. Focalizers include many determiners, 
adverbs, and adjectives (or their word-senses), as 
well as certain non-lexical predicates like 'yesno'. 
Focalizers take two logical form arguments called 
the base and the fOCUS: 

focalizer(Base,Focus). 

The Focus is often associated with sentence stress, 
hence the name. The pair (Base, Focus) is called 
the SCOpe of the focalizer. 

The adverbs 'only' and 'even' are focalizers 
which most clearly exhibit the connection with 
stress. The predication only(P,Q) reads "the only 
case where P holds is when Q also holds". We get 
different analyses depending on focus. 

John only buys books at Smith's. 
only(at(smith,buy(john,X1)), book(X1)). 

John only buys books at Smith's. 
only(book(Xl)&at(X2,buy(john,Xl)), X2=smith). 

quantificational adverbs like 'always' and 
'seldom', studied by David Lewis (1975), are also 
focalizers. Lewis made the point that these 
quantifiers are properly considered unseJKtJve, in 
the sense that they quantify over all the free 
variables in (what we call) their bases. For ex- 
ample, in 

John always buys books at Smith's. 
always(book(Xl)&at(X2,buy(john,Xl)), X2=smith) • 

the quantification is over both X1 and X2. (A 
paraphrase is "Always, if X1 is a book and John buys 
X1 at X2, then X2 is Smith's".) 

Quantificational determiners are also 
focalizers (and are unselective quantifiers); they 
correspond closely in meaning to the 
quantificational adverbs ('all' - 'always', 'many' 

'often', 'few' - 'seldom', etc.). We have the 
paraphrases: 

Leopards often attack monkeys in trees. 
often(leopard(Xl)&tree(X2)&in(X2,attack(Xl,X3)), 

monkey(X3)). 

Many leopard attacks in trees are (attacks) 
on monkeys. 

many(leopard(Xl)&tree(X2)&in(X2,attack(Xi,X3)), 
monkey(X3)). 

Adverbs and adjectives involving comparison 
or degree along some scale of evaluation (a wide 
class) are also focalizers. The base specifies the 
base of comparison, and the focus singles out what 

is being compared to the base. This shows up most 
clearly in the superlative forms. Consider the 
adverb "fastest": 

John ran fastest yesterday. 
fastest(run(john):E, yesterday(E)). 

John ran fastest yesterday. 
fastest(yesterday(run(X)), X=john). 

In  the first sentence, with focus on "yesterday", 
the meaning is that, among all the events of John's 
running (this is the base), John's running yesterday 
was fastest. The logical form illustrates the in- 
dexing operator. [n the second sentence, with focus 
on "John", the meaning is that among all the events 
of running yesterday (there is an implicit location 
for these events), John's running was fastest. 

As an example of a non-lexical focalizer, we 
have yesno(P,q), which presupposes that a case of 
P holds, and asks whether P & Q holds. (The pair 
(P, Q) is like Topic/Comment for yes-no questions.) 
Example: 

Did John see M@ry yesterday? 
yesno(yesterday(see(john,X)), X=mary). 

It is possible to give Prolog definitions for 
most of the focalizers discussed above which are 
suitable for extensional evaluation and which amount 
to model-theoretic definitions of them. This will 
be discussed in a later report on LFL. 

A point of the grammar HODL is to be able to 
produce LFL analyses of sentences using the modular 
semantic interpretation system outlined in the 
preceding section, and to arrive at the right (or 
most likely) scopes for focalizers and other modi- 
fiers. The decision on scoping can depend on 
heuristics involving precedences, on very reliable 
cues from the syntactic position, and even on the 
specification of loci by explicit underlining in 
~he input string (which is most relevant for 
adverbial focalizers). Although written text does 
not often use such explici~ specification of 
adverbial loci, it is important that the system can 
get the right logical form after having some spec- 
ification of the adverbial focus, because this 
specification might be obtained from prosody in 
spoken language, or might come from the use of 
discourse information. [t also is an indication 
of the modularity of the system that it can use the 
same syntactic rules and parse path no matter where 
the adverbial focus happens to lie. 

Most of the specific linguistic information 
for semantic interpretation is encoded in the 
procedures 'mod', 'reorder', and 'raise', which 
manipulate semantic items. In MODL there are 22 
clauses for the procedure 'mod', most of which are 
unit clauses. These involve ten different modifi- 
cation operators, four of which were illustrated 
in the preceding section. The definition of 'mo<l' 
in MODL is taken fairly directly from the corre- 
sponding procedure 'trans' in HOD (McCord, 1981), 
although there are some changes involved in handling 
the new version of the logical form language (LFL), 
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especially t h e  indexing operator. The definitions 
of 'reorder' and 'raise' are essentially the same 
as for procedures in HOD. 

An illustration of analysis in the two-pass 
mode in HODL is now given. For the sentence 
"Leopards only attack monkeys in trees", the syn- 
tactic analysis tree is as follows. 

sent 
nounph 

l-leopard(X) 
avp 

(P<Q)-only(P,Q) 
l-attack(X,Y) 
nounph 

l-monkey(Y) 
prepph 

@@R-in(Z,R) 
nounph 

l-tree(Z) 

Here we display complete logical terminals in the 
leaf nodes of the tree. An indicat[on of the 
meanings of the operators (P<Q) and @@R will be 
given below. 

[n the semantic interpretation of the prepo- 
sitional phrase, the 'tree' item gets promoted (by 
'raise') to be a left-sister of the the 'in' item, 
and the list of daughter items (augmented semantic 
items) of the 'sent' node is the following. 

nounph i leopard(X) 
avp P<Q only(P,Q) 
terminal I attack(X,Y) 
nounph 1 monkey(Y) 
nounph I tree(Z) 
prepph @@R in(Z,R). 

Here we di~:play each augmented semantic item 
sem(nt:Feas,Op,LF) simply in the form nt Op LF. 
The material in the first field of the 'monkey' item 
actually shows that it is stressed. The reshaping 
p~ocedure 'reorder' rearran6es these items into the 
order: 

nounph I leopard(X) 
nounph 1 tree(Z) 
prepph @@R in(Z,R) 
terminal I attack(X,Y) 
avp P<Q only(P,Q) 
nounph 1 monkey(Y) 

Next, these items successively modify (according 
to the rules for 'mod') the matrix item, sent id 
t, with the rightmost daughter acting as innermost 
oodifier. The rules for 'mod' involving the oper- 
ator (P<Q) associated with only(P,Q) are designed 
so that the logical form material to the right of 
'only' goes into the focus Q of 'only' and the ma- 
terial to the left goes into the base P. The ma- 
terial to the right is just monkey(Y). The items 
on the left ('leopard', 'tree', 'in', 'attack') are 
allowed to combine (through 'mod') in an independent 
way before being put into the base of 'only'. The 
operator ~@R associated with in(Z,R) causes R to 
be botmd to the logical form of the modificand -- 

attack(X,Y). The combination of items on the left 
of 'only' is 

leopard(X)&tree(Z)&in(Z,attack(X,Y)) 

This goes into the base, so the whole logical form 
is 

only(leopard(X)&tree(Z)&in(Z,attack(X,Y)), 
monkey(Y)). 

For detailed traces of logical form construction 
by this method, see McCord (1981). 

An illustration of the treatment of left- 
embedding in HODL in a two-pass analysis of the 
sentence "John sees each boy's brother's teacher" 
is as follows. 

sent 
nounph 

[-(X=john) 
l-see(X,W) 
nounph 

nounph 
nounph 

determiner 
Q/P-each(P,Q) 

l-boy(Y) 
l-poss 

l-brother(Z,Y) 
1-poss 

1-teacher(W,Z) 

Logical form... 

each(boy(Y),the(brother(Z,Y), 
the(teacher(W,Z),see(john,W)))). 

The MODL noun phrase rules include the shift (in a 
way that is an elaboration of the shift grammar 
fragment in Section 2), as well as rules for slot- 
filling for nouns like 'brother' and 'teacher' which 
have more than one argument in logical form. Ex- 
actly the same logical form is obtained by MODL for 
the sentence "John sees the teacher of the brother 
of each boy". Both of these analyses involve 
raising. [n =he first, the 'poss' node resulting 
from the apostrophe-s is raised to become a definite 
article. In the second, the prepositional phrases 
(their semantic structures) are promoted to be 
sisters of the "teacher" node, and the order of the 
quantlfiers ts (correctly) reversed. 

The syntactic component of MODL was adapted 
as closely as possible from that of HOD (a DCG) in 
order to get an idea of the efficiency of HLG's. 
The fact that the MLG rule compiler produces more 
structure-building arguments than are in the DCG 
would tend to |engthen analysis times, but it is 
hard to predic~ the effect of the different organ- 
ization of the semantic interpreter (from a three- 
pass system to a one-pass and a two-pass version 
of MODL). 7"no followin E five sentences were used 
for timing tests. 

Who did John say that the man introduced Mary to? 
Each book Mary said was given to Bill 
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was written by a woman. 
Leopards only attack monkeys in trees. 
John saw each boy's brother's teacher. 
Does anyone wanting to see the teacher know 

whether there are any hooks left in this room? 

Using Waterloo Prolog (an interpreter) on an IBM 
3081, the following average times t o  get the logical 
forms for the five sentences were obtained (not 
including ~ime for [/0 and initial word separation): 

MODL, one-pass mode - 40 milliseconds. 
MODL, two-pass mode - 42 milliseconds. 
MOD - 35 milliseconds. 

So there was a loss of speed, but not a significant 
one. MODL has also been implemented in PSC Prolog 
(on a 3081). Here the average one-pass analysis 
time for the five sentences was improved to 30 
milliseconds per sentence. 

On the other hand, the MLG grammar (in source 
form) ls more compact and easier to understand. 
The syntactic components for MOD and MODL were 
compared numerically by a Prolog program that totals 
up the sizes of all the grammar rules, where the size 
of a compound term is defined to be I plus the sum 
of the sizes of its arguments, and the size of any 
other term is I. The total for MODL was l&33, and 
for MOD was 1807, for a ratio of 79%. 

So far, nothing has been said in this report 
about semantic constraints in HODL. Currently, MODL 
exercises constraints by unification of semantic 
types. Prolog terms representing type requirements 
on slot-fillers must be unified with types of actual 
fillers. The types used in MODL are t%/pe trees. 
A type tr~ is either a variable {unspecified type) 
or a term whose principal functor is an atomic type 
(like 'human'), and whose arguments are subordinate 
type trees. A type tree T1 is subordinate to a type 
tree T2 if either T1 is a variable or the principal 
functor of T1 is a subtype (ako) of the principal 
functor of T2. Type trees are a generalization of 
the t y p e  l is ts  used by Dahl (1981), which are lists 
of the form TI:T2:T3:..., where T1 is a supertype 
of T2, T2 is a supertype of TS, ..., and the tail 
of the list may be a variable. The point of the 
generalization is to allow cross-classification. 
Multiple daughters of a type node cross-classify 
it. The lexicon in MODL includes a preprocessor 
for lexical entries which allows the original lex- 
ical entries to specify type constraints in a com- 
pact, non-redundant way. There is a Pro|o K 
representation for type-hierarchies, and the [exi- 
cal preprocessor manufactures full type trees from 
a specification of their leaf nodes. 

[n the one-pass mode for analysis with MLG's, 
logical forms get built up during parsing, so log- 
ical forms are available for examination by semantic 
checking procedures of the sort outlined in McCord 
(198&). If such methods are arguably best, then 
there may be more argument for a one-pass system 
(with interleaving of semantics). The general 
question of the number of passes in a natural lan- 
guage understander is an interesting one. The MLG 
formalism makes this easier to investigate, because 

the same syntactic component can he used with one- 
pass or two-pass interpretation. 

In MODL, there is a small dictionary stored 
directly in Prolog, but MODL is also interfaced to 
a large dictionary/morphology system (Byrd, 1983, 
1984) which produces syntactic and morphological 
information for words based on over 70,000 lemmata. 
There are plans to include enough semantic infor- 
mation in this dictionary to provide semantic con- 
straints for a large MLG. 

Alexa HcCray is working on the syntactic com- 
ponent for an MLG with very wide coverage. I wish 
to thank her for useful conversations about the 
nature of the system. 

6. COMPARISON WITH OTHER SYSTEMS 

The Restriction Grammars (RG's) of HLrschman 
and Puder (1982) are logic grammars that were de- 
signed with modularity [n mind. Restriction Gram- 
mars derive from the Linguistic String Project 
{Sager, 1981). An RG consists of conLexE-free 
phrase structure rules t o  which restrictions are 
appended. The rule compiler {written in ProIo K and 
compiling into Prolog), sees to it that derivation 
trees are constructed automatically during parsing. 
The restrictions appended to the rules are basically 
Prolog procedures which can walk around, during the 
parse, in the partially constructed parse tree, and 
can look at the words remaining in the input stream. 
Thus there is a modularity between the phrase- 
structure parts of the syntax rules and the re- 
strictions. The paper contains an interesting 
discussion of Prolog representations of parse trees 
that make it easy to walk around in them. 

A disadvantage of RG's is that the automat- 
ically constructed analysis tree is just a deriva- 
tion tree. With MLG's, the shift operator and the 
declaration of strong non-terminals produce analy- 
sis structures which are more appropriate seman- 
tically and are easier to read for large grammars. 
[n addition, MLG analysis trees contain logical 
terminals as building blocks for a modular semantic 
interpretation system. The method of walking about 
in the partially constructed parse tree is powerful 
and is worth exploring further; but the more common 
way of exercising constraints in logic grammars by 
parameter passing and unification seems to be ade- 
quate linguistically and notationally more compact, 
as well as more efficient for the compiled Prolog 
program. 

Another type of logic grammar developed with 
modularity in mind is the Definite Clause Trans- 
lation Grammars (DCTG's) of Abramson (1984). These 
were inspired partially by RG's (Hirschman and 
Puder, 1982), by MSG's {Dahl and McCord, 1983), and 
by Attribute Grammars (Knuth, 1968). A DCTG rule 
is like a DCG rule with an appended list of clauses 
which compute the semantics of the node resulting 
from use of the rule. The non-terminals on the 
right-hand side of the syntactic portion of the rule 
can be indexed by variables, and these index vari- 
ables can be used in the semantic portion to link 
to the syntactic portion. For exa~le, the DCG rule 
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sent(P) --> np(X,P1,P): vp(X,Pl). 

from the DCG in Section 2 has the DCTG equivalent: 

sent ::= np@N: vp@V <:> 
logic(P) ::- N@Iogic(X,PI,P) & V@logic(X,Pl). 

(Our notation is slightly different from Abramson's 
and is designed to fit the Prolog syntax of this 
report.) Here the indexing operator is '@'. The 
syntactic portion is separa ted from the semantic 
portion by the operator '<:>'. The non-terminals 
in DCTG's can have arguments, as in DCG's, which 
could be used to exercise constraints (re- 
strictions), but it is possible to do everything 
by referring to the indexing variables. The DCTG 
rule compiler sees to the automatic construction 
of a derivation tree, where each node is labeled 
not only by the expanded non-terminal but also by 
the list of clauses in the semantic portion of the 
expanding rule. These clauses can then be used in 
computing the semantics of the node. When an in- 
dexed non-terminal NT@X appears on the right-hand 
side of a rule, the indexing variable X gets 
iastantiated to the tree node corresponding to the 
expansion of NT. 

There is a definite separation of DCTG rules 
into a syntactic portion and a semantic portion, 
with a resulting increase of modularity. Procedures 
involving different sorts of constraints can be 
separated from one another, because of the device 
of referring to the indexing variables. However, 
it seems that once the reader (or writer) knows that 
certain variables in the DCG rule deal with the 
construction of logical forms, the original DCG rule 
is just as easy (if not easier) to read. The DCTG 
rule is definitely longer than the DCG rule. The 
corresponding MLG rule: 

sent : >  np(X): vp(X). 

is shorter, and does not need to mention logical 
forms a t  all. Of course, there are relevant 
portions of the semantic component that are applied 
in connection with this rule, but many parts of the 
semantic component are relevant to several syntax 
rules, thus reducing the total size of the system. 

A claimed advantage for DCTG's is that the 
semantics for each rule is listed locally with each 
rule. There is certainly an appeal in that, because 
with MLG's (as well as the methods in McCord (1982, 
lq81)), the semantics seems to float off more on 
its own. Semantic items do have a life of their 
own, and they can move about in the tree (implic- 
itly, in some versions of the semantic interpreter) 
because of raising and reordering. This is not as 
neat theoretically, but it seems more appropriate 
fur capturing actual natural language. 

Another disadvantage of DCTG's (as with RG~s) 
is that the analysis trees that are constructed 
automatically are derivation trees. 

The last system to be discussed here, that in 
P o r t o  and  F i l g u e i r a s  ( 1 9 8 & ) ,  d o e s  n o t  i n v o l v e  a new 
grammar  f o r m a l i s m ,  b u t  a m e t h o d o l o g y  f o r  w r i t i n g  

DCG's. The authors define a notion of i n te rmed ia te  
semantic r ep resen ta t i on  ( I S R )  including en t i t i es  and  
predications, where the p r e d i c a t i o n s  can be viewed 
as l o g i c a l  forms. In w r i t i n g  DCG r u l e s ,  one sys-  
t e m a t i c a l l y  inc ludes  at  the end o f  the r u l e  a c a l l  
to  a semantic procedure ( s p e c i f i c  to  the g iven  r u l e )  
which combines ISR's ob ta ined  in arguments o f  the 
non- te rm ina ls  on the r i g h t - h a n d  s ide  o f  the r u l e .  
Two DCG ru les  in t h i s  s t y l e  (g iven  by the au thors )  
a re  as f o l l o w s :  

sent(S) --> np(N): vp(V): $ssv(N,V,S). 
vp(S) --> verb(V,trans): np(N): Ssvo(V,N,S). 

Here 'ssv' and 'svo' are semantic procedures that 
are specific to the 'sent' rule and the 'vp' rule, 
respectively. The rules that define 'ssv' and 'svo' 
can include some general rules, but also a mass of 
very specific rules tied t o  specific words. Two 
specific rules given by the authors for analyzing 
"All Viennese composers wrote ~ waltz" are as fol- 
lows. 

svo(wrote,M:X,wrote(X)) <- is_a(M,music). 
ssv(P:X,wrote(Y),author_of(Y,X)) <- 

is_a(P,person). 

Note that the verb 'wrote' changes from the surface 
form 'wrote', to the intermediate form wrote(X), 
then to the form author of(Y,X). [n most logic 
grammar systems (including MOD and MODL), some form 
of argument filling is done for predicates; infor- 
mation is added by binding argument variables, 
rather than changing the whole form of the predi- 
cation. The authors claim that it is less efficient 
to do argument filling, because one can make an 
early choice of a word sense which may lead to 
failure and backtracking. An intermediate form like 
wrote(X) above may only make a partial decision 
about the sense. 

The value of the "changing" method over the 
"adding" method would appear to hinge a lot on the 
question of parse-time efficiency, because the 
"changing" method seems more complicated conceptu- 
ally. I t .  seems simpler to have the notion that 
there are word-senses which are predicates with a 
certain number of arguments, and to deal only with 
these, rather than inventing intermediate forms that 
help in discrimination during the parse. So it is 
partly an empirical question which would be decided 
after logic grammars dealing semantically with 
massive dictionaries are developed. 

.There is modularity in rules written in the 
style of Porto and Filgueiras, because all the se- 
mantic structure-building is concentrated in the 
semantic procedures added (by the grammar writer) 
at the ends of the rules, in MLG's, in the one-pass 
mode, the same semantic procedure call, to 'semant', 
is added at the ends of strong rules, automatically 
by the compiler. The diversity comes in the an- 
ciliary procedures for ' semant ' ,  especially 'mod'. 
In fact, 'mod' (or 'trans' in McCord, 1981) has 
something in common with the Porto-Filgueiras pro- 
cedures in that it takes two intermediate repres- 
entations (semantic items) in its first two 
arguments and produces a new intermediate repre- 
sentation in its third argument. However, the 
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changes that 'mod' makes all involve the 
modification-operator components of semantic items, 
rather than the logical-form components. It might 
be interesting and worthwhile to look at a combi- 
nation of the two approaches. 

Both a strength and a weakness of the Porco- 
Filgueiras semantic procedures (compared with 
'mod') is that there are many of them, associated 
with specific syntactic rules. The strength is that 
a specific procedure knows that it is looking at 
the "results" of a specific rule. But a weakness 
is that generalizations are missed. For example, 
modification by a quantified noun phrase (after 
slot-filling or the equivalent) is often the same, 
no matter where it comes from. The method in MLG's 
allows semantic items to move about and then act 
by one 'mod' rule. The reshaping procedures are 
free to look at specific syntactic information, even 
specific words when necessary, because they work 
with augmented semantic items. Of course, another 
disadvantage of the diversity of the Porto- 
Filgueiras procedures is that they must be explic- 
itly added by the writer of syntax rules, so that 
there is not as much modularity as in MLG's. 
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