SOME COMPUTATIONAL PROPERTIZS
OF TREE ADJOINING GRAMMARS*

K. Vijuy-Shankyr and Aravind K, Joshi

Department of Computer and Information Ccience
Room 288 Moore School/D3
University of Pennsylvania

Philadelphia, PA 191C4

ABSTRACT

Tree Adjoining Grammar (TAG) is a formalism for anatural
language grammars. Some of the basic notions of TAG's were
introduced in {JoshiLevy, and Takahashi 1975| and by [Joshi, 1983|.
A detailed investigation of the linguistic relevance of TAG's has been
carried out in {Kroch and Josbi,1985|. In this paper, we will describe
some new results for TAG's, especially in the following areas: (1)
parsing complexity of TAG's, (2) some closure resuits for TAG's, and
(3) the relationship to Head grammars.

1. INTRODUCTION

Investigation of constrained grammatical systems from the
point of view of their linguistic adequacy and their computational
tractability has been a major concern of computational linguists for
the last several years. Generalized Phrase Structure grammars
(GPSG), Lexical Functional grammars (LFG), Phrase Lioking
grammars (PLG), and Tree Adjoining grammars (TAG) are some
key examples of grammatical systems that have been and still
coatinue to be investigated aloag these lines.

Some of the basic notions of TAG's were introduced in |Joshi,
Levy, and Takahashi, 1975 and [Joshi,1983]. Some preliminary
investigations of the linguistic relevance and some computational
properties were also carried out in [Josbi,1983). More recently, 2
detailed investigation of the linguistic relevance of TAG's were
carried out by {Kroch and Joshi, 1985|.

In this paper, we will describe some new resuits for TAG's,
especially in the following areas: (1) parsing complexity of TAG's, (2)
some closure results for TAG's, and (3) the relationship to Head
grammars. These topics will be covered in Sections 3, 4, and §
respectively. In section 2, we will give an introduction to TAG's. In
section 6, we will state some properties not discussed here. A detailed
exposition of these resuits is given in [Vijay-Shankar and Joshi,1985|.

*This work was partiaily supported by NSP Grants MCS-8210116-CER,
MCS-82-07204. We waat to thank Carl Pollard, Kelly Roach, David Sesrl, aad
David Weir. We have benefited enormously ty valuable discussions with them.

82

2. TREE ADJOINING GRAMMARS--TAG's

We now introduce tree adjoining grammars (TAG's). TAG’s
are more powerful thaa CFG's, both weakly aad strongly.! TAG's
were first introduced ia [Joshi, Levy, and Takahashi,1975| and

|Joshi,1983]. We include their description in this section to make the
paper sell-coatained.

We can define a tree adjoining grammar as follows. A tree
adjoining grammar G is a pair (,A) where [is a set of initial trees,
and A is a set of auxiliary trees.

A tree a is an initial tree if it is of the form

a =

That is, the root node of a is labeiled S and the frontier nodes
are all terminal symbols. The internal nodes are all non-terminals.
A tree 2 is an acxiliary tree if it is of the form

8= X

That is, the root node of 3 is labelled with a Zog-terminal X
and the froatier nodes are all labelled with terminals symbols except
one which is labeiled X. The node labelled by X on the froatier will
be called the foot node of 5. The froatiers of initial trees belong to
£°, whereas the frogtiers of the auxiliary trees belong to °NIoHy
Poudi

We will now define a composition operation called adjoining,
{or adjunction) which composes an auxiliary tree J with a tree 7.
Let ¥ be a tree with 2 node n labelled X and let 5 be an auxiliary
tree with the root labeiled with the same symbol X. {(Note that 3
must bave, by defigition, a node (and only oue) labelled X on the
froatier.)

1Grammars Gl and G3 are weakly equivalent if the string langusge of G1,
L{G1) == the string language of G2, LIG2). G1 and G2 are strongly equivalent if
tbey sre weakly equivalent and for esch w is UGl) == ucz;. both G1 sad G2
assign the same stroctural deseription to w. A grammar G is weskly adequate
for o {string) laaguage L, if UG) = L. G is strongly sdequate f9r L fLG)m= L
«and for ench w in L, G asigns an *sppropriate® structural descriptioa to w. The
notinn of strong ad v is undoubtedly not precise b it depends on the
notion of appropriate structurai descriptions

T Example 2.2: Let G = (LA) where
Adjoining can now be defined as follows. If 3 is adjoined to v

st the node o then the resulting tree 7v,' is 28 shown in Fig. 2.1 1:)
below. a, = s
|
.
7= 8=
S X A))
/\ I\ By = By =
/ /A s T
sode / X \ / \ /\ /\
n / /NN PR S a s
A N I
T
t

Let us look at some derivations ia G.

Yo =a= T2 =
4 = Ss S
S | I\,
/\ v . s T
/" *Vithout PIER
/ X\ t ;8 S\A
==/ \-- [\ \
/ \ ! T TN
AV Lot
N\
/N E b
----- s
Figare 2.1 l
The tree t dominated by X in < is excised, 3 is inserted at the n
node o in 7 and the tree t is attached to the foot node (labelled X) of
8. ie., 3 ia inserted or adjoined to the node o in 7 pushing t S
downwards. Note that adjoining is not a substitution operation. / \T s
. 1
We will now define i\
Sb
T(G): The set of all trees derived in G starting from initial l
trees in I. This set will be called the tree set of G.
T = 1o with 8, 72 = v, with 8,

L{G): The set of all terminal strings which appear in the

froatier of the trees in T(G). This set will be called the string adjoined at S as indicated in 7o adjoined at T as indicated in 7,.

language (or langnage) of G. If L is the string language of 3 TAG G . .
then we s%y that L is a Tree-Adjoining Language (TAL). The Clearly, L(G), the string language of G is
relationship between TAG's , coutext-l[ree grammars, aad the La={a2eb®/n>0}
corresponding string languages can be summarized as follows ([Joshi, which is a context-{ree language. Thus, there must exist a context-
Levy, and Takahashi, 1975], [Joshi, 1983]). free grammar, G', which is at least weakly equivalent to G. It can be
showa however that there is no coatext-free grammar G’ which is
Theorem 2.1: For every context-free grammar, G’, there is an strongly equivalent to G, i.e., T(G) = T(G’). This follows from the
equivalent TAG, G, both weakly and strongly. fact that the set T(G) (the tree set of G) is non-recognizable. e,

there is no finite state bottom-up tree automaton that can recognize

Theoremr 2.2: For every TAG, G, we have the following precisely T(G). Thus a TAG may generate a context-free language
) Yet assign structural descriptions to the strings that cannot be

situations:
igned b text-{ ar.
a. L{G} is context-(ree and there is a3 context-{ree grammar Zssighec 2x 207 context-fice grammar.
g' that is strongly (end therefore weakly) equivalent to Example 2.3: Let G = (IA) where
I @y =
b. L{G) is context-free and there is no context-free grammar ! s
G’ that is equivalent to G. Of course, there must be a]
context-(ree grammar that is weakly equivalent to G. .
c. L{G) is strictly context-sensitive. Obviously ia this case,
there is no cootext-free grammar that is weakly A: B = By =
equivalent to G. s T
/\ /\
Parts (a) and (c) of Theorem 2.2 appear in ([Joshi, Levy, and s T s S
Takabhashi, 1975]). Part (b) is implicit in that paper, but it is 71\ /N
importaat to state it explicitly as we have done here because of its / 1\ / 1\
linguistic significance. Example 2.1 illustrates part (a). We will now » § ¢ b T ¢

illustrate parts (b} and {¢).

The precise definitioa of L(G) is as follows:
L(G) = L, = {wec® /o > 0, wis astring of a's and b’s such that
(1) the number of a’s == the number of b’s == n, and

(2) for aay initial substring of w, the number
of a’s > the number of b's. }

Ly is a strictly context-sensitive language (i.e., a context~
sensitive language that is not context-free). This can be shown aa

follows. Intersecting L with the regular language 2’ b°® ¢ ¢’ resuits in
the language

Ly={a3"b%ec®fn>0})=L,Nna"b%ec’

L, is well-known strictly context-sensitive language. The resuit
of intersecting a context-free language with a regular language is
always a context-free language; hence, L, is not a context-free
language. It is thus a strictly context-sensitive language. Example
2.3 thus illustrates part (c) of Theorem 2.2.

TAG's have more power than CFG's. However, the extra
power is quite limited. The language Ly bas equal aumber of a's, b's
and ¢'s; however, the a's and b's are mixed in 2 certain way. The
lauguage L, is similar to L,, except that a's come before all b's.
TAG's as defined so far are not powerful cnough to geserate L,.
This can be seen as follows. Clearly, for any TAG for Lo, each
initial tree must contain equal aumber of a's, b's and ¢'s (including
1ero), and each auxiliary tree must also contain equal number of a'a,
b’s and c's. Further in each case the a's must precede the b's. Then
it in easy to see from the grammar of Example 2.3, that it will not be
possible to avoid getting the a's and b's mixed. However, Ly can be
geaerated by a2 TAG with local constraints (see Section 2.1) The so-
called copy language.

Le={wew/we{ab}*)}

also cannot be gemerated by a TAG, however, again, with local
constraints. It is thus clear that TAG's can generate more than
context-free languages. It can be shown that TAG’s cannot generate
all context-sensitive languages {Joshi ,1984|.

Although TAG's are more powerful than CFG's, this extra
power is bighly conatrained and apparently it is just the right kind
for characterizing certain structural descriptions. TAG's share almost
all the formal properties of CFG’s (more precisely, the corresponding
classes of languages), 28 we shall see in section 4 of this paper and
[Vijay-Shankar and Joshi,1985|. In addition,the string ianguages of
TAG's can also be parsed in polynomial time, in particular in O(n®).
The parsing algorithm is described in detail in sectioa 3.

3.1. TAG's with Loeal Constraints on Adjoining
The adjoining operation as defined in Section 2.1 is "context-
free®. An auxiliary tree, say,

g -

is adjoinable to a tree t at a node, say, n, if the label of that
node is X. Adjoining does not depend on the coutext (tree context)
around the node 0. In this sense, adjoining is context-free.

In [Joshi ,1983|, local constraints on adjoining similar to those
investigated by [Joshi and Levy ,1977] were considered.These are a
generalization of the context-sensitive constraints studied by [Peters
and Ritchie ,1969]. It was soon recognized, however, that the (full
power of these constraints was never fully utilized, both in the
linguistic context as well as in the “formal languages® of TAG's.
The so-called proper analysis contexts and domination coatexts (as
defined in [Joshi and Levy ,1977]) as used in [Joshi ,1983] always
turned out to be such that the context elements were always in a
specific elementary tree i.e., they were further localized by being in
the same elementary tree. Based on this observation and a
suggestion in {Joshi, Levy and Takahashi ,1975], we will describe a
new way of introducing local constraints. This approach not only
captures the insight stated above, but it is truly in the spirit of
TAG's. The earlier approach was not so, although it was certainly
adequate for the investigation in [Joshi ,1983]. A precise
characterization of that approach still remains an open problem.

G = (LA) be a2 TAG with local constrainta if for each
elementary tree ¢t € [U A, and for each node, n, in t, we specify the
set 9 of auxiliary trees that can be adjoined at the node a. Note
that if there is no constraint then all auxiliary trees are adjoinable at
o (of course, only those whose root has the same label as the label of
the pode n). Thus, in general, 3 is a subset of the set of all the
auxiliary trees adjoinable at a.

We will adopt the following conventions.

—

. Since, by definition, no auxiliary trees are adjoinable to a
node labelled by a terminal symbol, no constraint has to
be stated for node labelled by a terminal.

2. If there is no constraint, i.e., all auxiliary trees (with the
appropriate root label) are adjoinable at a node, say, o,
then we will not state this explicitly.

3. If no auxiliary trees are adjoinable at a node n, then we
will write the constraint as (¢), where ¢ denotes the null
set,

4. We will als ailow for the possibility that for a node at
least one adjoining is obligatory, of course, from the set
of all possible auxiliary trees adjoinable at that node.

Hence, 2 TAG with local constraints is defined as follows. G =
(I, A) is a TAG with local constraints if for each node, n. in each tree
t, be specify one (and oaly one) of the following constraints.

1. Selective Adjoining (SA:) Ogly a specified subset of the
set of all auxiliary trees are adjoinable at a. SA is
written as (C), where C is a subset of the set of all
auxiliary trees adjoinable at a.

If C equals the set of all auxiliary trees adjoinable at n,
then we do not explicitly state this at the node n.

2. Null Adjoining (NA:) No auxiliary tree is adjoinable at
the node N. NA will be written 28 (¢).

3. Obligating Adjoining (OA:) At least one (out of all the
auxtiiary trees adjoinable at n} must be adjoined at n.

OA is written as (OA), or as O(C) where C is a subset of
the set of all auxiliary trees adjoinable at a.

Exampie 2.4: Let G == (1,A) be 3 TAG with local constraints where
L am
S ()]
8, S s (8

A: ﬂ‘ = ﬂza

s (8 s
I\ /\

/ A\ / A\
s s (&) (¢) s b

(82)

In a, oo auxiliary trees can be adjoined to the root node. Only
8, is adjoinable to the left S node at depth 1 and only 5, is
adjoinable to the right S node at depth 1. In §, only g, is adjoinahie
st the root node and no auxiliary trees are adjoinable at the ic..c
node. Similarly for g,.

We must now modify our definition of adjoining to take care of
the local coastraints. given a tree v with a node, say, u, labelled A
and given an auxiliary tree, say, 3, with the root node labelled A, we
define adjoining as follows. 7 is adjoinable to v at the node n if 3 €
3, where J is the constraint associated with the node o in 7. The
result of adjoining J to 7 will be as defined in earlier, except that the
coastraint C associated with a will be replaced by C', the constraint
associated with the root node of and by C*, the constraint
associated with the foot node of 3. Thus, given

y = 8=
S A (C*)
/\ node 2 /\
/ A (C) / \
// / \
/7 A\ / \
/7 A A / \
................ A-----
(c*)

The resultant tree 7' is

1 =

We also adopt the convention that any derived tree with a node
which has an OA coastraint associated with it will not be included in
the tree set associated with a TAG, G. The string language L of G is
then defined as the set of all terminal strings of all trees derived in G
(starting with initial trees) which have no OA constraints left-in
them.

Example 2.5: Let G = ([,A) be a TAG with local constraints
where

I: a =
S
|
.
A 8=
s (¢
/1
/1
| S
/N
/A
b | e
S (&)

85

There are no constraints in d,. In 4 no auxiliary trees are adjoinable
at the root node and the foot node and for the center S node there

are no constraints.

Starting with a; and adjoining 3 to a, at the root node we
obtain

9=

S (&)
/1
/

/
b

|
S
/\
1A
| e
S (¢)
|
.

Adjoining 8 to the center S node (the oaly node at which
adjunction can be made} we have

v -

It is easy to see that G generates the string language

L={a2bdecd/a >0}

Other languages such as L'-(a“’ Ja >1}, L* = {a"z |a>1}
also cannot be generated by TAG's. This is because the strings of a
TAL grow linearly (for a detailed definite of the property called
*contact growth® property, see {Joshi ,1983].

For those familiar with [Joshi, 1983], it is worth pointing out
that the SA coastraint is only abbreviating, i.e., it does not affect the
power of TAG's. The NA and OA constraints however do affect the
power of TAG's. This way of looking at local constraints has only
greatly simplified their statement, but it has also allowed us to
capture the insight that the 'locality’ of the constraint is statabie in
terms of the elementary trees themseives!

3.2. Simpie Linguistiec Examples

We now give a couple of linguistic examples. Readers may refer
to [Kroch and Joshi, 1985] for details.

1. Starting with v, = a; which is an initial tree and then adjoining
By {with appropriate lexical insertions) at the indicated node in ay,
we obtain 7,.

neay b=
S NP
/ \ N
NPs VP .| 3
AN A /\
DET X VNP WH §
| I T B A /\
It N w v
the girl | DET X | TAY
is | | s V W
a senior I
net ¥
the girl is a senior |
Bill
g =
s
/ \
/ \
(| P
vA D N
)\\\ / \
U AN 4
AN) s\ AN
DET N, / \\is DET N
| 1" S\ I 1
the girl) / \ M _a senior
AN
| AYREY
| e ‘|' ’“I’ \
\\ et |\ e By
\ L ,‘
\ I |
NoB,

The girl vho aet Bill is a senior

2. Starting with the initial tree v, == a, and adjoining F; at

the indicated node in a; we obtain 7,.

persuaded ¥
|
y Bill

John persuaded Bill S
T2 =

John persuaded Bill to invite Mary

86

Note that the initial tree a, is not a mattix sentence. In order
for it to become a matrix sentence, it must undergo an adjuaction at
its toot node, for example, by the auxiliary tree J, as shown above.
Thus, for a, we will specify a local constraint O(J,) for the root
node, indicatiog that as requires for it to undergo an adjunction at
the root node by an auxiliary tree ;. lo a fuller grammar there will
be, of course, some alternatives in the scope of o()

3. PARSING TREE-ADJOINING
LANGUAGES
3.1. Definitions

We will give a few additional definitions. These are aot
necessary for defining derivations in a TAG as defined in section 2.
However, they are introduced to help explain the parsing algorithm
aad the prools for some of the closure properties of TAL's.

DEFINITION 3.1 Let 7,7' be two trees.\We say 7 |— 7' if in 7 we
adjoin an auxiliary tree to obtain 7'
}=° is the reflexive, transitive closure of }—.

DEFINITION 3.3 7' is called a derived tree if 7 * 7' for some
elementary tree 7.

‘We then say 7' € D(7).

The frontier of any derived tree - belongs to either "NEIHU
£+ N £° it v€ D(3) for some auxiliary tree 3, or to £ if 7 € D{a)
for some initial tree a. Note if 7 € D(a) for some initial tree a, thea
v i8 also a sentential tree.

It 8 is a0 auxiliary tree, 7 € D(5) and the froatier of 7 is w; X
w, (X is 3 nonterminal.w; . wy € L") then the leal node haviog this
pon-terminal symbol X at the frontier is called the foot of 7.

Sometimes we will be loosely using the phrase ®adjoining with
2 derived tree® 7 € D(J) for some auxiliary tree 5. What we mean is
that suppose we adjoin J at some node and then adjoin within 4 and
50 on, we can derive the desired derived tree € D(J) which uses the
same adjoining sequence and use this resuiting tree to °*adjoin® at
the original node.

3.2. The Parsing Algorithm

The algorithm, we preseat here to parse Tree-Adjoining
Languages (TALs), is a modification of the CYK algorithm (which is
described in detail in [Aho and Uliman,1973|), which uses a dynamic
programmiag techaique to parse CFL's. For the sake of making our
description of the parsinag algorithm simpler, we shall present the
algorithm for parsing without cossidering local constraints. We will
later show how to handle local constraints.

We shall assume that any node in the elementary trees in the
grammar has atmost ‘wo children. This assumption can be made
without 20y losa of generality, because it can be easily shown that
for any TAG G there 18 a0 equivalent TAG G, such that any node in
any elementary tree in G, has atmost two childrea. A similar
assumption is made in CYK aigorithm. We use the terms ancestor
and descendant, throughout the paper as a transitive and reflexive
relation, for example, the foot node may be called the ancestor of the
foot gode.

The algorithm works as follows. Let a,...a, be the input to be
parsed. We use a four~dimensional array A; each eclement of the
array coatains a sabeet of the aodes of derived trees. We say a sode
X of a derived tree ¥ belongs to Afi,j.k.}} if X dominates a sub-tree of
7 whose frontier ®» given by either 3;,,..2; Y ay,,...a, (where the
foos node of 7 s labelled by Y) or ay,y..a, (i.e., j = k. This

correspoads to the case when 7 is a sentential tree). The indices
(i,j,k,1) refer to the positions betweea the input symbols and range
over O through n. If i == 5 say, then it refers to the gap between ag
and aq.

Initially, we fill Alii+1,1+1,i+1] with those nodes in the
frontier of the elementary trees whose label is the same as the input
244y for 0 < i < n-1. The foot nodes of auxiliary trees will belong to

all Afi,i,j.j, such that i < j.

We are now in a position to fill in all the elements of the array
A. There are five cases to be coasidered.

Case 1. We know that if a node X in a derived tree is the
ancestor of the foot node, and node Y is its right sibling, such that X
€ Ali.pk] and Y € A{lLm.m,n|, then their parent, say, Z shouid
beloag to Ali,j,k,n|, see Fig 3.1a.

Case 2. If the right sibling Y is the ancestor of the foot node
such that it belongs to A[l,m.n,p| and its left sibling X belongs to
Ali.j.j,}], then we know that the parent Z of X and Y belongs to
Ali.m,n.p|, see Fig 3.1b

Case 3. If neither X nor its right sibling Y are the ancestors of
the foot node { or there is no {oot node) thea if X € Ali.j.,j.l| and Y €
A[l.m.m,z] then their parent Z beloags to Ali.j,j.n.

Case 4. Il 3 node Z has only oue child X, and if X € Ali,jk)l],
thea obviously Z € Afi.j.k.I|.

Case 5. If 2 node X € Ali.j.k.l|, and the root Y of a derived
tree 7 having the same label as that of X, beloogs to A[m.i.l.0], thea
adjoining 7 at X makes the resulting node to be in A{m,),k.n|, see Fig
3.1e.

. (e) Y
(a) /x\ I\

O] X 1 3 x 1

/ \
/ /NN
A WA

Although we have stated that the elements of the array
contain a subset of the nodes of derived trees, what really goes in
there ase the addresses of nodes in the elementary trees. Thus the
the size of any set is bounded by a comstant, de'.ermmed by the
grammar. It is hoped that the presentation of the algorithm below
will make it clear why we do so.

3.3. The algorithm
The complete algorithm is given below
Step 1 For 1=0 to n-1 step 1 do

Step 2 put all nodes in the frontier of elementary
trees whose label is ayey in A[i,i1,1¢1,301].

Step 3 For 1=0 to n-1 step i do

Stap 4 for j=i to n-1 step 1 do
Step § put foot nodes of sll auxiliary trees in
AlL.5.5.4)

Step 8§ For 1=0 to n stop 1 do

Step 7 For izl to 0 step -1 do
Step 8 For §=1 to 1 step 1 do
Step 9 For k=1 to j step -1 do
Step 10 do Case 1
Step 11 do Case 2
Step 12 do Case 3
Step 13 do Case 5
Step 14 do Case 4

Step 16 Accept if root of some initial tree € A[0,}.],n],
0< 1 <a

.
where,

(a}) Case 1 correspoads to situation where the left sibling is the
ancestor of the foot node. The parent is put in A{i.j.k.ll if the left
sibling is in Afi.j.k.m| and the right sibling is in A{m.p,p.}j, where k
<m<!|,m<p p <L Therefore Case | is written as

For a=k to l-] step 1 do
for p= m to 1 step 1 do

if there is s left sibling in A{i.{.k.m] and the
right siblirg in A(m.p.p.l] satisfying appropriate
restrictions thea put their parent
in Ali,j.x.1].

{b) Case 2 corresponds to the case where the right sibling is the
abcestor of the foot node. If the left sibling is in Ali.m.m.p| and the
night sibling is io Alp.j.k.l]. i < m < p and p < j, then we put their
parent in Afi.j.k.}}. This may be written as

For m=i to j-1 step 1 do
For p=m+l to | atep 1 do

for all left siblings in A(i,s,m,p] and right
siblings
in Alp.j.k.1] satisfying appropriate restrictions put
theiz pareats
in A{1,§.k,1].

{c) Case 3 corresponds to the case where neither children are
agcestors of the foot node. If the left sibling € A|i,j,j,m_| anq tl.:e.n;ht
sibling € A[m,p.p.l} then we can put the parent in Ali.b.jd} if it is the
canthnt(i<j5mori$j<m)and(m<p$lorm$p<
1)s This may be written 23

for m = § to 1-1 astep 1 do
for p = | to 1 step 1 do
for sll left sidblings in A(i.],).m] and

right sidlings in A(m,p.p.1] satisfying the appropriate
restrictions put their psrent ia A[i.].}.1].

{e) Case 5 corresponds to adjoining. if X is & node in Alm,j.k.p| and
Y is the root of a auxiliary tree with same symbol as that of X, such
that Yisin Alimpll (i Sm<p<lori<ms p < 1)and (m
<j<kgporm<jS£k< p))- This may be written 28

for s = i to § step 1 do
for p = m to 1 step 1 do
if & node X € Alm,§,k.p] sad the root of
suxiliary tree is io A{i,s.p,1] then put X in Ali.§.x,1)

Case 4 correspouds to the case where a gode Y has only one c_hild X
It X € Ali.j,k.l| then put Y in Ali,j,k,}j. Repeat Case 4 agaia if Y has
no siblings.

3.4. Complexity of the Algorithm

It is obvious that steps 10 through 15 {cases a~¢) are completed
i O(n2), because the different cases have at most two nested for
loop statements, the iterating variables taking values in the range 0
through n. They are repeated atmost O(n?) times, because of the
four loop statements in steps 6 through 9. The initialization phase
(steps 1 through $) has a time complexity of O(n + 8%) = O{n?).
Step 15 is completed in O(n). Therefore, the time complexity of the
parsing algorithm is O(n8).

3.5. Correctnenss of the Algorithm

The main issue in proving the algorithm correct, is to show
that while computing the contents of an elrment of the array A, we
must have already determined the coatents of other eiements of the
array npeeded to correctly complete this entry. We can show this
inductively by considering each case individually. We give an
informal argument below.

Case 1: We need to know the contents of Ali.j.k.mj, A{m.p.p.||
where m < |, i < m, when we are trying to compute the contents of
Ajij,k.l|. Since | is the variable itererated in the outermost loop (step
6), we can assume {by induction hypothesis) that for all m < | and
for all p,q.r, the contents of A[p.q.r,m| are already computed. Hence,
the contents of Ali.j,k.m| are known. Similarly, for all m > i, and
for all p,q, and r < I, A[m,p.q,r] would bave been computed. Thus,
A|m.p.p.l| wouid also have been computed.

Case 2: By a similar reasoning, the coatents of Ali,m,m,p| aad
Alp.j.k.l| are known since p < land p > i

Case 3: When we are trying to compute the contents of some
Afi.j.jll, we peed to know the nodes in Ali.j.i,p] aad Alp.q.q.l|. Note j
> i or j < L Hence, we know that the contents of Ali,j.j,p} and

Alp.a.q,l] would bave bees computed already.

Case 5: The coatents of Ali,m.p,] and A{m.jk.p] must be
knowa in order to compute Ali,j,k.I|, where (i < m <p<lori <
mIpLl)md({m<LjLk<porm<j<k<p) Since
either m > i or p < |, contents of Aim.jk.p| will be knowa.
Similarly, since either m < j or k < p, the contents of Ali,m,p,]|
wouid have been computed.

88

3.6. Parsing with Local Constrainte

So far,we have assumed that the given grammar has no local
constraints. If the grammar has local constraints, it is easy to modify
the above algorithm to take care of them. Note that in Case 5, if an
adjunction occurs at a node X, we add X again to the element of the
array we are computing. This seems to be in contrast with our
definition of how to associate local constraints with the nodes in a
senteatial tree. We should have added the root of the auxiliary tree
instead to the element of the array being computed, since so far as
the local constraints are concerned,this node decides the local
constraints at this node in the derived tree. However, this scheme
cannot be adopted in our algorithm for obvious reasons. We let pairs
of the form (X,C) belong to elements of the array, where X is as
before and C represents the local constraints to be associated with
this node.

We then alter the algorithm as follows. If (X,C,) refers to a
node at which we attempt to adjoin with an auxiliary tree (whose
root is denoted by (Y,C,)), then adjunction would determined by C,.
It adjunction is allowed, then we can add (X,C,) in the corresponding
element of the array. In cases 1 through 4, we do not attempt to add
2 new element if any ome of the children has an obligatory
constraint.

Once it has been determined that the given string belongs to
the language, we can find the parse in 3 way similar to the scheme
adopted in CYK algorithm.To make this process simpier and more
efficient, we can use pointers from the new element added to the
elements which caused it to be put there. For example, consider
Case 1 of the algorithm (step 10). If we add a node Z to Ali.j.k.ll,
because of the presence of its children X and Y in Ali,j,k.m| and
Alm,p.p.l| respectively, thes we add pointers from this node Z in
Alij.kJ] to the nodes X, Y ia Ali.j,k.m} and A[m.p,p.]|. Once this has
been done, the parse can be found by traversing the tree formed by
these pointers.

A parzer based on the techniques described above is curreatly
being implemented aad will be reported at time of presentatioa.

4. CLOSURE PROPERTIES OF TAG's

1o this section, we present some closure results for TALs. We
sow informaily sketch the proofs [for the closure properties.
laterested readers may refer to [Vijay-Shankar aad Joshi, 1985 for

the complete prouls.

4.1. Closure under Union

Let G, and G, be two TAGs generating L, and L, respectively.
We ¢an coastruct a TAG G such that L{G)=L, U L,.

Let Gy = (I, Ay, Ny, S), and Gy = (1y Ag Ny S).
Without loss of generality, we may assume that the Ny N Ny = ¢.
Let G = (I, U lg, Ay U Ag, Ny U Ny, S). We claim that L(G) = L,

UL,

Let x € Ly U Ly. Then x € Ly or x € L. If x € Ly, thea it
must be possible to generate the string x in G , since Iy , Ay are in
G. Hence x € L{G). Similarly if x € Ly , we can show that x € L(G).
Heace Ly U L, S L(G). Ifx € L(G), then x is derived using either
only 1,, A, or only lg, A, since Ny N Ny = ¢. Hence, x € Ly or x €
Ly. Thus, L(G) 'S Uy U Ly. Therefore, L{G) = L, U L,.

4.3. Closure under Concatenation

Let G‘ -(ll,Al,N,,S‘). G: - ([2,A2.N2,Sz) be two TAGs
generating L,, L, respectively, such that N; N Ny = &. We can
construct 3 TAG G = (I, A, N, S) such that L(G)== L, . L,. We
choose S such that S is ot in N; U Ny, Welet N =N, UNy U
{S}, A == Ay U A,. Forallt, €1, ty €Iy, we add ty, to I, as shown
in Fig 4.2.1. Therefore, | = { t;s / t; € Iy, ts € I3}, where the nodes
in the subtrees t, and ty of the tree t,; have the same constraints
associated with them as in the original grammars G, aad G,. It is
easy to show that L(G) == L, . L,, once we note that there are no
auxiliary trees in G rooted with the symbol S, and that Ny N Ny =
[2

Sy)
by = /' \ tg = / N\
/ \ / \
/ \ / \
S
tyg = /\
/ \
/ \
/ \
Sy S2
/ \ / \
/ N / ta\
Figure 4.2t

4.3. Closure under Kleene Star

Let Gy == (I,,A,,Ny,S,) be 3 TAG generating Ly. We can show
that we can comstruct 2 TAG G such that L(G) = L,". Let S be a
symbol not in Ny, and let N = N, U {S}. We let the set [of initial
trees of G be {t,}, where t, is the tree shown in Fig 4.3a. The set of
auxiliary trees A is defined as

A={t, [tyeJUA,

The tree t,, is as shown in Fig 4.3b, with the constraints on
the root of each t,, being the null adjoining constraint, no
constraints on the foot, and the comstraints on the nodes of the
sabtrees t; of the trees t,, being the same as those for the
corresponding nodes in the initial tree t, of G,.

To see why L(G) = L,°, consider x ¢ L{G). Obviously, the tree
derived (whose frontier is given by x) must be of the form showa in
Fig 4.3¢c, where each t;’ is 2 sentential tree in G,,such t;' € D(t;), for
an initial tree t; in G,. Thus, L(G) § L,".

On the other band, if x € L,", then x = w,..w,, w; € L, for |
S i S 0. Let each w; then be the froatier of tie sentential tree t; of
G, such that t;" € D(t;), t; € I,. Obviously, we caa derive the tree T,
using the initial tree t,. and have a sequence of adjoining operations
using the auxiliary trees t;, for 1 < i € o. From T we can obviously
obtain the tree T° the same as given by Fig 4.3c, using oaly the
suxiliary trees in Ay. The [rontier of T" is obviously w,...w,. Henee, x
€ L{G). Therefore, L,* € L(G). Thus L(G) = L,".

™ ty = s

/

89

S
(b) 'q‘ = S (e) 7\
/\ / Sy
/I \ / /\
s Sy /__\et'y
/\
/I \aty
/___\ S
/ \
S / N\
/ / Vet
]
T'
Figure 4.3

4.4. Closure under Intersection with Regular Languages

Let L be a TAL and Lg be a regular language. Let G be a
TAG generating Lt and M = (Q , £, §, q9 , Qp) be a finite state
automaton recognizing Lg. We can coustruct 2 grammar G aad will
show that L(G,) = Ly N Lg.

Let a be an elementary tree in G. We shall associate with each
node a quadruple (q,,9,,935,9,) Where q,,92,95.9, € Q. Let (9,,9.93,94)
be associated with a node X in a. Let us assume that a is an
auxiliary tree, and that X is an ancestor of the foot node of a, and
bence, the ancestor of the foot node of any derived tree 7 in D{a).
Let Y be the label of the root and foot nodes of a. If the frontier of
7 (7 in D(a)) is wy wy Y wy w,, and the frontier of the subtree of v
rooted at Z, which corresponds to the node X in a is w, Y wy, The
idea of associating (q,,92,93,Q4) with X is that it must be the case
that 6°(q;, wa) = q,, aad §°(qy, w3) = q,. When 7 becomes a part of
the sentential tree 7' whose [rontier is given by u w; wy v wy w, w,
then it must be the case that &°(qy v) = q;. Following this
reasoning, we must make q; = q, if Z is not the ancestor of the foot
node of v, or if v is in D(a) for some initial tree a in G.

We have assumed here, as in the case of the parsing algorithm
presented earlier, that any node in aay elementary tree has atmost
two children.

From G we can obtain G, as follows. For each initial tree a,
associate with the root the quadruple (qq4, q, q, q) Where g, is the
initial state of the finite state automaton M, and qp € Qp. For each
auxiliary tree 3 of G, associate with the root the quadruple
(94,92,93.9¢), Where q,q4,92,03,4¢ are some variables which will later
be given values from Q. Let X be some node in some elementary tree
a. Let (q,.92,95.q¢) be associated with X. Then, we have to coasider
the follo'wiag cases

Case 1: X has two children Y and Z. The left child Y is the
aacestor of the foot node of a. Then associate with Y the quadruple {
P. Q2. 93, q), and (q, r, r, 8) with Z, and associate with X the
constraint that ouly those trees whose root has the quadruple (qy P,
s, qq), among those which were allowed in the original grammar,
may be adjoined at this node. If q, 7 p, or q, 7% s , then the
constraint associated with X must be made obligatory. If in the
original grammar X bad an obligatory constraint associated with it
then we retain the obligatory constraint regardless of the relatiouship
between q, and p, and q, and . If the constraint associated with X
is a null adjoining constraint, we associate (qy, 92, 93, 9), and (q, r,
t, qq) with Y and Z respectively, and associate the null adjoining
coastraint with X. If the label of Z is a, where a € T, then we choose
s and q such that § (q, 2) == s. In the aull adjoining coastraint case,
q is chosen such that §(q, 2) = q.

Case 2: This corresponds to the case where s node X has two
childrea Y and 2, with (q,,q9,q5.q,) sssociated at X. Let Z (the right
child) be the ancestor of the the foot node the tree a. Then we shall
associate (p,q,q,7), (1.q5,3.8) with Y aad Z. The sssociated constraint
with X shall be that only those trees among those which were
allowed in the orignal grammar may be adjoined provided their root
has the quadruple (q,.p.8.q,) associated with it. [f q, % porq 3 r
then we make the constraint obligatory. If the original grammar had
obligatory constraint we will retain the obligatory constraint. Null
constraint in the original grammar will force us to use null constraiat
sad not consider the cases where it is not the case that q; == p and
q¢ ™= o. If the label of Y is a terminal ‘a’ thea we choose r such tha¢

5*(p,a) == 1. If the constraint at X is a null adjoining constraint, then

-f(qha) -,

Case 3: This corresponds to the case where neither the left
child Y nor the right child Z of the node X is the aacestor of the foot
node of a or if @ is a initial tree. Then q = qq = q. We will
associate with Y and Z the quadruples (p.r.r.q) and (q,5.8,¢) resp. The
constraints are assigned as before , in this case it is dictated by the
quadruple (q,,p.t.q,). If it is not the case that q; == p aod q, = ¢,
then it becomes an OA coostraint. The OA and NA constraints a¢t X
are treated similar to the previous cases, and so is the case if either
Y or Z is labelled by a terminal symbol.

Case 4: If (4,,92,Q3.04) is associated with a3 aode X, which has
oaly one child Y, then we can deal with the various cases as follows.
We will associate with Y the quadruple (p,qs,q4,8) and the constraint
that root of the tree which cam be adjoined at X should have the
quadruple (qy,p8.q,) associated with it among the trees which were
allowed in the original grammas, if it is to be adjoined at X. The
cases where the original grammar had null or obligatory constraint
aseociated with this node or Y is labelled with a terminal symbol, are
treated similar to how we dealt with them in the previous cases.

Once this has been dome, let q,,...qy be the independent
variables for this elementary tree a, then we produce as many copies
of a so that q,....qp take all possible values from Q. The only
difference among the various copies of a so produced will be

raints iated with the uodes im the trees. Repeat the process
for all the elementary trees in G,. Once this has been dome and each

tree given 2 unique name we can write the constraints in terms of
these names. We will now show why L{G,) = Ly N Ly.

Let w € L(Gy). Thea there is a sequence of adjoining
. operations starting with an initial tree a to derive w. Obviously, w €
iy, also since correspoading to each tree used in deriving w, there is
a corresponding tree in G, which differs ounly in the constraiats
associated with its nodes. Note, however, that the coastraints
associated with the nodes in trees in Gy are just a restriction of the
corresponding omes in G, or an obligatory constraint where there was
noae in G. Now, if we can assume { by induction hypothesis) that if
after © adjoining operations we can derive v’ € D(a’), then there is a
corresponding tree v € D(a) in G, which has the same tree stracture
as 5 but differing oaly is the constraints associated with the
corresponding nodes, thes if we adjoin at some node in 7' to obtain
v, we can adjoin in 7 to obtain 7, (corresponding to 7,’).
Therefore, if w can be derived in Gy, then it can definitely be derived
is G.

If we can also show that L{G;) G Ly, then we cam conciude
that L(G,} © Ly N Ly. We can ase induction to prove this. The
induction hypothesis is that if all derived trees obtained after k < 0
adjoining operations have the property P them so wiil the derived
trees after 3 + 1 adjoinings where P is defined as,

Property P: If any node X in a derived tree v has the foot-node of
the tree A to which X belongs labelled Y as a descendant such that
w; Y wy is the frontier of the subtree of 3 rooted at X, then if
(q1,92:93:9¢) had been associated with X, X (q™) = q2 and
&§'(q3,W2) = qq, and if w is the frontier of the subtree under the foot
node of § in 7 is then &° (qa,w) == qq. If X is not the ancestor of the
foot node of J then the subtree of A below is of the form w,w,.
Suppose X has associated with it (q,,2.9,q7) then 8(q. ™) = q,
5°(q,73) = q,.

Actually what we mean by an adjoining operation is not
pecessarily just one adjoining operation but the minimum number so
that no obligatory constraints are associated with any nodes in the
derived trees. Similarly, the base case need not coasider only
elementary trees, but the smallest (in terms of the number of
adjoining operations) tree starting with elementary trees which has
no obligatory constraint associated with any of its nodes. The base
case can be seen easily considering the way the grammar was built
(it can be shown formally by induction on the height of the tree) The
inductive step is obvious. Note that the derived tree we are going to
use for adjoining will have the property P, and so will the tree at
which we adjoin; the former because of the way we designed the
grammar and assigned constraints, and the latter because of
induction hypotbesis. Thus so will the new derived tree. Once we
have proved this, all we have to do to show that L(G,}) C Ly is to
consider those derived trees which are sentential trees and observe
that the roots of these trees obey property P.

Now, if a string x € L N Ly, we can show that x € L(G). To
do that, we make use of the following claim.

Let 3 be an auxiliary tree in G with root labeiled Y and let 7 €
D(8). We claim that there is & 7' in G, with the same structure as 8,
such that there is 2 v’ in D(beta())’) where 7' has the same structure
a8 7, such that there is no OA constraint in 7'. Let X be a node in
B, whick was used in deriving 7. Then there is a node X' in 7' such
that X' belongs to the suxilliary tree 3,’ (with the same structure as
8, There are several cases to consider -

Case 1: X is the ancestor of the foot node of J;, sach that the
frontier of the subtree of 3, rooted at X is w;Yw, and the frontier of
the subtree of 7 rooted at X is wyw,Zw.w, Let 5°(qy,wy) = q,
5°(q,wy) = qq, 5°(a3,%3) = r, and 8'(r,w,) = q,. Thea X' will have
{qq,0.7.04) 28sociated with it, and there will be o OA constraint in
~.

Case 2: X is the ancestor of the foot node of 3,, and the (rontier of
the subtree of 3, rooted at X is wyYw, Let the froatier of the
subtree of 7 rooted at X is wyw,wow,. Then we claim that X' in 7'
will have associated with it the quadruple (q,,a.r.q¢) if 5°(q;,Wg) =
Q 6‘(“!']) - f(P-"z) = t, and 6‘('"{) - Qe

Case 3: Let the frontier of the subtree of 4, {(and also v) rooted at X
is wywy. Let 8°(qw;) = p, 5’(p.wy) = r. Then X' will have
associated with it the quadruple (q,p,p.f).

We shail prove our claim by induction on the number of
adjoining operations used to detive 7. The base case (where v = J) ia
obvious from the way the grammar G; was built. We shall now
assume that for ail derived trees v, which have been derived from 3
using k or less adjoining operations, have the property as required in
our claim. Let v be a derived tree in § after k adjunctions. By our
inductive hypothesis we may assume the existeace of the
corresponding derived tree 7' € D(8’) derived in G,. Let X be a node
in 4 as showa in Fig. 4.4.1. Then the node X' in 7’ corresponding to
X will bave associated with it the quadruple (q,’.d7".93",44"). Note we
are assuming here that the left child Y' of X' is the ancestor of the

foot node of 5'. The quadruples (q;'.q2.qs’.P) 20d (P.Py.Py.q4°) will
be associated with Y' and Z' (by the induction hypothesis). Let v, be
derived from v by adjoining f; at X as i Fig. 4.4.2. We have to
show the existence of f,’ in Gy such that the root of this auxiliary
tres has associated with it the quadruple (q,q4".94".1). The existence
of the tree follows from induction hypothesis (k == 0). We have also
got to show that there exists 7,’ with the same structure as 7' but
one that allows §,' to be adjoined at the required node. But this
should be so, since from the way we obtained the trees in G,, there
will exist 7,° such that X,' has the quadruple {a.92'.q3',1) and the
conatraints at X,' are dictated by the quadruple {9.9y".¢".7), but
such that the two children.of X,’ will have the same quadruple as in
Y. We can now adjoin §,' in 7,* to obtain v,". It can be shown that
7,’ has the required property to establish our claim.

/\
/ N\
/ \
/ \
/ \
/ \
/ \
/ \
/ N \
/ / A\ \
- / / \ \
7\ / / \ \
/I N mmmmeees / \-=mmmmee
/ \ / \
/ \ / \
/ X A\ / \
/I /N N mmmeemee LA it
/ / A\ \ x / \y
/ / \ \ \
/ / \ \ / \
/ /\ /\ \ / \
/N 1\ \ AN 7AN
/ / N/ \ \ /N /A
/ \\ // '
v, Ye'u v \
L \/ \
"l Y "z "‘ "2
8°(q'1.¥9"1)=q" 38 (p.v*)=py
£ FRLrI o 0=, £t p=r
Figure 4.4.2

Figure 4.4.1

Firatly, any node below the foot of 4,' in 7, will satisfy our

requirements as they are the same as the correspoading nodes in 7, °.
Since J3,' satisfies the requirement, it is simple Lo obeerve that the
aodes in J,' will, even after the adjunction of 3, in 7,*. However,
because the quadruple associated with X,' are different, the
quadrupies of the nodes above X,' must reflect this chaage. It is easy
to check the existence of an auxiliary tree such that the nodes above
Xy’ satisly the requirements as stated above. It can also be argued an
the basis of the design of grammar G, that there exists trees which
allow this new auxiliary tree to be adjoined at the appropriate place.
This then allows us to conclude that there exist 2 derived tree for
each derived tree belongia to D(f) as in our claim. The next step is
to extend our claim to take into account all derived trees (ie.,
including the sentential trees). This can be done is a manner similar
to our treatment of derived trees belonging to D(S) for some
asuxiliary tree 9 as above. Of course, we have to coasider only the
case where the finite state automaton starts from the initial state qq,
and reaches some final state q¢ o the inpat which is the frontier of
_some sentential tree in G. This, then allows us to conclude that Ly N
Lg € L(G,). Hence, L(Gy) = Lp N Lyg.

N

5. HEAD GRAMMARS AND TAG's

In this section, we attempt to show that Head Grammars (HG)
ate remarkably similar to Tree Adjoining Grammars. It appears that
the basic intuition behind the two systems is more or less the same.
Head Grammars were introduced in [Pollard,1984], but we follow the
notations used in {Roach,1084|. It has been observed that TAG's and
HG's share a lot of common formal properties such as aimost
identical closure resuits, similar pummping lemma.

Consider the basic operation in Head Grammars - the Head
Wrappiog operation. A derivation from a non-terminal produces a2
pair (i.ay...3;...2,) (a more convenieat representation for this pair is
3y..34y3i4 1.3y). The arrow depotes the head of the string, which in
turn determines where the string is split up when wrapping operation
takes place. For example, consider X->LL4(A,B), and let A='wh1x

and Bﬂ'ugiv.’rhen we 63y, Xa'wbug'vx.

We shall define some functions used in the HG formalism,
which we need here. If A derives in O or more steps the headed string
\Vgx and B derives ugv, then

1) if X -> LL,(A,B) is s rule in the graamar then

X derives 'gugvx

-> LLy(A,B) is a rule in the grammar then
X derives whugvx
~

2 i1 X

3) 1£ X -> LC{(A,B) is s rule in the graamar thea

X derives vl:xugv

4) if X -> LCo(A,B) is a rule in the graasar then
X derives wvhxugv
rs

Now coansider how s derivation im TAGs proceeds -

Let 3 be an auxilliary tree and let a be a sentential tree as in
Fig 5.1. Adjoining § at the root of the sub-tree 7 gives us the
sentential tree in Fig 5.1. We can, now see how the string whx has
*wrapped around® the sub-tree ie.the string ugv. This seems to
suggest that there is something similiar in the role played by the foot
in an auxiiliary tree and the head in 2 Head Grammar how the
adjoining operations and head-wrapping operations operate oa
strings. We could say that if X is the root of an auxilliary tree 4 and
3y...2; X 2,...3, is the frontier of a derived tree 7 € D(J), then the
derivation of 7 would correspond to a derivation (rom a non-terminal
X to the string ay..2; j3j4;...2, in HG and the use of 7 in some
sentential tree would correspond to how the strings a,.. 2y and
244 q--3y are used in deriving a string in HL.

as= S g = X

<
S~

|‘7L‘

-

F
3
]
®
[y
-

Based on this obeervation, we attempt to show the close
relationship of TAL's aad HL's. It is more convinient for us to think
of the beaded string (i,ay..a,) as the string a,..a, with the head
pointing in between the symbols a; and a;,, rather thas at the
symbol a;. The definition of the derivation operators cam be extended
in A straightforward maaner to take this into account. However, we
caa acheive the same effect by considering the definitions of the
operators LL,LC,etc. Pollard suggests that cases such as LL4(x.}) be
left undefined. We shall assume that if X ==why thea X)) =

+ LLy(X %) = %, LCy(xX) == x), LCy(X X} = X, LC,(X\) = %,

LC,(\%) =)x. *

We, thea say that if G is 2 Head Grammar, then w, == whx belongs
to L{G) if and only if S derives the headed string w Tor whix.
With this aew definition, we shall show, without giving the pro’of.
‘hat the class of TAL's is contained in the class of HL’s, by
systematically coaverting any TAG G to s HG G'. We shall assume,
without loss of generality, that the constraints expressed at the nodes
of elementary trees of G are -

1) Nothing can be adjoined st a node (NA),

2) Aoy appropriate tree (symbols st the node and root of the
auxilliary tree must match) can be adjoined (AA), or

3) Adjoining at the node is obligatory (OA).

It is easy to show that these constraints are enough, and that
selective adjoining can be expressed in terms of these and additional
aon-terminals. We know give a procedural description of obtaining
an equivalent Head Grammar from a Tree-Adjoining Grammar. The
procedure works as follows. It is a recursive procedure
{Convert _to_HG)} which takes in two parameters, the first
representing the node oa which it is being applied and the second the
label appearing on the left-hand side of the HG productioas for this
node. If X is 2 2onterminal, for each aaxiliary tree 8 whose root has
the label X, we obtain a sequence of productions such that the first
one has X on the left-hand side. Using these productions, we can
derive the string w,\w, where a derived tree in D(S) has a froatier
w,Yws. If Y is 2 node with with label X in some tree where
adjoining is allowed, we introduce the productions

Y* -> LLy(X.¥*) {s0 that a derived tree vith root
label X asy vrap around the string derived from the sudtree
below this node}

¥ -> LCy(Ay,....Ay) {assuming that there
are j childrem of this node and the itd child is the

ancestor of the foot node. By calling the procedure
recursively for all the § childrea of Y with Ay, k

rangicg fres 1 through |, ve can derive from N° the
frontier of the subtree below Y)

Y* -> N' { this is to bandle the case vhere 2o
sdjunction takes place at Y}

If G is a TAG then we do the following —
Repeat for svery Initial tree

Convert_to_HG(root,S°) {(S° will be the start symbol of
the nev Head Grammar}. .

Repeat for each Auxilliary tree

Convert,_to_HG(root,rcotsyssol)

vhers Convert_to_HG(node,name) is defined as follows

if sode is aa internal node then

case 1 If the comnstraint at the node ism AA

add productions Sym->LL,(node symbol,N’),

B LC (AL LA, LAy)

VORI

vhere X',A ", Ay"....Ay" sre nev oon-terainal
symbols, Ay, ...,Ay correspond to the j children

of the node and i=1 if foot node is not a descendant
of node else =1 such that the 1%» child of node is
ancestor of foot node, j=number of childreu of node

Sym->LC (A", ..

for k=1 to § step 1 do
Convert_to_HG(kt* child of node.Ay').
Case 2 The coastraint at the aode is NA.
Sane as Case 1 except don’'t add the productions
Syn->LL,(node symbol .N*),
l'->LC,_(A,'. PPN .A,') .
Case 3 The constraint st the node is OA.
Same 38 Case 1 except that ve don't add
Sym->LCy (A", .. .Ay")
elae if the node has s terminal symbol a,
then add the production Sym ->3
else (it is a foot node }
if the constrainot at the foot node is AA then
sdd the productions _ _
Sya ->LL,(node symbol,))/)\
if the comstraint is OA then add only the
production -
Sy ->LLy(node symbol,))

i2 the coustraint is NA add the production
Sym ->\

We shall now give an exampie of coaverting a TAG G to a
HG. G contains a single initial tree @, and a single auxiliary tree g
as in Fig. 5.2

s S (¢)
as | A= /\
. / \
s S
/ I\
/I 1\
/A
b S(¢) ¢
Figure 5.2

Obviousily, L(G) = {a%b%¢a [u > 0}

Applying the procedure Conven_._w_HG to this grammar we
obtain the HG whose productioas are given by-

S*-> LL,(S.A)
A->X
->» LCy(B.C)
- "‘
=> LLy(s,D)/D
-> LC,(E.F.G)
>
-3
-> T
vhich can de_revritten as
§* ->S8§
S -> LCs(a,A")
A' => LLy(S,bAc) or A’ ->LLa(S,be)
It can be vorilios that this grammar generates exactly
L(G).

ammo aw v

It is worth emphasising that the main point of this exercise was
to show the similarities between Head Grammars and Tree Adjoining
Grammars. We have shown how a HG G' (using our extended
defipitions) can be obtained in a systematic fashion from a TAG
G. It is our belief that the extemsion of the definition may not
necessary. Yet, this conversion process should belp us understand the
similarities between the two {ormalisms.

6. OTHER MATHEMATICAL PROPERTIES
OF TAG's

Additional formal properties of TAG's have been discussed in
[Vijay-Shankar and Joshi,1985|. Some of them are listed below
1) Pumping lemma for TAG's
2) TAL's are closed under substitutios and homomorphisms
3) TAL's ase not closed under the following operations

1) intersection vith TAL's
b) intersection vith CFL's
¢) complementation

Some other properties that have been coasidered in [Viiay-
Shankar and Joshi,1985] are as follows

1) closure under the following properties
a) inverse homomorphism

b) gsa aappings
2) seailinearity and Parikhk-boundedness.

93

References

1. Abo,A.V,, and Ullmzn,J.D., 1973 *Theory of Parsing, Translation,
and Compiling, Volume 1: Parsing, Prentice-Hall, Eaglewood Cliffs,
N.J., 1973.

2. Joshi,A.K., 1983 *How much context itivity is ne y for
charecterizing structural descripticns - tree adjoining grammars® in
Natural Language Processing - Theoretical, Computational, and
Psychological Perspectives {ed. D.Dowty, L.Karttunen, A.Zwicky),
Cambridge University Press, New York, (originally preseated in
1983) to appear in 1085.

3. Joshi, AK., and LevyL.S, 1977 *Constraints on Structuoral
Descriptions: Local Transformztions®, SIAM Journal of Computing
June 1977.

4. Joshi,A.K., Levy....S., and Takahashi, M., 1975 *Tree adjoining
grammars®, Jonroal of Computer Z-stems and Sciences, March 1975

5. Kroeh, T., and Joshi, A.K., 1835 *Linguistic relevance of tree
adjoining grammars®, Technical Report, MS-CIS-85-18 Dept. of

Computer and Information Science, University of Pennsvivania, April
1085

6. Pollard, C, 1984 *Generalized hrase Structure Grammars, Head
Grammars, and Navural language, Ph.D dissertation, Stanford
University, August 1984

7. Roach, .. 1984 °*Formal Properties of Head Grainmars®,
unpubli:bed manuseript, Stanford University, also presented at the
M-thematics of Langnages workshop at the Uaiversity of Michigan,
Ana Arbor, Oct. 1984,

8. Vijay-Shankar K., Joshi AK., 1985 *Formal Properties of Tree
Adjowming Grammars®, Technical Report, Dept. of Computer and
luformation Science, University of Pepesvivania, July 1985

