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ABSTRACT 

A specialized transition network 
mechanism, the interruptable transition 
network (ITN) is used to perform the last 
of three stages in a multiprocessor 
syntactic parser. This approach can be 
seen as an exercise in implementing a 
parsing procedure of the active chart 
parser family. 

Most of the ATN parser 
implementations use the left-to-right 
top-down chronological backtracking 
control structure (cf. Bates, 1978 for 
discussion). The control strategies of 
the active chart type permit a blend of 
bottom-up and top-down parsing at the 
expense of time and space overhead (cf. 
Kaplan, 1973). The environment in which 
the interruptable transition network (ITN) 
has been implemented is not similar to 
6hat of a typical ATN model. Nor is it a 
straightforward implementation of an 
active chart. ITN is responsible for one 
stage in a multiprocessor parsing 
technique described in Lozinskii & 
Nirenburg, (1982a and b), where parsing is 
performed in essentially the bottom-up 
fashion in parallel by a set of relatively 
small and "dumb" processing units running 
identical software. The process involves 
three stages: (a) producing the candidate 
strings of preterminal category symbols; 
(b) determining the positions in this 
string at which higher-level constituents 
start and (c) determining the closing 
boundaries of these constituents. 

Each of the processors allocated to 
the first stage obtains the set of all 
syntactic readings of one word in the 
input string. Using a table grammar, the 
processors then choose a subset of the 
word's readings to ensure compatibility 
with similar subsets generated by this 

processor's right and left neighbor. 

Stage 2 uses the results of stage 1 
and a different tabular grammar to 
establish the left ("opening") boundaries 
for composite sentence constituents, such 
as NP or PP. The output of this stage 
assumes the form of a string of triads 

llabel x M), where lah~l belongs to the 
vocabulary of constituent types. In our 
implementation this set includes S, NP, 
VP, PP, NP& (the "virtual" NP), Del (the 
delimiter), etc. X and M are the left and 
the right indices of the boundaries of 
these constituents in the input string. 
They mark the points at which parentheses 
are to be opened (x) and closed (y) in the 
tree representation. The values x and y 
relate to positions of words in the 
initial input string. For example, the 
sentence (i) will be processed at stage 2 
into the string (2). The '?' in (2) stand 
for unknown coordinates y. 

(i) The very big brick building that sits 
1 2 3 4 5 6 7 

on the hill belongs to the university. 
8 9 i0 ii 12 13 14 

(2) (s 1 ?)(np 1 ?)(s 6 ?)(np& 6 6) 
(vp 7 ?)(pp 8 ?)(np 9 ?)(vp ii ?) 
(pp 12 ?)(np 13 ?) 

It is at this point that the 
interruptable transition network starts 
its work of finding the unknown boundary 
coordinates and thus determining the upper 
levels of the parse tree. 

An input string ~ triads long will be 
allocated n identical processors. 
Initially the chunk of every participating 
processor will be one triad long. After 
these processors finish with their chunks 
(either succeeding or failing to find the 
missing coordinate) a "change of levels" 
interrupt occurs: the size of the chunks 
is doubled and the number of active 
processors halved. These latter continue 
the scanning of the I TN from the point 
they were interrupted taking as input what 
was formerly the chunk of their right 
neighbor. Note that all constituents 
already closed in that chunk are 
transparent to the current processor and 

already closed in that chunk are 
transparent to the current processor and 
are not rescanned. The number of active 
processors steadily reduces during 
parsing. The choice of processors that 
are to remain active is made with the help 
of the Pyramid protocol (cf. Uozinskii & 
Nirenburg, 1982). The processors released 
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after each "layout" are returned to the 
system pool of available resources. At 
the top level in the pyramLd only one 
processor wL]l remain. The status of such 
a processor is declared final, and this 
trlggers the wrap-up operations and the 
construction of output. The wrap-up uses 
the original string of words and the 
appropriate string of preterminal symbols 
obtalned at stage 1 together with the 
results of stage 3 to build the parse 
tree. 

ITN can start processing at an 
arbltrary position in the input string, 
not necessarily at the beginning of a 
sentence. Therefore, we introduce an 
additional subnetwork, "initial", used for 
handling control flow among the other 
subnetworks. 

The llst of "closed" constituents 
obtained through ITN-based parsing of 
string (2) can be found in (3), while (4) 
is the output of ITN processing of (3). 

(3) (s 1 [4)(np 1 10)(s 6 10)(np& 6 6) 
(vp 7 10)(pp 8 10)(np 9 10)(vp ll 14) 
(pp 12 14)(np 13 14) 

(4) (s(np(s(np&)(vp(pp(np)))))(vp(pp))) 

3. An ITN Interpreter. 

The interpreter was designed for a 
parallel processing system. This goal 
compelled us to use a program environment 
somewhat different from the usual practice 
of writing ATN interpreters. Our 
interpreter can, however, be used to 
interpret both ITNs and ATNs. 

A new type of arc was introduced: 
the interrupt arc INTR. The interrupt arc 
is a way out of a network state additional 
to the regular POP. It gives the process 
the opportunity to resume from the very 
point where the interrupt had been called, 
but at a later stage (this mechanlsm is 
rather similar to the detach-type commands 
in programming languages which support 
coroutines, such as, for instance, 
SIMULA). Thus, the interpreter must be 
able to suspend processing after trying to 
proceed through any arc in a state and to 
resume processing later in that very 
state, from the arc immediately following 
the interrupt arc. For example, if [NTR 
is the fourth of seven arcs in a state, 
the work resumes from the fifth arc in 
this state. This is implemented with a 
stack in which the transitions in the net 
are recorded. The PUSH and POP arcs are 
also implemented through this stack and 
not through the recursion handling 
mechanisms built into Lisp. 

Since it is never known to any 
processor whether it will be active at the 
next stage, it is necessary that the 
information it obtained be saved in a 
place where another processor will be able 
to find it. Unlike the standard ATN 
parsers (which return the parse tree as 
the value of the parsing function), the 
I%N parser records the results in a 
special working area (see discussion 
below). 

impl~m~nLaLiun 

The ITN interpreter was implemented 
in YLISP, the dialect of LISP developed at 
the Hebrew University of Jerusalem. A 
special scheduler routine for simulating 
parallel processes on a VAX 11/780 was 
written by Jacob Levy. The interpreter 
also uses the pyramid protocol program by 
Shmuel Bahr. 

In what follows we will describe the 
organization of the stack, the working 
area, and the program itself. 

a) The stack. The item to be stacked 
must describe a position in the network. 
An item is pushed onto the stack every 
time a PUSH or an INTR arc is traversed. 
Every time a POP arc is traversed or a 
return from an interrupt occurs one item 
is popped. The stack item consists of: 
I) names and values of the current network 
registers; 2) the remainder of the arcs 
in the state (after the PUSH or the INTR 
traversed); 3) the actions of the PUSH 
arc traversed; 4) the name of the current 
network (i.e. that of the latter's 
initial state); 5) the value of the input 
pointer (for the case of a PUSH failure). 

The working area is used for two 
purposes: to support message passing 
between the processors and to hold the 
findings. The working area is organized 
as an array, R, that holds a doubly linked 
list used to construct the output tree. 
The actions defined on the working area 
are: a) initialization (procedure 
init-input): every cell R[i] in R obtains 
a token from input, while the links 
Rill.[next-index] and 
R[i].[previous-index] obtain the values 
i+l and i-l, respectively; b) CLOSE, the 
tool for delimiting subtrees in the input 
string; 

The array R is used in parallel by a 
number of processors. At every level of 
processing the active processors' chunks 
cover the array R. This arrangement does 
not corrupt the parallel character of the 
process, since no processor actually seeks 
information from the chunks other than its 
own. 
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The main function of the interpreter 
i s  called //,El. It obtains the stack 
containing the history of processing. If 
an interrupt is encountered, the function 
returns the stack with new history, to be 
used for invoking this function again, by 
the pyramid protocol. 

If a call to itn is a return from the 
interrupt status, then a stack item is 
popped (it corresponds to the last state 
entered during the previous run). If the 
function call is the initial one, we start 
to scan the network from the first state 
of the "initial" subnetwork. 

At this stage we already know which 
state of which network fragment we are in. 
Moreover, we even know the path through 
the states and fragments we took in order 
to reach this state and the exact arc in 
this state from which we have to start 
processing. So, we execute the test on 
the current arc. If the test succeeds we 
perform branching on the arc name. 

The INTR arc has the following 
syntax: (INTR<dummy><test><action>*). 

The current state is stacked and the 
procedure is exited returning the stack as 
the value. <dummy> was inserted simply to 
preserve the usual convention of situating 
the test in the third slot in an arc. 

The ABORT arc has the syntax 
(ABORT<message><test>). 

When we encounter an error and it 
becomes clear that the input string is 
illegal, we want to be able to stop 
processing immediately and print a 
diagnostic message. 

The actions on the stack involve the 
movement of an item to and from the stack. 
The stack item is the quantum value that 
can be pushed and popped, that is no part 
of the item is accessed separately from 
the rest of the values in it. The 
functions managing the stack are 
push-on-stack and pop-from-stack. 

The push-on-stack is called whenever 
a PUSH or an INTR arc is traversed. The 
pop-from-stack is called, first, when the 
POP arc is traversed and, second, when the 
process resumes after return from an 
interrupt. 

The closa action is performed when we 
find a boundary for a certain subtree for 
which the opposite boundary is already 
known (in our case the boundary that is 
found is always the right boundary, y). 
QIo~@ performs two tasks: first, it 
inserts the numeric value for y and, 
second, it declares the newly built 
subtree a new token in the input string. 

For example, if the input string had been 

<s 1 ?><np 1 ?><vp 4 ?><np 6 8><pp 9 i0> 
1 2 3 4 5 

after the action (close 3 i0) is performed 
the input for further processing has the 
form: 

<s 1 ?><np i ?><vp 4 I0>. 

The parameters of ~lose are i) the 
number of the triad we want to close and 
2) the value for which the y in this triad 
is to be substituted. The default value 
for the second parameter is the value of 
the y in the triad current at the moment a 
call to ~ios~ is made. 

When the processing is parallel, 
£1os~ is applied multiply at every level, 
which would mean that a higher level 
processor will obtain prefabricated 
subtrees as elementary input tokens. This 
is a major source of the efficiency of 
multiprocessor parsing. 

The ITN in the current implementation 
i s  relatively small. A broader 
implementation will be needed to study the 
properties of this parsing scheme, 
including the estimates for its time 
complexity, and the extendability of the 
grammar. A comparison should also be made 
with other multiprocessor parsing schemes, 
including those that are based not on 
organizing communication among relatively 
"dumb" processors running identical 
software but rather on interaction of 
highly specialized and "intelligent" 
processors -- cf., e.g., the word expert 
parser (Small, 1981). 
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Appendix A. ITN: the main function of 
the interruptable transition network 
interpreter 

(def Itn 
(lambda ( stack ) 

; stack - current processing stack 
(prog (regs curr-state-arcs net-name 

curt-arc $ test arc-name) 
; regs - current registers of the network 
; curr-state-arcs list of arcs not yet 
; processed zn current state 
; net-name - name of network being 
: processed 
; curt-arc - arc in processing 
;(all these are pushed on stack when a 
; 'push' arc occurs) 
; $ - a special register. 
; the functlon first checks if stack is 
; nil; if not then this call is a return 
; from interrupt previous values must be 
; popped from the stack 
[cond (stack (seta ec pn nil) 

;set end-chunk flag to nil 
(pop-from-stack t)) 

(t (set-net 'al] 
loop 
[ cond ((null curr-state-arcs) 

(cond((null (pop nil)) (return nil)] 
(set 'curt-arc (setcdr 'curt-state-arcs)) 
( set 'test (*nth curr-arc 3) ) 
( cond ((eval test) 
;test succeeds - traverse the arc 
( set 'arc-name (car curr-arc)) 
[cond 

((eq arc-name 'push ) ; PUSH 
(evlist (*nth curr-arc 4)) 
(push-on-stack) 
(set-net (cadr curr-arc)) 
(go loop)) 

((eq arc-name 'pop ) ; POP 
(evlist (*nthcdr curr-arc 3)) 
(cond 
((null (pop(eval(cadr curr-arc)))) 
(return $))) 
(go loop)) 

((eq arc-name 'jump ) ; JUMP 
(evlist (*nthcdr curr-arc 3)) 
(set-state (*nth curt-arc 2)) 
(go loop)) 

((eq arc-name 'to) ; TO 
(evlist (*nthcdr curr-arc 3)) 
(set-state (*nth curr-arc 2)) 
(get-input) 
(go loop)) 

((eq arc-name 'cat) ; CAT 

(cond L[eq (currlI~B)) 
(*nth curt-arc 2)) 

(evlist 

(*nthcdr curr-arc 3)))) 
(go loop)) 

((eq arc-name 'abort) ; ABORT 
(tpatom (*nth curr-arc 2)) 
(return nil)) 

((eq arc-name 'intr) ; INTeRrupt 
(push-on-stack) 
(return stack)) 

(t ; error 
(tpatom '"illegal arc") 
(return nil)) 
( go loop ] ; try next arc 

Append ix B. 

A Fragment of an ITN network 
(the "initial" and the sentence subnetworks) 

;Note that "jump" and "to" can be either 
;terminal actions on an arc or separate 
;arcs 
(def-net '(s-place) '( 
(initial 
(pop t (end-of-sent) (close*)) 
(intr nil (end-of-chunk)((to initial))) 
(push S (lab s) 
((setr s-place (inp-pointer))) 
((jump initial/DEL))) 

(push NP (lab np) nil ((to initial))) 
(push VP (lab vp) nil ((to initial))) 
(push PP (lab pp) nil ((to initial))) 
(cat np& t (to initial)) 
(cat del t (to initial))) 

(initial/DEL 
(cat del t (close* (getr s-place)) 

(to initial)) 
(to initial t] 

(def-net '( vp-place no-pp pp-place 
np-place) 

,( 
(s 
(pop t (is-def (Y))(close (inp-pointer))) 
(to S/ t (setr no-pp 0))) 

(S/ 
(intr nil (end-of-chunk)((to S/))) 
(Bush PP (and (lab pp) 

(le (getr no-pp) 2)) 
((and (gt (getr no-pp) 0) 

(close* (getr pp-place))) 
(setr pp-place (inp-pointer)) ) 
((setr no-pp (addl 

(getr no-pp))) 
(jump S/))) 

(abort "more than 2 PPs in S" (lab pp) ) 
(cat np& t (to S/NP&)) 

;(s (pp & pp) ..) 
(cat del (gt (getr no-pp) 0) 

(close* pp-place) 
(setr no-pp l) 
(to S/)) 

(abort "DEL cannot appear at 
beginning of sent" (lab del)) 

(jump S/NP& t] 
(S/NP& 
(intr nil (end-of-chunk)((to S/NP&))) 
(push NP 
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(lab np) 
((and 

(getr pp-place) 
(close* (getr pp-place))) 
(setr np-place (inp-pointer))) 

((to S/NP))) 
;here we can allow PPs after an NP! 

(push VP 
(lab vp) 
((and (getr pp-place) 

(close* (getr pp-place)))) 
((jump S/OUT))) 

(abort =no NP or VP in 
the input sentence" t) 

(jump S/NP t] 
(S/NP 
(abort "not enough VPs in S" 

(end-of-sent)) 
(intr nil (end-of-chunk)((to S/NP))) 
(push VP (lab vp) 

((setr vp-place (inp-pointer)) 
;if there is a del 

(close* (getr np-place))) 
;close the preceding NP 
;and everything in it 

((jump S/VP))) 

;(s .. (np & np) ..) 
(cat del (lab del) 

(close" (getr np-place)) 
(to S/NP&)) 

(abort "too many NPs before a VP" 
(lab np] 

(s/vP 
(cat del (lab del) 

(close* (getr vp-place)) 
(jump S/VP/DEL)) 

(jump S/OUT t] 
(S/VP/DEL 

;standing at 'del' and looking ahead 
(abort "del at EOS?" 

(ge (next-one (inp-pointer)) 
sent-len)) 

; the above is a test for eos 
(intr nil (null (look-ahead i)) 

((lump S/VP/DEL))) 
(to S/NP (eq (look-ahead l) 'vp)) 
(jump S/OUT t] 

;exit: it must be an s 
(S/OUT 
(pop t (end-of-sent) (close*)) 
(pop t t] 
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