LFG System in Prolog

Hideki YasuXawa
The Second Laboratory
.Institute for lew Generation Computer Technology (ICOT)
Tokyo, 108, Japan

ABSTRACT

In order to design and maintain a large scale
grammar, the formal system for representing
syntactic knowledge should be provided. Lexical
Functional Grammar (LFG) [Kaplan,Bresnan 82] is a
powerful formalism for that purpose, In this
paper, the Prolog implementation of LFG system is
described. Prolog provides a good tools for the
inplementation of LFG. LFG can be translated into
DCG [Pereira,larren 80] and functional structures
(f-3tructures) are generated during the parsing
process.

I INTRODUCTION

The fundanental purposes of syntactic
analysis are to check the grammaticality and to
clarify the mapping between semantic structures
and syntactic constituents. DCG provides tools
for fulfilling these purposes. But, due to the
fact that the arbitrary Prolog programs can be
embedded into DCG rules, the grammar becomes too
complicated to understand, debug and maintain.

So, the development of the formal system to
represent syntactic knowledges i3 needed. The
2ain concern is to define the appropriate set of

the descriptive primitives used to represent the
syntactic knowledges. LFG seems to be promising
formalism from current linguistic theories which
satisfies these requirements. LFG is adopted for
our prelinminary version of the formal system and
the Prolog izplementation of LFG is described in
this paper.

SIIPLZ QVERVIZY OF LFG

il

In this section, the sinmple overview of LIG

described (See [Kaplan,3resnan 82] for details

(7]

. LFG 1is an e:xtention of context free grammar
(CFG) and has two=levels of representation, i.e.
c-structures (constituent structures) and
f-structures (functional structures). A
¢c=structure is generated by CFG and represents the
surface word and phrase configurations in a
sentence, and the f-structure is generated by the

Tunctionzl equations associated with the gramnar

rules and represents the configuration of the
surface sranmatical functions. Fiz. 1 3hows the
c=-structure and f-structure for the sentence M"a

358

girl handed the baby a toy" ([Kaplan,Bresnan 32]).

1
Ap===ecreccaree=VD
! i
detew=n

!

np ap
! !
det--=n dete-n

!
!
a girl hands the baby a toy

—————

(a) c-structure

subj spec a
num sg
pred ‘girlt
tense past
pred “hand<(T subj)(1 obJ2)(T obj)>"
obj spec the
num sg
pred * baby"®
obj2 spec a
num sg
pred “toy®

(b) f-structure

Fig. 1 The example c-structure and f-structure

As shown in Fig. 1, Cfestructure i3 a
hierarchical structure constructed by the pairs of
attribute and its value. An attribute represents
grammatical funetion or syntactic feature.
Lexical entries specify a direct mapping between
sepantic arguments and configurations of surface
grammatical functions, and grammar rules specify a

direct mapping between these surface grammatical
functions and particular constituent structure
configurations. To represent these gramwmatical
relations, several devices and schemata are
provided in LFG as shown below.
(a) meta variables
(1) 1 & ¥ (irmediate dominance)
(i1) M &Y (bouncded dominance)
(b) functional notations
a designator (1 subj) indicates the value of
the "subj"™ attribute of the mother node's
f-structure.

(¢) Equational schema
(1) = (functional equation)
(ii) € (set inclusion)

(¢} Constraininy schena
(i) =c¢ (equational constraint)
(i) ¢ (existential constraint)

where d is a designator
(iii) negation of (i) and (i4)

Fi;. 2 shous the example grammar rules and
lexical entries in LFG, which generate the
c-structure and the f-structure in Fig. 1.

1. 8 => np vp
(1 suby)=¥ 1=t

2. Np «> det n

=¥ =¥
3. Vp => v np np

1= (1 obj)=t (1 obj2)=¥
4, det -> [a]

(T spec)=a (1 num)=sg
5. det => [the]

(1 spec)=zthe
6. n=> [girl]

(T num)=sg (7 pred)z‘girl’
7. 0> [baby]

(T num)=sg (T pred)="baby"
8. n=> [toy]

(t num)zsg (1 pred)="toy"’
9. Vv «> (handed]

(T tense)=zpast
{1 pred)="hand<(? subj)(1 obj2)(T obj)>*

Fig. 2 Example grammar rules and lexical entries
of LFG. (from [Kaplan,Bresnan 82])

As shown in TFigz. 2, the prinitives to
rezresent sraznatical relations are ecncoded in
srzunar rules and lexical entries. Each syntactie
node has its own {f=structure and the partial value
of the f-structure is defined by the Zquational
sehena. For exauple, the functional equation "(?7
subj)=¥" associated with the daughter "np" node of
Jramuar rule 1. of fig. 2 specifies that the
value of the “subj™ atiribute of the f-structure
of tie wmother "s™ node is the f-structure of its
daughter "np" node. The value constraints on the
f-structure are specified by the Constraining
scheua, tloreover, the gsranaticality of the
sentence is defined by the three conditions shown
velow.

(1) "niqueness: a particular attribute may have at
.05t one value in a ziven f-structure,

(2) Ccmpleteness: a f-structure nmust contain all
the Jovernable grzauatical functions zoverned by
its predicate.

(2} Colierence: 2ll the governable grammatical
furctions that a f-structure contain wust be
coverned by its predicates.

III ILIPLZIENTATION OF LG PRIIIITIVES

4s incdicated 1in section II, two distinct
scireata are enployed 1in the constructions of
festructures, In the current iuplementation,
f-gtructures are _enerated during the sarsing
process by executinz the functional equations and
set inclusions associated with each syntactic
nods. After the parsing is done, the f-structures
23 checlied whether their value assiznnents are

consistent with the value conciraints on tien.
The Completeness condition on graucaticality is
also checked after the parsing. The LIG

primitives are realized by the Prolog programs znd
embedded into the DCGC rules. The Zguational
schema 1is executed during the parsing process by
the execution of DCG rules. The functional
equation can be seen as the extension of the
unification of Prolog by introducing equality on
f=structures,

A. Representations of Data Types

The prinitive data types constructing
f-structures are symbols, semantic predicates,
subsidiary f-structures, and sets of syubols,

semantic predicates, or f-structures. In current
implenentation, these data types are represeated

as follows :

1) symbols ==> atom or integer

2) semantic predicates =z=> sem(I)
where X is a predicate

3) festructure ==> Id:0bt
where the "Id"™ is an identifier variable
(ID-variable). Each syntactic node has unique
ID=variable which 1s used to identify its
f-structure., The ™Obt"™ is a ordered binzry
tree each leaf contains the pair of an
attribute and its value,

4) set ==> {elementl, element2, ..., eleaentd}

A f-structure can be seen as a partially
defined data structure, because its value is
partially generated by the Equational schena
during the parsing process, An ordered binary
tree, obt for short, is suitable for representing
partially defined data. An obt is a binary tree
whose labels are ordered. A binary tree "Obt" is
represented by an term of the following forum.

Obt = obt(v(Attr,Value),lLess,Greater)

The "v(Attr,Value)® is a leaf node of the
tree. The MAttr” is an attribute name and used as
the label of the leaf node, and the "Value" is its

value, The "Less" and "Greater" are also binary
trees. The "Obt"™ is ordered when the "Less"
("Greater®) 4is also ordered and each label of its
leaf nodes is less (greater) than the 1label of
"0bt",i.e. T"Attr"., If none of the leaf of a tree
is defined, it is represented by a logical
variable. When 4its 1label is defined later, the

logical variable is instantiated. Tue iasertion
of a label and its value into an obt is done by
only one unification, without rewriting tiae tree.
This is the merit in using an ordered binary tree.
For example, the fe-structure for the nour
phrase "a girl®", the value of the "subj"™ in Fig.1
(b), can be graphically represented in Fig. 3.
The "Vit's 4in Fig. 3 are the variables
representing the uninstantiated subtrees,

B. Functional HNotation

ID-variable -=> v(3pec,a)
1
I
v(nus, S3) memeecacans
t
H
+==e===v(per3,3)
1 '
b

ra——
' '

' i
1 Vo v3

- ———— ———

<~ ——
e

Fig. 3 the graphical representaion of an obt

The functional notations are represented by
ID-variables instead of leta variables 1 and ¥,
i.e. ileta variables omust be replaced by the
objeect level variable. For example, the
designator (! subj) associated with the category
S, .is desecribed as (subj, IdS], where IdS is the
ID-variable for S. The meta variables for bounded
doninance are represented by the terms
controllee(Cat) and controller(Cat), where the
"Cat™ is the name of the syntactic category of the
controller or controllee.

C. Predicates for LFG Primitives

The predicates for each LFG primitives are as
follows : (d,d1,d2 are designators, s is a set,
and - is a negation symbol)

1) d1 = d2 <> equate(d1,d2,01d,VNew)

2) des -> include(d,s,0ld,lew)

3) d1 =ze d2 <> constrain(d1,d2,01dC, NewC)

4) d -> axist(d,01dC,lewC)

5) ~(d1 =c d2) -> neg_constrain(d1,d2,01dC,llewC)
6) ~d =-> not_exist(d,01ldC, llewC)

The "0ld" and "Hew" are global value
assigsanents. Taey are used to propagate the
changes of ;lobal value assignments made by the
execution of each predicate. The "01dC"™ and
MiewC" are constraint lists and used to gather all
the constraints in the analysis.

Jesides these predicates, the additional

nredicates are provided for checking a constraints
during the parsing process. They are used to kill
tae parsing process generating inconsistent result
as soon as the inconsistency is found.

The predicate "equate® gets the temporary
values of the desiznators d1 and d2, consulting
the zlobal value assignments. Then "equate”
serforms the wunification of their values. The
unification is sioilar to set-theoretic union
except that it is only defined for sets of
nondistinet attributes. Fig, U shows the example
trace output of the TMequate™ in the course of
analyzings the sentence "a zirl hands the baby a
toy".

In order to Kkeep graznpar rules nighly
understandable, it would be betiter to nide
uanecessary data, such as global value assignments
or coastraint lists., The macro notations similar
to the orizinzl notation of LFG are provided to
users for purpose, The =zaero expander
trznalates the zacro notations into Prolog
srogrzns corresgonding to the LFG prinitives.

v

o
that

360

The value of the desiznator Det is
spec the

The value of the designator ii is

nun sg

per 3

pred seu(girl)
Result of unification is
spec the

num sg

per 3

pred sem(girl)

Fig. 4 Tracing results of equate.

considerable
and tie

This macro expansion results in
improvement of the writability
understandability of the granmar.

The syntax of macro notations are :
(a) d1 = d2 => eq(d1,d2)
(b) d € s «> inel(d,s)
(e) d1 =c d2 <> e(d1,d2)
(d) d => ex(d)
(e) ~(d1 =c d2) -> not_c(d1,d2)
() “d => not_ex(d)

These macro notations for LFG primitives are
placed at the third argument of the each predicate
in DCG rules corresponding to syntactic categories
as shown in Fig. 5 (a), which corresponds to the
grammar rule 1. in Fig. 2.

s(s(Np,Vp),Id_S,[(]) =-=>
np(Np, Id_Np,{eq([sudbj, Id_s],Id_:pl),
vp(Vp, Id_Vp,[eq(Id_S,Id Vp)]).

(a) The DCG rule with macro for LFG

s(s(Np,Vp),Id_S,0Ld, lew,0LdC, llewC) ==>
ap(llp, Id_p, 01d, 01d1,01dC,01dC1),
{equate({subj,Id_S1,Id_ilp,01d1,01d2)},
vp(Vp, Id_Vp,0Lld2,01d3,01dC1, lewC),
{equate(Id_S,Id_Vp,01d3,ilew)}.

(b) The result of macro expansion

Fig. 5 <Zxample DCG rule for LFG analysis

The variables "Id_s", "Id_ilp", and "Id_Vp"
are the ID-variables for each syntactic catagory.
For example, the granmar rule in Fiz. 5 f{a} 1is
translated into the one shown in Fig. 35 (»}.
llacro descriptions are translated intec tae
corresponding predicate in the case of a srammar
rule. In the case of a lexical entry, macro
descriptions are translated into the corresponding
predicate, which is executed further more and tae
f-structure of the lexical entry is zenerated.

D. Issues on the Inplementation

Though festructures are constructed during
the parsing process, e execution of tae
Zquational schema is independent of the parsiaz

strategy. This is necessary to keep the grannar
rules aighly declarative. There are some
advantages of using Prolog in inmplementing LFG.
rirst, the Uniqueness condition on a f-structure

fulfilled by the original unification of

3
S

Prolog. Second, an ordered binary tree is a good
data structure for representing a f=-structure.,

The use of an ordered binary tree reduces the
processing time by 30 percents compared with the
case using a list for representing a f-structure,
And third, the use of ID=-variable also effective,
because the sharing of a f-structure can be done
only by one unification of the corresponding
ID-variables.

Though the computational complexity of
Zquational scaoema is very expensive, the
provides expressive and natural account
lingpuistie evidence. In order to overcome the
inefficiency, the introduction of parallel or
concurrent execution mechanism seems to be a
procising approach. The computation model of LFG
is similar to the constraint model of computation
[Steele 80].

Tae Prolog implementation of LFG by Reyle and
Trey [Reyle,Frey 331 ained at more direct
trznslation of functional equations dinto DCG.
Although their izplementation is more efficient,
it does not treat the Constraining schema, set
inclusions, the coumpound functional eguation such
as (* veoup subj), and the bounded dominance. 4nd
their greauar rules seem to be too complex by
direct encoding of f-structures into then. In
order (o provide an formal system having powerful
description capabilities for representing
syntactic knowledges, the more LFG prinitives are
realized than their implementation and the grammar
rules are pore understandable and can be more
easily modified in my implementation.

the
LFG
for

Iv. TIiZ RESULT OF AN EXPERIIENT

Fiz. & chows the result of analyzing the
sentence "the zZirl persuaded the baby to go". LFG
systew is written in Dec~10 Prolog [Pereira,et.al.
73] and executed on Dec 2060.

As shown in Fig. 6, the functional control
{Zzplan,3Sresnan 32) is rezlized in the f-structure
of vp. The value of the "subj"™ attribute of the
yecoup™ is functionally controlled by the "obj" of
tae f-structure of the "s" noda. The time used
for syntactic aznalysis inclucdes the time consumed
oy parsing process and the tine consumed by
Zquationzli schena.

v. ColcLuUsIOon
Prolog implementation of LFG is
It is the first step of the formal
representing syntactic knowledges. as
it Yeccizes quite obvious thzt Prolog is
inplzanenting LES.
resezrch on the formal systen will be
znalyzins the wider variety of zctuzl
<o extroet the more prizitives
for <ta:z analyses, aac to _ive the
© sclenaca Jor tiose prisitives.

b AN
H
<

o fo

£

.

cr

n oo
o

[+]

361

Tine used in analysis is
972 z=s.(zarsing)
19 ns.{checking constraintz)
41 @s.(for checking completeness)

subj spec the
nuo sg
per 3
pred sen(zirl)
pred sen(persuade([subj,Al,[obj,A),{veonp,A]))
obj spec the
num sg
per 3
pred sen{baby)
tense past
veonp subj spec the
nun sg
per 3
pred sea(baby)
inf -
pred sem(go([subj,Bl))
to -+

Fig. 6 The result of analyzing the sentencs,
"the girl persuaded the baby to zo"

VII. ACTIOULEDGENENTS

The author is thankful to dr. K. Furukawa,
the chief of the second research laboratory of
ICOT Research Center, and the zexbers of tae
natural language processing group in ICOT Research
Center, both for their discussion. The author is
grateful to Dr. K. Fuchi, Director of the ICOT
Research Center, for providing the opportunity to
conduct this research.

VIII. REFERENCES

[Kaplan,Bresnan 82] "Lexical-Functional Gramnar:
A Formal Systen for Grammatical Hepresentation® in
"Hental Representation of Grammatical Relations",
Bresnan eds., MIT Press, 1982

[Reyle,Frey 83] "4 Prolog Iaplementation of
Lexical Functional Grammar®, Proc. of IJCAI-33,

pp. 693-695, 1983
[Pereira,et.al. 78] "Iser's Guide to DI°C
Systen=-10 Prolog”®, Departnent of Artificial

Intelligence, Univ. of Zdinbur-h, 19678
[Pereira,'larren 30] "Definite Clause Grzunmzr for
Language Analysis == A Survey of tae Formalism and
a Comparison with Augnented Transition !letworks®,
Artificial Intelligence, 13, pp. 231-278, 16230

[Steele 80] "The Definition and Implenentation of
a Conputer Prograxcing Lanzusze based on
Constraints™, HIT AI-TR=-505, 1980

