
LFG ~ystsm in Prolog

Hide~ Ya~u'~awa
The Second Laboratory

Institute for New Generation Computer Technology (ICOT)
To~/o, 108, Japan

ABSTRACT

In order to design and maintain a latE? scale
grammar, the formal system for representing
syntactic knowledEe should be provided. Lexlcal
Functional Grammar (LFG) [Kaplan, Bresnan 82] is a
powerful formalism for that purpose, In this
paper, the Prolog implementation of LFG system is
described. Prolog provides a Eood tools for the
implementation of LFG. LFG can be translated into
DCG [Perelra,IIarren 80] and functional structures
(f-structures) are generated durlnK the parsing
process.

I INTRODUCTIOr~

The fundamental purposes of syntactic
analysis are to check the Eramnatlcallty and to
clariDI the mapping between semantic structures
and syntactic constituents. DCG provides tools
for fulfillln 6 these purposes. But, due to the
fact that the arbitrary 9rolog programs can be
embedded into DCG rules, the grammar becomes too
complicated to understand, debug and maintain.
So, the develo~ent of the formal system to
represent syntactic knowled~es is needed. The
main concern is to define the appropriate set of
the descriptive primitives used to represent the
syntactic knowledges. LFG seems to be promising
formalism from current llngulstlc theories which
satisfies these requirements. LFG is adopted for
our prelimlna~y version of the formal system and
the Prolog implementation of LFG is described in
this paper.

ii SII:~.Z OVERVI~ OF LFG

in this section, the simple overview of LF~
is described (See [Eaplan, Bresnan 82] for details
). LFG is an e::tention of context free grammar
(C~'G) and has two-levels of representation, i.e.
c-structures (constituent structures) and
f-~tructures (functional structures). A
c-structure is generated by CFG and represents the
surface uord and phrase configurations in a
~entence, and the f-structure is generated by the
functional equations a=sociated with the o~rammar
rules and represents the conflo~uratlon of the
surface ~ra=matical functions. Fi~. I shows the
c-structure and f-structure for the sentence "a

e~f.rl handed t h e baby a toy" ([K a p l a n , B r e s n a n 8 2]) .

np
I

det---n
I
I
f
a

s
I

.... Vp
I

v np- np

det---n det--n

glrl hands the baby a toy

(a) c-structure

subJ spec a
hum ng
pred "glrl"

tense past
pred "hand<(T subJ)(T obJ2)(T obJ)>"
obJ spec the

num sg
pred "baby"

obJ2 spec a
num sg
pred "toy"

(b) f-structure

Fig. 1 The eY~mgle c-structure and f-structure

As shown in Fig. I, f-structure is a
hierarchical structure constructed by the pairs of
at~rlbute and its value. An attribute represents
~ra=matlcal function or syntactic feature.
Lexlcal entries specify a direct mappinE betueen
semantic arguments and confizuratlons of surface
grammatlcal functions, and ~rammar rules specify a
direct mapping between these surface Cr~umatlcal
functions and particular constituent structure
conflguratlons. To represent these Cra=matlcal
relations, several devices and schemata are
provided in LFG as shown below.

(a) meta variables
(1) T & $ (immediate dominance)
(il) ~ & ~ (bounded dominance)

(b) functional notations
a designator (T subj) indicates
the aSubja attribute of the
f- structure.

(c) Equational schema
l l) (functional equation)
ii) ~ (set inclusion)

t he va!ue of
mother node 's

358

(d) Constrainln~ schema
{i) =c (equational constraint)
(ii) d (existential constraint)

where d is a desIcnator
(ill) negation of (1) and (il)

Fi~. 2 sh~#s the e~anple ~ra~uar rules and
le"~ical entries in LF~, wl~ch senerate the
c-structure and the f-structure in Fig. 1.

1. s-> np vp
(T subJ)=+ T=+

2. np -> det n
1=~ T=~

3. vp-> v np np
T=+ (T obJ)=~ CT obJ2)=+

~. det -> [a]
(T spec):a (T num):s~

5. det-> [the]
(T spec) =the

6. n -> [g i r l]
(T nu~):sg ('~ pred):'glrl"

7. n-> [baby]
(T nun):sg (T pred)='baby"

8. n-> [toy]
(r num)=sg (T pred)='toy"

9. v-> [handed]
(T tense) =past
(T pred)='hand<(~ subJ)(T obJ2)(T obJ)>"

FiE. 2 Example ~rammar rules and lex~oal entr ies
of LFG. (from [Kaplan,Bresnan 82])

As sh~n in Fi~. ~, the prlnltlves to
re~resent ~r3~.atlcal relations are encoded in
~ra~:aar rules and le~cal entries. Each syntaotle
node h~s i~s own f-structure and the partial value
of the f-structure is defined by the Equational
~ch~m. For exauple, the functional equation "(~
sub~)=$" associated with the dau~hter "np" node of
~r~-u~r rule I. of Fi~. 2 specifies that the
value of the "sub~" attribute of the f-structure
of th~ ~other "s" node is the f-structure o/ its
d~u~ter "np" node. ~ne value constraints on the
f-~tructure are specified by the Constraln~r~
schema, i:oreover, the o~rauatlcallty of the
sentence is defined by the three conditions shown
bel~.
(I) ~nlqueness: a particular attribute may have at
:cost one value in a ~iven f-structure.
(2) Completeness: a f-structure must contain all
the ~overnable ~r~uatical functions ~overned by
It~ predicate.
(~) Coherence: all the ~overr~ble ~ran~uatlcal
functions that a f-structure contain must be
~overned by its predicates.

ZZZ Z;~L~L:TATIO:~ OF L,.'G P~--~rTZVE~

As indicated in section iI, two distinct
~chenata ~re enploycd in the constructions of
f-~trucbures. In the current lupleuentatlon,
f-3tructures are ~enerated durln~" the ~arslr~
process by executin~ the functional equations and
~et inclusions associated with each syntactic
node. After ~e .,~urslr~ is done, the f-structures
~.~ checked whether their value assicr~ents are

consistent ~ith the value conutralnts on them.
The Completeness condition on ~r~atlc~l!~y is
also checked after the parsln~. ~e L~'~J
primitives are realized by the Prolo~ procra~s and
embedded into the DCG rules. The Equational
schema is executed durln~ the parsln~ process by
the execution of DCG rules. The functional
equation can be seen as the extension of ~e
unification Of Prolog by introduclr~ equality on
f-structures.

A. Representations of Data Types

The prlnltlve data types constructi.~
f-structures are symbols, semantic predicates,
subsidiary f-structures, and sets of sy=bols,
semantic predicates, or f-structures. In current
implementation, these data types are represented
as follows:

I) symbols ==> atem or Inte~r
2) semantic predicates ==> sea(X)

where X is a predicate
3) f-structure ==> Id:Obt

where the "Id" is an identifier variable
(ID-varlable). Each syntactic node has unique
ID-variable which is used to Identify its
f-structure. The "Obt" is a ordered blrmry
tree each leaf contains the pair of an
attribute and its value.

q) set ==> {elementl, element2, ..., element;!}

A f-structure can be seen as a partially
defined data structure, because its value is
partially Emnarated by the Equational schema
during the paralng process. An ordered binary
tree, obt for short, is suitable for representln~
partially defined data. An obt is a binary tree
whose labels are ordered. A binary tree "Obt" is
represented by an term of the following foru.

Obt = obt(v(Attr,Value),Less,Greater)

The "v(Attr,Value)" is a leaf node of the
tree. The "Attr" is an attribute name and used as
t h e l a b e l o f t he l e a f node, and t h e "Value" i s i t s
v a l u e . The " L es s " and " G r e a t e r " a r e a l s o b i n a r y
t r e e s . The "Obt" i s o r d e r e d when t h e " Les s "
(" G r e a t e r ") i s a l s o o r d e r e d and each l a b e l o f i t s
l e a f nodes i s l e s s (g r e a t e r) t h a n t h e l a b e l o f
"ObtW, i . e . " A t t r " . I f none of t he l e a f o f a t r e e
is defined, it is represented by a logical
variable, l~en its label is defined later, the
logical variable is In~antlated. The insertion
of a label and its value into an obt is done by
only oneunlflcatlon, without rewrltln~ the tree.
This is the merit in uslnE an ordered blna~j tree.

For m Y-mple, the f-structure for the noun
phrase "a glrl", the value of the "subJ" in Fi~.1
(b), can be ~-a~leally represented in Fig. 3.

The "Vi"'s in Fig. 3 are the variables
representing the unlnstantlated subtrees.

B. Functional !~otatlon

359

iD-variable --> v(spec,a)

v(nun, aS) +

I
~-- v(per3,3)

~i~. 3

+....+

Vl v2 v3 v~

the ~raphical representalon of an obt

The functional notations are represented by
!D-variables instead of l~ta variables ~ and $,
i.e. ~Mta variables must be replaced by the
object level variable. For example, the
designator (7 subj) associated with the category
3, is described as [subJ, IdS], where Ida is the
ZD-variable for S. ~e meta variables for bounded
dominance are represented by the terms
controllee(Cat) and controller(Cat), where the
"Cat" is the name of the syntactic category of the
controller or ccntrollee.

C. Predicates for LFG Primitives

The predicates for each LFG primitives are as
follows : (d,dl,d2 are designators, s is a set,
and " is a negation symbol)

I) dl = d2 -> equate(dl,d2,01d,New)
2) d & s -> include(d,s,Old,New)
3) dl =c d2 -> eonstrain(dl,d2,01dC,NewC)
4) d -> exlst(d,OldC,~lewC)
5) "(dl =c d2) -> ne&_constraln(dl,d2,01dC,~ewC)
6) "d -> not_exist(d,OldC,~ewC)

The "Old" and "New, are global value
assIcnnenta. ~%ey are used to propagate the
chan~es of ~iobal value assignments made by the
execution of each predicate. The "OldC" and
"~;ewC" are constraint lists and used to gather all
the constraints in the analysis.

Desides these predicates, the additional
predicates are provided for checking a constraints
durln~ the parsing process. They are used to k~ll
the parsing process zeneratlng inconsistent result
as soon as the inconsistency is found.

~e predicate "equate" gets the temporary
values of the desi~nators dl and d2, consulting
the global value assignments. Then "equate"
performs the unification of their values. The
unification is similar to set-theoretlc union
except that it is only defined for sets of
nondistlnct attributes. Fig. 4 shows the example
trace output of the "equate" in the course of
analyzing the sentence "a girl hands the baby a
~oy".

in order to keep grammar rules highly
understandable, it would be better to hide
unnecessary data, such as c!obal value assicr~ents
or constraint lists. The macro notations similar
to the original notation of LFG are provided to
users for that purpose. The macro expander
translates the macro notations into Prolog
programs corresponding to the LFG primitives.

The value of the designator Det is
spec the

The value of the designator ~! is
hum sg
per 3
pred aeu(glrl)

Result of unification is
spec the
hum sg
p e r 3
pred sem(glrl)

Fig. 4 Tracing results of equate.

This macro expansion results in considerable
improvement of the wrltability and the
understandability of the grammar.

The syntax of macro notations are :

(a) d l = d2 -> e q C d l , d 2)
(b) d e s -> InclCd,s)
Co) d l =c d2 -> o (d l , d 2)
(d) d -> e x (d)
(e) " (dl =c d2) -> not_c(d l ,d2)
(f) "d -> not~ex(d)

These macro notations for LFG primitives are
placed at the third arsument of the each predicate
in DCG rules correspondln~ to syntactic categories
as shown in Fig. 5 (a), which corresponds to the
grammar rule I. in Fig. 2.

s(s(Np, Vp),Id_$,[]) -->
np(Np, I~_Np,[eq([subJ,Id..S],Id..:Ip]),
vp(Vp, Id_Vp,[eq(I~_S, Id..Vp)]).

(a) The DCG rule with macro for LF~

s(s(Np, Vp), I~_$, Old, :;ew, 01dO, I~ewC) -->
np(Np, IdJ1p, Old, Oldl, OldC, OldC1),
{equate([subj, Id_S], Id_~Ip, Oldl, 01d2) },
vp(Vp, Id__Vp, Old2,01d3, OldC1, ~ewC),
{equate(Id_S, Id_Vp, Old3 ,New) }.

(b) The result of macro expansion

Fig. 5 Example DCG rule for LFG analysis

The variables "~d_S", ,IdjIp,, and "Id_Vp"
are the ID-variables for each syntactic category.
For example, the ~rs=mar rule in Fi~. 5 (a) is
translated into the one shown in Fig. 5 (b).
~cro descriptions are translated Into the
corresponding predicate in t he case of a ~r~ar
rule. In the case of a le:cical entry, macro
descriptions are translated into the corresponding
predicate, which is executed further more and the
f-structure of the lexical entry is generated.
D. Issues on the Implementation

Though f-structures are constructed durin~
the parsing process, the execution of t h e
Equational schema is independent of the parsing

360

strate~'. This is necessary to keep the crayuaar
rules highly declarative. There are some
advantages of using Prolog in implementin~ LFG.
First, the Uniqueness condition on a f-structure
is fulfilled by the ori~inal unification of
Prolog. Second, an ordered binary tree is a good
data structure for representing a f-structure.
The use of an ordered binary tree reduces the
processin~ time by 30 percents compared with the
case using a llst for representing a f-structure.
And third, the use of ID-varlable also effective,
because the sharing of a f-structure can be done
oaly by one unification of the corresponding
!D-variables.

Though the computational complexity of the
~quational schema is very expensive, the LF~
provides expressive and natural account for
lin~ulstic evidence. In order to overcome the
inefficiency, the introduction of parallel or
concurrent execution mechanism seems to be a
promising approach. The computation model of LFG
is similar to the constraint model of computation
[Steele 80].

~qe Prolos implementation of LF~ by Reyle and
Fray [Reyle, Frey 83] aimed at more direct
translation of functional equations into DCG.
Although their implementation is more efficient,
it does not treat the Constraining schema, set
inclusions, the compound functional equation such
as (" vco:~p subj), and the bounded dominance. And
their zr~ar rules seem to be too complex by
direct encoding of f-structures into them. In
order to provide an formal system havlr~ powerful
description capabilities for representing
syntactic knowled~es, the more LFG primitives are
realized than their implementation and the ~rammar
rules are more understandable and can be more
easily modified in my implementation.

Time used in analysis is
972 ms. (parsing)
19 ms.(checkin~ constraints)
~I ms. (for checFin~ completeness)

subJ spec the
nun sg
per 3
pred sem(glrl)

pred sam(persuade ([subj, A], [obJ, A], [vcomp, A]))
ob j spec the

num sg
per 3
pred sam(baby)

tense past
vcomp subj spee the

hUm sg
per 3
pred sam(baby)

Inf ÷
pred sam(so ([subJ, B]))
to ÷

Fig. 6 The result of analyzi.~ the sentence,
• the glrl persuaded the baby to So"

VII. AC~I~!LEDGE~NTS

The author is thankful to Dr. K. Furuka~a,
the chief of the second research laboratory of
ICOT Research Center, and the me, bars of the
natural language processing ~roup in ICOT Research
Center, both for their discussion. The author is
grateful to Dr. E. Fuchl, Director of the ICOT
Research Center, for providing the opportunity to
conduct this research.

!'~. ~i'-" RESULT OF A~' EXPER~NT

Fig. 6 shows the result of analyzing the
sentence "the ~irl persuaded the baby to go". LFG
system is written in Dec-10 Prolog [Pereira,et.al.
73] and executed on Dec 2060.

As shorn in Fi~. 6, the functional control
[::aplan, Eresnan 82] is realized in the f-structure
of vp. ~e value of the "subj" attribute of the
"vcoup" is functionally controlled by the "obJ" of
i;he f-structure of the "s" node. The time used
for syntactic analysis includes the time consumed
by parsinj process and t h e time consumed ~j
~quational schema.

V. CO:ICLUSTON

The Prolog implementation of LFG is
described. It is the first step of the formal
nysteu for represent!nz syntactic kno~;ledzes. As
"- result, it beco.&es quite obvious that Prolos is
suitable for i:iD!e:~entln.- LFG.

Further research on the for::al syster~ will be
carried by analyzing the wider variety of actual
utt-rznce~ to e':tract the more pri:~i tlves
~-eces~.r." for the analyses, and to ~ive the
;:ccesaary sc:-e:~aca for tho~e pri_~itives.

VIII. REFEREIICE$

[Kaplan, Bresnan 82] "Lexical-Functlonal Gr~ar:
A Formal System for Grammatical Representation" in
~lental Representation of Grammatical Relations",
Bresnan ads., I ET Press, 1982

[Reyle,Frey 83] "A Prolog T_mplementation of
Lexlcal Functional Grammar", Pros. of L/CAI-83,
PP. 693-695, 1983

[Perelra, at. al. 78] "User' s Guide to D~C
System- I0 Prolog", Department of Artificial
Intelligence, Univ. of Edlnbur-:h, 1978

[Pereira,'.;arren 30] "Definite Clause Gr-~--_r for
Language Analysis -- A Survey of the For~...allsm and
a Comparison with Au~ented Transition -'.'etworks",
Artificial Intelligence, 13, PP. 231-278, I%80

[Steele 80] "The Definition and !mpl-~uentation of
a Computer Pr ogr -~.unin~. Lanzuase base~ on

Constraints", .~ET AI-TR-595, 19~0

361

