
Simplifying Deterministic Parsing

Alan W. C a r t e r z
Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T IW5

Michael J . Frelllng 2

Department of Computer Science
Oregon State University

Corvallis, OR 07331

A B S T R A C T

This paper presents a model for deterministic parsing which
was designed to simplify the task of writing and understanding a
deterministic grammar. While retaining structures and operations
similar to those of Mareus's PARSIFAL parser [Marcus 80] the
grammar language incorporates the following changes. (1) The use
of productions operating in parallel has essentially been eliminated
and instead the productions are organized into sequences. Not only
does this improve the understandability of the grammar, it is felt
that, this organization corresponds more closely to the task of per-
forming the sequence of buffer transformations and attachments
required to parse the most common constituent types. (2) A general
method for interfacing between the parser and a semavtic represen-
tation system is introduced. This interface is independent of the
particular semantic representation used and hides all details of the
semantic processing from the grammar writer. (3) The interface also
provides a general method for dealing with syntactic ambiguities
which arise from the attachment of optional modifiers such as prepo-
sitional phrases. This frees the grammar writer from determining
each point at which such ambiguities can occur.

1. I N T R O D U C T I O N

Marcus has effectively described the advantages of a deter-
ministic parsing model as is embodied in his PARSIFAL system.
Unfortunately a hindrance to the usability of PARSIFAL is the com-
plexity of its grammar. The popularity of Woods' ATN parsing
model [Woods 70] demonstrates that the ease with which a grammar
can be written and understood is one of the greatest factors contri-
buting to its usability. This paper describes DPARSER (Determinis-
tic PARSER) which is an implementation of an alternate determinis-
tic parsing model intended to reduce the complexity of deterministic
grammars.

DPARSER has been implemented and a small grammar writ-
ten. In developing the grammar the focus has been on dealing with
the syntactic ambiguities between the attachment of phrases and
thus it can currently handle only simple noun and verb phrases.

2. C O N S T I T U E N T B U F F E R

DPARSER maintains a constituent buffer which is manipu-
lated by the grammar to derive the constituent structure of the
input sentence. Each node of the buffer contains a constituent con-
sisting of a set of feature-type, feature-value pairs, and a set of sub-
constituents. When parsing begins the constituent buffer contains a
single node with an associated subgrammar for parsing sentence con-
stituents. As the subgrammar of the sentence node examines the
buffer positions to its right, words are brought in from the input sen-
tence to fill the empty positions. When the grammar discovers a
subconstituent phrase to be parsed, it performs a PUSH operation
specifying a subgrammar for parsing the constituent and the posi-
tion of the rightmost word in the constituent phrase. The PUSIt
operation inserts a new node into the buffer immediately preceding
the constituent phrase and begins executing the specified

Isupported in part by an I.W. Killaw Predoctoral Fellowship
2supported in part by the Blum-Kovler Foundation, Chicago, Ill.

subgrammar. This subgrammar may of course perform its own
PUSH operations and the same process will be repeated. Once the
subeonstituent is complete control returns to the sentence node and
the buffer will contain the parsed constituent in place of those which
made up the constituent phrase. The sentence node can now attach
the parsed constituent removing it from the buffer. When all the
subconstituents of the sentence node have been attached the parsing
is complete.

To familiarize the reader with the form of the constituent
buffer we consider the processing of the sentence Jones teaches the
course, as the final NP is about to be parsed. Figure 1 shows the
current state of each buffer node giving its position, state of execu-
tion, essential syntactic features, and the phrase which it dominates
so far. Following the terminology of Marcus we refer to the nodes
which have associated subgrammars as active nodes and the one
currently executing is called the current active node. All buffer posi-
tions are given relative to the current active node whose position is
labeled **" .

The buffer in its current state contains two active nodes: the
original sentence node and a new node which was created to parse
the sentence predicate (i.e. verb phrase and its complements}. The
next modification of the buffer takes place when the subgrammar for
the predicate node examines its first position causing the word the to
be inserted in that position. At this point a bottom-up parsing
mechanism recognizes that this is the beginning of a noun phrase
and a PUSH is performed to parse it; this leaves the buffer in the
state shown in Figure 2 .

The subgrammar for the noun phrase now executes and
attaches the words the and course. It then examines the buffer for
modifiers of the simple NP which causes the final punctuation, ".",
to be inserted into the buffer. Since the period can not be part of a
noun phrase, the subgrammar ends its execution, the PUSH is

Figure 1.

POSITION -1 active
SYNCLASS S SENT-TYPE DECL
(Jooc,)

POSITION * current active
SYNCLASS PHED VTYPE ONE-OBJ
{te~cAe,)

UNSEEN WORDS: the course.

before pushln$ to parse the NP

Figure 2.

POSITION -2 active
SYNCLASS S SENT-TYPE DECL
(Jo.co)

POSITION -1 active
SYNCLASS PRED VTYPE ONE-OBJ
{te*ehe,)

POSITION * current active
SYNCLASS NP
0

POSITION 1 not active
SYNCLASS DET WORD THE EXT DEF
(,he)

UNSEEN WORDS: course.

pxrsin~ the noun phrase

239

completed, and the predicate node again becomes the current active
node. The resulting s ta te of the buffer is shown in Figure 3; the
words the and course have been replaced by the noun phrase consti-
tuent which dominates them.

Aside from PUSH and ATTACH, the following three opera-
tions are commonly used by the grammar to manipulate the consti-
tuent buffer.

LABEL label a const i tuent with a syntact ic feature
MOVE move a const i tuent from one position to another
INSERT insert a word into a specified position

Examples of these actions are presented in the following section.

The differences between the da ta structures maintained by
PARSIFAL and DPARSER are for the most par t conceptual.
PARSIFAL's active nodes are stored in an active node stack which is
separate from the const i tuent buffer. To allow active nodes to parse
consti tuent phrases which are not a t the front of the buffer an offset
into the buffer can be associated with an active node. The control
of which active node is currently executing is affected through
operations which explicitly manipulate the active node stack.

Church's determinist ic parser, YAP [Church 80], uses a consti-
tuent buffer consisting of two halls: an upper buffer and a lower

POSITION -I active
SYNCLASS S SENT-TYPE DECL
No"~')

POSITION * current active
SYNCLASS PRED VTYPE ONE-OBJ
(tcachc,]

POSITION I not active
SYNCLASS NP NVFORM N3PS
{the course)

POSITION 2 not active
SYNCLASS FINAL-PUNCT WORD .
(.)

F i g u r e 3 . af ter the push is completed

buffer. The grammar rules try to at tach nodes from the lower buffer
to those in the upper buffer. While this s t ructure is similar to
PARSIFAL's, it does not draw such a rigid distinction between
active and inactive nodes. There are no separate subgrammars asso-
ciated with the nodes which consti tuents are being at tached to, and
nodes may be moved freely from one buffer to the other allowing
them to be at tached before they are complete. While our consti-
tuent structure does mainta in active nodes with separate subgram-
mars, the control of the parsing process is similar to tha t used by
Church in tha t it is possible for incomplete nodes to be attached.
As will be seen in a lat ter section this is an essential feature of
DPARSER's const i tuent buffer.

3. SEQUENCES
In DPARSER each const i tuent is assigned a sequence. Each

sequence consists of n list of steps which are applied to the buffer in
the order specified by the sequence. A step operator indicates how
many times each step can apply: steps marked with ~+" need never
apply, those marked by " = " must apply once, and those marked by
"*" can apply any number of times. A step may call another
sequence which has the effect of inserting immediately following
tha t step, the steps of the named sequence.

Each step consists of a list of rules where the priority of the
rules are made explicit by their ordering in the list. Each rule is of
the form

[Pl] [P~] " " [P J --> (a l) { a 2) ' " (a)
Each precondition, p,. tests a buffer node for the presence or absence
of specified feature-type, feature-value pairs. When a rule is applied
each action, a c is evaluated in the specified order. In a t tempt ing to
apply a step each of the step 's rules is tested in order, the first one
whose preconditions match the current buffer s tate is performed.

In order to recognize certain consti tuent types bottom-up,
sequences may be associated with a bottom-up precondition. When
the parser encounters a node which matches such a precondition, a
PUSH to the sequence is performed. This mechanism is equivalent

to PARSIFAL's a t tent ion shifting rules and is used primarily for
parsing noun phrases.

In order to clarify the form of a sequence, the example
sequence TRANS-MAJOR-S shown in Figure 4 is discussed in detail .
This sequence is associated with the init ial sentence node of every
input sentence. It performs the operations necessary to reduce the
task of parsing an input sentence to tha t of parsing a normal sen-
tence const i tuent as would occur in a relative clause or a sentence
complement. While this sequence will misanMyze certain sentences
i t does handle a large number through a small set of rules.

STEP 1 handles the words which and who which behave
differently when they appear at the beginning of a sentence. The
first rule determines if which is the first word; if i t is then it labels it
as a determiner. The second rule handles who which is labels as a
NP.

STEP: I

[:
STEP: 2

11

I1
I1

[1

I1
STEP: 3

[l

STEP: 4

[:

+
WORD WHICH] --> (LABEL 1 {SYNCLASS DET} {EXT WH})
WORD WHO] --> {LABEL I {SYNCLASS NP} {EXT WH})

EXT W~l ->
(LABEL * {SENT-TYPE QUEST} {QUEST-TYPE NP})

SYNCLASS NP] --> (LABEL * {SENT-TYPE DECL})
ROOT HAVE]f2 SYNCLASS NP][3 TENSE TENSELESS] -->

(LABEL * {SENT-TYPE IMPER})
VTYPE AUXVERB] -->

(LABEL * {SENT-T'ITE QUEST} {QUEST-TYPE YN})
TENSE TENSELESS] ---> {LABEL * {SENT-TYPE IlVIPER})

+
E.XT WH][2 VTYPE AUXVERB][3 SYNCLASS NP]

[4 NOT PTYPE FINAL l --> {MOVE 1 Wlt-COMP)
+

QUEST.TYPE (YN NP-QUEST)] --> {MOVE 2 l}
STYPE LMPER] --> (INSERT I you)

Fi su re 4. S E Q U E N C E TRANS-MAJOR-S.

STEP 2 examines the init ial const i tuents of the sentence to
determine whether the sentence is imperative, interrogative, declara-
tive, e t c . . Since each sentence must be analyzed as one of these
types the step is modified by the "-----" operator indicat ing tha t one
of the step 's rules must apply. The first rule tests whether the ini-
tial const i tuent of the sentence is a WH type NP; NP's like who,
which professor, what time, etc. fall into this category. If this
precondition succeeds then the sentence is labeled as a question
whose focus is a noun phrase. The second rule tests for a leading
NP and, if i t is found, the sentence is labeled as declarative. Note
tha t this rule will not be tested if the first rule is successful and
the step depends on this feature of step evaluation. The following
rule tries to determine if have, appearing as the first word in a sen-
tence, is a displaced auxiliary or is the main verb in an imperat ive
sentence. If the rule succeeds then the sentence is labeled as
imperative, otherwise the following rule will label any sentence
beginning with an auxiliary as a yes /no type question. The final
rule of the step labels sentences which begin with a tenseless verb as
imperatives.

STEP 3 picks up a const i tuent which has been displaced to the
front of the sentence and places i t in the special WH-COMP regis-
ter. Generally a const i tuent must have been displaced if it is a WH
type Nap followed by an auxiliary followed by another NaP; however,
an exception to this is sentences like Who is the professor? in which
the entire sentence consists of these three constituents.

STEP 4 undoes any interrogative or imperat ive transforma-
tions. The first rule moves a displaced auxiliary around the NP in
sentences like Has Jones taught Lisp ~ and When did Jones teach
Lisp f. Note tha t for the lat ter sentence the previous step would
have picked up when and hence did would be at the front of the
buffer. The second rule of this step inserts you into the buffer in
front of imperative sentences.

Like DPARSER, PARSIFAL's grammar language is composed
of a large set of production rules. The major difference between the
two languages is how the rules are organized. PARSIFAL's rules are

240

divided into packets several of which may be active at once. At any
point in the parsing each of the rules in each active packet may exe-
cute if its precondition is matched. In contrast to this organization,
DPARSER's sequences impose a much stronger control on the order
of execution of the productions.

Aside from the bottom up parsing mechanism the only com-
petition between rules is between those in the individual steps. The
purpose of constraining the order of execution of the productions is
to reflect the fact that the parsing of a particular constituent type is
essentially a sequential process. Most of the rules involved in the
parsing of a constituent can only apply at a particular point in the
parsing process. This is particularly true of transformational rules
and rules which attach constituents. Those rules which can apply at
various points in the parsing may be repeated within the sequence so
that they will only be tested when it is possible for them to apply
and they will not be allowed to apply at points where they should
not. Clearly the necessity to repeat rules at different points in a
sequence can increase the size of the grammar; however, it is felt
that a grammar which clearly specifies the possible set of actions at
each point can be more easily understood and modified.

4. S E M A N T I C P R O C E S S I N G

While semantic processing was outside Marcus's central con-
cern a semantic system was developed which operates in parallel
with PARSIFAL , constructing the semantic representation as its
subconstituents were attached. In order to deal with syntactic
ambiguities the action part of rules can contain semantic tests which
compare the semantic well-formedness of interpretations resulting
from a set of possible attachments. Such comparative tests can
choose between one or more constituents to attach in a particular
syntactic role; for example a rule for attaching a direct object can
use such a test to choose whether to attach a displaced constituent
or the next constituent in the buffer. Comparative tests can also be
used to decide whether to attach an optional modifier (such as a
prepositional phrase) or leave it because it better modifies a higher

level node. Unfortunately this latter class of tests requires each rule
which attaches an optional modifier to determine each node which
it is syntactically possible to attach the node to. Once this set of
syntactically possible nodes is found, semantics must be called to
determine which is the best semantic choice. Such tests complicate
the grammar by destroying the modularity between the subgram-
mars which parse different constituent types.

For the LUNAR system [Woods 73] Woods added an experi-
mental facility to the basic ATN framework which allowed an ATN
to perform such comparative tests without requiring them to be
explicitly coded in the grammar. The Selective Modifier Placement
mechanism was invoked upon completion of an optional modifier
such as a PP. It then collected all the constituents which could
attach the modifier and performed the attachment it determined to
be the best semantic fit. A mechanism similar to this is incor-
porated as a central part of DPARSER and is intended to be used
whenever an attachment is locally optional. Before giving the details
of this mechanism we discuss the semantic interface in general.

In DPARSER a narrow interface is maintained between syntax
and semantics which alleviates the grammar writer of any responsi-
bility for semantic processing. The interface consists of the
ATTACH action which immediately performs the specified attach-
ment and the W-ATTACH test which only succeeds if the attach-
ment can be performed in light of the other constituents which may
want to attach it.

Both ATTACH and IF-ATTACH have the same parameters:
the buffer position of the constituent to be attached and a label
identifying the syntactic relationship between the constituent and its
parent. Such a label is equivalent to a "functional label" of the
BUS system [Bobrow & Webber 80]. When an attachment is per-
formed the semantic system is passed the parameters of the attach-
ment which it then uses to recompute the interpretation of the
current active node.

W-ATTACH tests are included as the final precondition of
those grammar rules which wish to attach a trailing modifier; the
test returns true if it is syntactically possible for the modifier to be
attached and the modifier best semantically modifies that node. If
the test is true then the attachment is performed as a side effect of
the test.

To the grammar writer the IF-ATTACH test has the prescient
capability to foresee which active node should be allowed to attach
the modifier and immediately returns true or false. However, the
implementation requires that when an IF-ATTACH test is per-
formed, the current active node must be suspended and the node
which pushed to it restarted. This node can then execute normally
with the suspended active node appearing like any other node in the
buffer. The node continues executing until it either completes, in
which case the process continues with the next higher active node,
or it encounters the IF-ATTACHed node. If, at this point, the
active node issues another IF-ATTACH then this new request is
recorded with the previous ones and the process continues with the
next higher active node. This sequence of suspensions will end if an
active node becomes blocked because it expects a different consti-
tuent type than the one in the position of the IF-ATTACHed node.
When this occurs the interpretations which would result from each
of the pending IF-ATTACH tests are computed and the attachment
whose interpretation the semantic system considers to be the most
plausible is performed. Alternately, a sequence of suspensions may
be terminated when an active node ATTACHes the node that the
suspended active nodes had tried to IF-ATTACH. Such a situation,
an example of which occurs in the parsing of the sentence Is the
block in the boar, indicates that the pending W-ATTACH requests
are syntactically impossible and so must fail.

The following example shows how the IF-ATTACH mechanism
is used to handle sentences where the attachment of a prepositional
phrase is in question. We consider the parsing of the sentence Jones
teaches the course in Lisp. We start the example immediately fol-
lowing the parsing of the PP (Figure 5). At this point the sequence

POSITION -2 active
SYNCLASS S SENT-TYPE DECL
(Jo..)

POSITION -I active
SYNCLASS PRED VTYPE ONE-OBJ
(te6che,)

POSITION * current active
SYNCLASS NP NVFORM N3PS
(the to.m)

POSITION 1 not active
SYNCLASS PP
(in L~,p)

UNSEEN WORDS: .

Fi[~ure 6. after the completion of 'in Lisp'

for the noun phrase is about to apply the rule shown in Figure 6"
which tries to attach PP modifiers. Since the precondition preceding
the IF-ATTACH test is true the IF-ATTACH test is made. This
causes the current active node to be suspended until it can be
decided whether the attachment can be performed {Figure 7).

Control now returns to the predicate node which attaches the
suspended NP as the object of the verb. As normally occurs after
an attachment, the NP node is removed from the buffer; however,
because the node will eventually be restarted it retains a virtual
buffer position. The sequence for parsing the predicate now applies
the same IF-ATTACH rule (Figure 6) to attach any prepositional
phrase modifiers. Again since the PP is the first constituent in the
buffer the IF-ATTACH test is performed and the predicate node is
suspended returning control to the sentence active node (Figure 8).

When the sentence node restarts it execution, it attaches the
predicate of the sentence leaving the buffer as shown in Figure 9.

[I SYNCLASS PP]~F-ATTACH I PP-MOD] -~

Figure 6. rule for attaehin?~ prepositional phrases

241

Fi su re 7.

POSITION -I active
SYNCLASS S SENT-TYPE DECL
(Jones/

POSITION * current active
SYNCLASS PRED VTYPE ONE-OBJ
(teaches)

POSITION 1 suspended active
SYNCLASS NP NVFORM N3PS
(the co,~rse)

POSITION 2 not active
SYNCLASS PP
(in Lisp)

POSITION 3 not active
SYNCLASS I:'INAL-PUNCT WORD .
f3

af ter the NP has t r ied to a t t ach the PP

Figure 8.

POSITION * active
SYNCLASS S SENT-TYPE DECL
(Jo.ss)

POSITION 1 suspended active
SYNCLASS PRED VTYPE ONE-OBJ
(teaches)

DELETED suspended active
SYNCLASS NP NW'FORM N3PS
(the course)

POSITION 2 not active
SYNCLASS PP
6a Limp)

POSITION 3 not active
SYNCLASS FINAL-PUNCT WORD.
(3

af ter the P R E D node has t r ied to attach the PP

POSITION * current active
SYNCLASS S SENT-TYPE DECL
(Jones teaches the course)

DELETED suspended active
SYNCLASS PRED VTYPE ONE-OBJ
(teaches the course)

DELETED suspended active
SYNCLASS NP NVFORM N3PS
(the course)

POSITION 1 not active
SYNCLASS PP
6n L"p)

POSITION 2 not active
SYNCLASS FINAL-PUNCT WORD.

(3

F i g u r e 0 . af ter the subject and predica te have been a t tached

I laving found a complete sentence the sentence node executes a final
step which expects to find the final punctuation; since there is none
the step fails. This failure triggers the arbitrat ion of the set of
pending IF-ATTACH requests for the a t t achment of the PP. In this
case the semantic system determines that the PP should modify the
NP. The parser then restarts the NP node at the point where it
i~ued the IF-ATTACH and allows it to make the a t tachment (Fig-
ure 10). The NP node then tries again to a t tach a PP but seeing
only the period it realizes tha t its const i tuent is complete and ter-
minates.

Next the monitor restarts the predicate active node but does
not allow it to make the at tachment . This results in the node
eventually terminat ing without performing any more actions. At
this point each of the IF-ATTACH requests have been processed and
the step whose failure caused the processing of the requests is
retried. This t ime it is successful in finding the final punctuation
and at taches it. The parse is now complete {Figure 11).

Aside from prepositional phrase a t tachment there are many
other si tuat ions where optional modifiers can arise. For example in

P O S I T I O N - I active
SYNCLASS S SENT-TYPE DECL
(Jones teaches the course in lisp)

D E L E T E D suspended active
SYNCLASS PRED VTYPE ONE-OBJ
(teaches the course in Lisp)

D E L E T E D * current active
SYNCLASS NP NVFORM N3PS
(the co,Jrse in Lisp)

P O S I T I O N I not active
SYNCLA3S FINAL-PUNCT WORD.
(3

Figure 10. af ter the PP is a t t ached

P O S I T I O N * current active
SYNCLASS S SENT-TYPE DECL
(Jones teaches the course ia Lisp .)

Fisure I t .

the sentence ! saw the boy using the telescope the phrase using the
telescope may modify boy as a relat ive clause where the relative pro-
noun has been deleted, or it may modify saw where the preposition
by has been deleted. Another example is the sentence Is the block in
the boz?. In this sentence the PP in the b0z must , for syntact ic rea-
sons, complement the verb; however, in the local context of parsing
the NP the block, it is possible for the PP to modify it. IF-
ATTACH can easily be extended to a t tach optional pre-modifiers; i t
could then be used to derive the internal s t ructure of such complex
noun phrases a8 the Lisp course programming assignment.

The IF-ATTACH test is proposed as a mechanism to solve this
general c l ~ s of problems wi thout requiring the grammar wri ter to
explicitly list all const i tuents to which an unat tached const i tuent
can be attached. Instead, i t is sufficient to indicate tha t a trail ing
modifier is optional and the monitor does the work in determining
whether the a t t achment should be made.

5. C O N C L U S I O N

A grammar language for determinist ic parsing has been out-
lined which is designed to improve the understandabi l i ty of the
grammar. Instead of allowing a large set of rules to be active at
once, the g rammar language requires tha t rules be organized into
sequences of steps where each step contains only a small number of
rules. Such an organization corresponds to the essentially sequential
nature of language processing and greatly improves the perspicuity
of the grammar. The g rammar is further simplified by means of a
general method of interfacing between syntact ic and semantic pro-
cessing. This interface provides a general mechanism for dealing
with syntact ic ambiguit ies which arise from optional post-modifiers.

R E F E R E N C E S

Bobrow, R.J. and B.L. Webber [19801 "PSI-KLONE: Parsing and Semantic
Interpretation in tile BBN Natural Language Understanding Sys-
tem", in Proceedings of the CSCSI/SCEIO Conference 1080.

Carter, A.W. [1083] "DPARSER -- A Deterministic Parser', Masters
Thesis, Oregon State University.

Church, K.W. [10801 On Memory Limitations in Natural Language Pro.
cenin¢, ~flT/LCS Technical Report #245, Cambridge, Mass.

Marcus, M.P. [1076] "A Design for a Parser for English", in Proceedings of
the ACM Conference 1978.

Marcus, M.P. [1080] A Theory of Syntactic Recognition for Natural
Language, The ~flT Press, Cambridge, Mass.

Rustin R. [1973] Natura~ Language Proc,ssing, Algorithmics Press, New
York.

Woods, W.A. [1970] "Transition Network Grammars for Natural Language
Analysis", in Communications of the ACM 13:591.

Woods, W.A. [19731 "An Experimental Parsing System for Transition Net-
work Grammars', in [Rustin 73 I.

242

