THE DESIGN OF THE KERNEL ARCHITECTURE FOR THE EUROTRA* SOFTWARE

R.L. Johnson**, U.M.I.S.T., P.O. Box 88, Manchester M60 1QD, U.K.
S. Krauwer, Rijksuniversiteit, Trans 14, 3512 JK Utrecht, Holland
M.A. Rosner, ISSCO, University of Geneva, 1211 Geneve 4, Switzerland
G.B. Varile, Commission of the European Communities, P.0. Box 1907, Luxembourg

ABSTRACT

Starting from the assumption that machine
translation (MT) should be based on
theoretically sound grounds, we argue that,
given the state of the art, the only viable
solution for the designer of software tools for
MT, is to provide the linguists building the MT
system with a generator of highly specialized,
problem oriented systems. We propose that such
theory sensitive systems be generated
automatically by supplying a set of definitions
to a kernel software, of which we give an
informal description in the paper. We give a
formal functional definition of its architecture
and briefly explain how a prototype system was
built.

I. TINTRODUCTION

A. Specialized vs generic software tools for MT

Developing the software for a specific task
or class of tasks requires that one knows the
structure of the tasks involved. 1In the case of
Machine Translation (MT) this structure is not a
priori known. Yet it has been envisaged in the
planning of the Eurotra project that the
software development takes place before a
general MT theory is present. This approach has
both advantages and disadvantages. It is an
advantage that the presence of a software
framework will provide a formal language for
expressing the MT theory, either explicitly or
implicitly. On the other hand this places a
heavy responsibility on the shoulders of the
software designers, since they will have to
provide a language without knowing what this
language will have to express.

* We are grateful to the Commission of the
European Communities for continuing support
for the Eurotra Machine Translation project
and for permission to publish this paper;
and also to our colleagues in Eurotra for
many interesting and stimulating
discussions.

x% order not significant

226

There are several ways open to the
software designer. One would be to create a
framework that is sufficiently genersal to
accomodate any theory. This is not very
attractive, not only because this could
trivially be achieved by selecting any
existing programming language, but also
because this would not be of any help for the
people doing the linguistic work. Another,
equally unattractive alternative would be to
produce a very specific and specialized
formalism and offer this to the linguistic
community. Unfortunately there is no way to
decide in a sensible way in which directions
this formalism should be specialized, and
hence it would be a mere accident if the
device would turn out to be adequate. What is
worse, the user of the formalism would spend a
considerable amount of his time trying to
overcome its deficiencies.

In other words, the difficulties that face
the designer of such a software system is that
it is the user of the system, in our case the
linguist, who knows the structure of the
problem domain, but is very often unable to
articulate it until the language for the
transfer of domain knowledge has been
established. Although the provision of such a
language gives the user the ability to express
himself, it normally comes after fundamental
decisions regarding the meaning of the
language have been frozen into the system
architecture. At this point, it is too late
to do anything about it: the architecture will
embody a certain theoretical commitment which
delimits both what can be said to the system,
and how the system can handle what it is
told. This problem is particularly severe
when there is not one user, but several, each
of whom may have a different approach to the
problem that in their own terms is the best
one.

This requires a considerable amount of
flexibility to be built into the system, not
only within a specific instance of the systenm,
but as well across instances, since it is to
be expected that during the construction phase
of an MT system, a wide variety of theories
will be tried (and rejected) as possible
candidates.

In order to best suit these apparently
conflicting requirements we have taken the
following design decisions :

1. on the one hand, the software to be
designed will be oriented towards a class of
abstract systems (see below) rather than one
specific system. This class should be so
restricted that the decisions to be taken during
the linguistic development of the end user
system have direct relevance to the linguistic
problem domain, while powerful enough to
accommodate a variety of linguistic strategies.

2. On the other hand, just specifying a
class of systems would be insufficient, given
our expectation that the highly experimental
nature of the linguistic development phase will
give rise to a vast number of experimental
instantiations of the system, which should not
lead to continuously creating completely new
versions of the system. What is needed is a
coherent set of software tools that enable the
system developers to adapt the system to changes
with a minimal amount of effort, i.e. a system

generator.

Thus, we reject the view that the
architecture should achieve this flexibility by
simply evading theoretical commitment. Instead
it should be capable of displaying a whole range
of highly specialized behaviours, and therefore
be capable of s high degree of internal
reconfiguration according to externally supplied
specifications. In other words we aim at a
system which is theory sensitive.

In our philosophy the reconfiguration of
the system should be achieved by supplying the
new specifications to the system rather than to
a team in charge of redesigning the system
whenever new needs for the user arise.

Therefore the part of the system that is visible
to the linguistic user will be a system
generator, rather than an instance of an MT
system.

B. Computational Paradigm for MT Software

The computational paradigm we have chosen
for the systems to be generated is the one of
expert systems because the design of software
for an MT system of the scope of Eurotra has
much in common with the design of a very large
expert system. In both cases successful
operation relies as much on the ease with which
the specialist knowledge of experts in the
problem domain can be communicated to and used
by the system as on the programming skill of the
software designers and implementers. Typically,
the designers of expert systems accommodate the
need to incorporate large amounts of specialist
knowledge in a flexible way by attempting to
build into the system design a separation
between knowledge of a domain and the way in

227

which that knowledge is applied. The
characteristic architecture of an expert

system is in the form of a Production System(PS)
(cf Davis & King 1977).

A programming scheme is conventionally
pictured as having two aspects ("Algorithms +
Data = Programs") —- (cf Wirth 1976); a
production system has three : a data base, a
set of rules (sometimes called ‘'productions’
~- hence the name), and an interpreter. Input
to the computation is the initial state of the
data base. Rules consist, explicitly or
implicitly, of two parts : a pattern and an
action. Computation proceeds by progressive
modifications to the data base as the
interpreter searches the data base and
attempts to match patterns in rules and apply
the corresponding actions in the event of a
successful match. The process halts either
when the interpreter attempts to apply a
halting action or when no more rules can be
applied.

This kind of organisation is clearly
attractive for knowledge-based computations.
The data base can be set up to model objects
in the problem domain. The rules represent
small, modular items of knowledge, whose
syntax can be adjusted to reflect formalisms
with which expert users are familiar. And the
interpreter embodies a general principle about
the appropriate way to apply the expert
knowledge coded into the rules. Given an
appropriate problem domein, a good expert
system design can meke it appear as if the
statement of expert knowledge is entirely
declarative -- the ideal situation from the
user's point of view.

A major aim in designing Eurotra has been
to adapt the essential declarative spirit of
production systems to the requirements of a
system for large scale machine translation.
The reason for adapting the architecture of
classical expert systems to our special needs
was that the simple production system scheme
is likely to be inadequate for our purposes.

In fact, the success of a classical PS
model in a given domain requires that a number
of assumptions be satisfied, namely:

1. that the knowledge required can be
appropriately expressed in the form of
production rules;

2. that there exists a single, uniform
principle for applying that knowledge;

3. finally, that the principle of application
is compatible with the natural expression of
such knowledge by an expert user.

In machine translation, the domain of
knowledge with which we are primarily
concerned is that of language. With respect to
assumption (1), we think automatically of
rewrite rules as being an obvious way of
expressing linguistic knowledge. Some caution
is necessary, however.

First of all, rewrite rules take on a
number of different forms and interpretations
depending on the linguistic theory with which
they are associated.
are merely criteria of the well-formedness of
strings, and a collection of such rules is
simply equivalent to a recognition device.
Usually, however, they are also understood as
describing pieces of tree structure, although in
some cases -- phrase structure rules in
particular -- no tree structure may be
explicitly mentioned in the rule: a set of such
rules then corresponds to some kind of
transducer rather than a simple accepting
automaton.

The point is that rules which look the same
may mean different things according to what is
implicit in the formalism. When such rules are
used to drive a computation, everything which is
implicit becomes the responsibility of the
interpreter. This has two consequences :

a. if there are different interpretations of
rules according to the task which they are
supposed to perform, then we need different
interpreters to interpret them, which is
contrary to assumption (2); an obvious case is
the same set of phrase structure rules used to
drive a builder of phrase structure trees given
a string as input, and to drive an integrity
checker given a set of possibly well-formed
trees;

b. alternatively, in some cases, information
which is implicit for one type of interpreter
may need to be made explicit for another,
causing violation of assumption (3); an obvious
case here is the fact that a phrase structure
analyser can be written in terms of
transductions on trees for a general rewrite
interpreter, but at considerable cost in clarity
and security.

Secondly, it is not evident that ‘'rules',
in either the pattern-action or the rewrite
sense, are necessarily the most appropriate
representation for all linguistic description.
Examples where other styles of expression may
well be more fitting are in the description of
morphological paradigms for highly inflected
languages or the formulation of judgements of
relative semantic or pragmatic acceptability.

The organisational complexity of Eurotra
also poses problems for software design. Quite
separate strategies for analysis and synthesis

In the simplest case, they

228

will be developed independently by language
groups working in their own countries,
although the results of this decentralised and
distributed development will ultimately have
to be combinable together into one integrated
translation system. What is more, new
languages or sublanguages may be added at any
time, requiring new strategies and modes of
description.

Finally, the Eurotra software is intended
not only as the basis for a single, large MT
system, but as a general purpose facility for
researchers in MT and computational
linguistics in general.

These extra considerations impose
requirements of complexity, modularity,
extensibility and transparency not commonly
expected of today's expert systems.

The conclusion we have drawn from these
and similar observations is that the
inflexible, monolithic nature of a simple PS
is far too rigid to accommodate the variety of
diverse tasks involved in machine
translation. The problem, however, is one of
gsize and complexity, rather than of the basic
spirit of production systems.

The above considerations have led us to
adopt the principle of a controlled production
system, that is a PS enhanced with a control
language (Georgeff 1982). The elements of the
vocabulary of a control language are names of
PSs, and the well-formed strings of the
language define just those sequences of PS
applications which are allowed. The user
supplies a control ‘'grammar', which, in a
concise and perspicuous way, specifies the
class of allowable application sequences. Our
proposal for Eurotra supports an enhanced
context free control language, in which names
of user-defined processes act as non-terminal
symbols. Since the language is context free,
process definitions may refer recursively to
other processes, as well as to grammars, whose
names are the terminal symbols of the control
language.

A grammar specifies a primitive task to be
performed. Like a production system, it
consists of a collection of declarative
statements about the data for the task, plus
details of the interpretation scheme used to
apply the declarative information to the data
base. Again, as in a production system, it is
important that the information in the
declarative part should be homogeneous, and
that there should be a single method of
application for the whole grammar. We depart
somewhat from conventional productions system
philosophy in that our commitment is to
declarative expression rather than to
production rules.

The device of using a control language to
define the organisation of a collection of
grammars provides the user with a powerful tool
for simulating the procedural knowledge inherent
in constructing and testing strategies, without
departing radically from an essentially
declarative framework.

An important feature of our design
methodology is the commitment to interaction
with potential users in order to delineate the
class of tasks which users themselves feel to be
necessary. 1In this way, we aim to avoid the
error which has often been made in the past, of
presenting users with a fixed set of selected
generally on computational grounds, which they,
the users, must adjust to their own requirements
as best they can.

11 OVERVIEW OF THE SYSTEM GENERATOR

The task of our users is to design the
problem oriented machine here called "eurotra™.
Our contribution to this task is to provide them
with a machine; in terms of which they can
express their perception of solutions to the
problem (bearing in mind also that we may need
to accommodate in the future not only
modifications to users's perception of the
solution but also to their perception of the
problem itself).

It is clearly unreasonable to expect users
to express themselves directly in terms of some
computer, especially given the characteristics
of the conventional von Neumann computers which
we can expect to be available in the immediate
future. The normal strategy, which we adopt is
to design a problem-oriented language which then
becomes the users' interface to a special
purpose virtual machine, mediated by a compiler
which transforms solutions expressed in the
problem-oriented language into programs which
can be run directly on the appropriate
computer. Functionally, can express this in the
following way :

We use the term "computer" to refer to a
physical object implemented in hardware,
while "machine" is the object with which a
programmer communicates. The essence of
the task of designing software tools is to
transform a computer into a machine which
corresponds as closely as possible to the
terms of the problem domain of the user for
whom the tools are written.

229

eurotra = compiler : usdsp

where usd stands for "user solution
definition”. We can depict the architecture
graphically as :

usd
COMPILER

source text --) COMPUTER --) target text
Fig. 1
In Symbols :
(compiler : usd) : text -) text

The picture above is clearly still an
oversimplification. In the first place, such
a compiler would be enormously difficult to
write and maintain, given the tremendous
complexity of the possible solution space of
Machine Translation problems which the
compiler is intended to represent. Secondly,
especially in the light of our observation
above that the users' view of the problem
gspace itself may change, it would be very
unwise to invest enormous effort in the
construction of a very complex compiler which
may turn out in the end to be constructed to
accept solutions to the wrong class of
problems.

Following well-established software
engineering practice, we can compensate for
this difficulty by using a compiler generator
to generate appropriate compilers rather than
building a complete new compiler from
scratch. Apart from making the actual process
of compiler construction more rapid, we
observe that use of a compiler generator has
important beneficial side effects. Firstly,
it enables us to concentrate on the central
issue of language design rather than secondary
questions of compiler implementation.
Secondly, if we choose a well-designed
compiler generator, it turns out that the
description of the user language which is
input to the generator may be very close to an
abstract specification of the language, and
hence in an importance sense a description of
the potential of the user machine.

2 For the remainder of this section we shall
use the notation

X:y-> 2z
with the informal meaning of "application of x

to y yields result z", or "execution of x with
input y gives output z".

After the introduction of a compiler
generator the picture of our architecture looks
like this (uld stands for "user language
defintion™; CQ stands for "compiler generator"):

usd
uld --) CG ---) COMPLLER

source text —-) COMPUTER --) target text

Fig. 2

In symbols :

((CG : uld) usd) text -) text

For many software engineering projects this
might be an entirely adequate architecture to
support the design of problem oriented systems.
In our case, however, an architecture of this
kind only offers a partial resolution of the two
important issues already raised above :
incomplete knowledge of the problem domain, and
complexity of the semantics of any possible
solution space. The use of a compiler generator
certainly helps us to separate the problem of
defining a good user language from that of
implementing it. It also gives us the very
important insight that the use of generators as
design tools means that in optimal cases input
to the generator and formal specification of the
machine to be generated may be very close or
even identical. However, we really only are
addressing the question of finding an
appropriate syntax in which users can formulate
solutions in some problem domain; the issue of
defining the semantics underlying that syntax,
of stating formally what a particular solution
means is still open.

We can perhaps make the point more
explicitly by considering the conventional
decomposition of a compiler into a parser and a
code generator (cf, for example, Richards and
Whitby-Strevens 1979). The function of the
parser is to transform a text of a programming
language into a formal object such as a parse
tree which is syntactically uniform and easy to
describe; this object is then transformed by the
code generator into a semantically equivalent
text in the language of the target machine.
Within this approach, it is possible to
contemplate an organisation which, in large
measure, separates the manipulation of the
syntax of a language from computation of its
meaning. Since the syntactic manipulation of
programming languages is by now well understood,
we can take advantage of this separation to
arrive at formal definitions of language syntax
which can be used directly to generate the
syntactic component of a compiler. The process
of automatically computing the meaning of a
program is, unfortunately much more obscure.

230

Our task is rendered doubly difficult by
the fact that there is no obvious relation
between the kind of user program we can expect
to have to treat and the string of von Neumann
instructions which even the most advanced
semantically oriented compiler generator is
likely to be tuned to produce.

We can gain some insight into a way round
this difficulty by considering strategies like
the one described for BCPL (Richards and
Whitby-Strevens, cit). 1In this two-stage
compiler, the input program is first
translated into the language of a
pseudo-machine, known as O-code. The
implementer then has the choice of
implementing an O-code machine directly as an
interpreter or of writing a second stage
compiler which translates an O-code program
into an equivalent program which is runnable
directly on target machine. This technique,
which is relatively well established, is
normally used as a means of coastructing
easily portable compilers, since only the
second-stage intermediate code to target code
translation need be changed, a job which is
rendered much easier by the fact that the
input language to the translation is invariant
over all compilers in the family.

Clearly we cannot adopt this model
directly, since O-code in order to be
optimally portable is designed as the language
of a generic stack-oriented von Neumann
machine, and we have made the point repeatedly
that von Neumann architectures are not the
appropriate point of reference for the
semantics of MT definitions. However, we can
also see the same organisation in a different
light, namely as a device for allowing us to
build a compiler for languages whose semantics
are not necessarily fully determined, or at
least subject to change and redefinition at
short notice. In other words, we want to be
able to construct compilers which can compile
code for a class of machines, so as to
concentrate attention on finding the most
appropriate member of the class for the task
in hand.

We now have a system architecture in which
user solutions are translated into a
syntactically simple but semantically rather
empty intermediate language rather than the
native code of & real computer. We want to be
able easily to change the behaviour of the
associated virtual machine, preferably by
adding or changing external definitions of its
functions. We choose to represent this
machine as an interpreter for a functional
language; there are many reasons for this
choice, in particular we observe here that
such machines are characterised by a very
simple evaluator which can even accept
external redefinitions of itself and apply

them dynamically, if necessary; they typically
have a very simple syntax - normally composed

only of atoms and tuples - which is simple for a

compiler to generate; and the function
definitions have, in programming terms, a very
tractable semantics which we can exploit in
identifying an instance of an experimental
implementation with a formal system definition.

With the addition of the interpreter
simulating the abstract machine, our informal
picture now looks like this :

usd

uld -~} CG --) COMPILER

source text —-) INTERPRETER -—) target text

COMPUTER
Fig. 3
or in symbols :
(INTERPRETER : ((CG:uld) : usd)) : text —% text

We now turn to the kind of definitions
which we shall want to introduce into this
system. We decompose the function of the
machine notionally into control functions and
date manipulation functions (this decomposition
is important because of the great importance of
pattern-directed computations in MT).
Informally, in deference to the internal
organisation of more conventional machines, we
sometimes refer to the functionality of these
two parts with the terms CPU and MMU,
respectively. What we want to do is to make the
“empty" kernel machine into a complete and
effective computing device by the addition of a
set of definitions which :

- allow the kernel interpreter to distinguish
between control operations and data
operations in an input language construct;

- define the complete set of control
operations;

- define the domain of legal data
configurations and operations on them.

With these additions, the complete
architecture has the form :

231

usd

LR(k) : uld -) €G --) COMPILER
inner prog.

R

FP : controldef -~} « CPU !

L}

: 1

L

REL : datadef —-); wMu !

! !

languages : KERNEL:

o o o -

COMPUTER

Fig. &4

or symbolically, writing "addef" for the name
of the function which adds definitions:

(((addef :
¢ ((CG :

controldef,datadef) : KERNEL)
uld) : usd)) : text -9 text

Capitalized symbols denote components
which agre part of the system generator, while
lower case symbols denote definitions to
generate a system instance.

An alternative way of describing Fig 4. is
to see the system generator as consisting of a
set of generators (languages and programs).
The languages of the generator are :

a. an LR(k) language for defining the user
language syntax (cf Knuth 1965);

b. a functional programming (FP) language for
defining the semantics of the user supplied
control (for FP cf Backus 1978);

c¢c. a relational language (REL) for defining
the semantics of user defined pattern
descriptions;

d. the definition of the inner program
syntax (see APPENDIX).

The programme of the system, which,
supplied with the appropriate definitions,
will generate system instances, are :

e. a compiler-compiler defined functionally
by a. and d. in such a way that for each token
of user language syntax definition and each
token of user program expressed in this syntax
it will generate a unique token of inner
program.

f. a CPU, which is essentially an FP system,
to be complemented with the definitions of
point b. The CPU is responsible for
interpreting the scheduling (control) parts of

the user program. It can pass control to the
MMU at defined points.

g. a MMU to be complemented with the
definitions of point ¢. The MMU is responsible
for manipulating the data upon request of the
CPU.

Given the above scheme, a token of a
problem oriented system for processing user
programs is obtained by supplying the definition
of :

- the user language syntax;
- the semantics of the control descriptions;

- the semantics of the data pattern
descriptions;

- the expansion of certain nonterminal
symbols of the inner program syntax.

Note that a primitive (rule-)execution
scheme (i.e. a grammar), is obtained recursively
in the same way, modulo the modification
necessary given the different meaning of the
control definition.

I11. FORMAL DEFINITION OF THE
SYSTEM GENERATOR'S ARCHITECTURE

This section presupposes some knowledge of
FP and FFP (cf. Backus cit, Williams 1982).
Readers unfamiliar with these formalisms may
skip this section.

We now give a formal definition of the
generator's architecture by functionally
defining a monitor M for the machine depicted in
Fig. 4. We will do so by defining M as an FFP
functional (i.e. higher order function) (cf.
Backus cit, Williams cit).

An FP system has a set of functions which
is fully determined by a set of primitive
functions, a set of functional forms, and a set
of definitions.

The main difference between FP systems and
FFP systems is that in the latter objects (e.g.
sequences) are used to represent functions,
which has as a consequence that in FFP one can
create new functionals. The monitor M is just
the definition of one such functional.

Sequences in FFP represent functionals in
the following way : there is a representation
function p (which belongs to the representation
system of FFP, not to FFP itself) which
associates objects and the functions they
represent.

The association between objects and
functions is given by the following rule

232

(metacomposition) :
(p <x1,...,x0>) : §y =
(p x1) :{(x1,...,x0) ,¥)

The formal definition of the overall
architecture of the system is obtained by the
following FFP definition of its monitor M :

p <M, uld, cd, dd> : usd = (pM):{pM, uld, cd,
dd), usd) with :

M = apply-[capply,1-[applyl-
[apply2- [yapply,2-11, 2],
apply-[¥(3-1), *cpl ,
apply-[¢(4-1),'DD]]]

where :

M is the name of the system monitor

uld is the user language definition in BNF

cd is the control definition (controldef in
Fig 4.)

dd is the data definition (datadef in Fig 4.)

usd is the user solution definition

The meaning of the definition is as
follows :

M is defined to be the application of
capply to the internal programe ip

apply : <capply, ip>

capply is the semantic definition of the
machine's CPU (see below).

ip is obtained in the following way :
applyl : <apply2 : <yapply,uld>, usd>

Where apply2 : Cyapply, uld> yields the
COMPILER which is then applied to the usd.

For a definition of applyl, apply2, yapply
see the section on the implementation.

apply- [y(3-1), "cp]
and

apply: [J(4-1), 'DD]
just add definitions to the control, resp.
data definition stores of the CPU and the MMU
respectively.

¢ is the 'store' functional of FFP.

A. Semantic Definition_of the CPU

As mentioned earlier, the bare CPU
consists essentially of the semantic
definition of an FP-type application
mechanism, the set of primitive functions and
functionals being the ones defined in standard
FP.

The application mechanism of the CPU is
called capply, and its definition is as follows

ulx)= x ¢ A 9 x;

x = {x1,...,xn)>{Ux1, ..., uxn > ;

x = (y:z2) >
(yeA & (#:DD) = T > mapply:{y,z) ;
yeA & (4:CD) = # D H((py) (uz));
yeA & (4:CD) = w >u(w:z);
¥ =<yl,...,yn)> plyl:<y,z>);

uluy:z));

being the FFP semantic function defining the
meaning of objects and expressions (which
belongs to the descriptive system of FFP, not to
FFP itself, (cf Backus cit)).

The functionality of M is

U : Expression -> Object

that is, p associates to each FFP expression an
object which is its meaning. It is defined in
the following way :

x is an object » ux = x
e = {el,...,en> is an expression >
ue= <he1.....uen>

if x,y are objects > p(x:y) = p(px:y)

where px is the function represented by the
object x.

A is
DD is
CDh is
4 is
mapply

the
the

FFP functional 'fetch’

definition store of the MMU

the definition store of the CPU

the result of an unsuccesful search
is the apply mechanism of the MMU

The execution of a primitive (i.e. a
grammar) represents a recursive call to the
monitor M, modulo the different function of the
control interpreter (the CPU).

For the rest, as far as the user language
definition is concerned things remain unchenged
(remember that if appropriate,the language for
expressing knowledge inside a grammar as well as
the data structure can be redefined for
different primitives).

The recursive call of M is caused by capply
whose definition has to be augmented by
inserting after line 6 of the definition given
above the following condition:

y = applyprim - {M,uld,cd,dd) :x
where x is the specification of the primitive
(e.g. the rule set).

233

IV. EXPERIMENTAL IMPLEMENTATION

An experimental implementation of the
architecture described above has to accomodate
two distinct aims. First, it must reflect the
proposed functionality, which is to say,
roughly, that the parts out of which it is
made correspond in content, in function and
interrelationship to those laid down in the
design. Second, it must, when supplied with a
set of definitions, generate a system instance
that is both correct, and sufficiently robust
to be released into the user community to
gserve as an experimental tool.

The entire implementation runs under, and
is partly defined in terms of the Unix*
operating system. The main reason for this
choice is that from the start, Unix has been
conceived as a functional architecture. What
the user sees is externally defined, being the
result of applying the Unix kernel to & shell
program. Furthermore, the standard shell,or
csh,itself provides us with a language which
can both describe and construct a complex
system, essentially by having the vocabulary
and the constructs to express the
decomposition of the whole into more primitive
parts. We shall see gome examples of this
below.

Another reason for the choice of Unix is
the availability of suitable, ready-made
software that has turned out to be sufficient,
in large measure, to construct a respectable
first approximation to the system. Finally,
the decentralised nature of our project
demands that experimental implementations
should be maximally distributable over a
potentially large number of different hardware
configurations. At present, Unix is the only
practical choice.

A. System Components

The system consists of 4 main parts, these
being : ‘

a. A user language compiler generator.
b. A control definition generator.

A kernel CPU.

A data definition generator.

These modules, together with a user
language description, a control desecription,
and a data description, are sufficient to
specify an instance of the system.

1. User Language Compiler Generator

YACC
After reviewing a number of
compiler-compilers, it was decided to use YACC

* UNIX is a trademark of the Bell Laboratories

(Johnson 1975). Quite apart from its
availability under Unix, YACC accepts an LALR(1l)
grammar, a development of LR(k)

grammars (Knuth cit; Aho & Johnson (1974).
parsers (Look Ahead LR) give considerably
smaller parsing tables than canonical LR
tables. The reader is referred to Aho & Ullman
(1977) which gives details of how to derive LALR
parsing tables from LR ones.

LALR

LEX

LEX (Lesk 1975) generates lexical analysers,
and is designed to be used in conjunction with
YACC. LEX accepts a specification of lexical
rules in the form of regular expressions.
Arbitrary actions may be performed when certain
strings are recognised, although in our case,
the value of the token recognised is passed, and
an entry in the symbol table created.

2. Control Generator

A user programe presupposes, and an inner
program contains a number of control constructs
for organising the scheduling of processes, and
the performance of complex database
manipulations. The meaning that these
constructs shall have is determined by the
definitions present in the control store of the
kernel.

The language in which we have chosen to
define such constructs is FP (Backus cit). Tt
follows that the generator must provide
compilations of these defintions in the language
of the kernel machine. The implementation of
the control generator is an adaptation of
Baden's (1982) FP interpreter. This is a
stand-alone program that essentially translates
FP definitions into kernel language ones.

3. Kernel CPU

We are currently using the Unix Lisp
interpreter (Foderaro & Sklower 1982) to stand
in for FFP, although an efficient interpreter
for the latter is under development. Notice
that an FFP (or Lisp) system is necessary to
implement the applicative schema described in
section III, since these systems have the power
to describe their own evaluation mechanisms; FP
itself does not.

4. Data Definition Generator

Unfortunately, we know of no language as
suitable for the description of data as FP for
the description of control. The reason is that
at this moment, we are insufficiently confident
of the basic character of data in this domain to
make any definitive claims about the nature of
an ideal data description language.

We have therefore chosen to express data
definitions in the precise, but over general

234

terms of first order logic, which are then
embedded with very little syntactic
transformation into the database of a standard
Prolog implementation (Pereira & Byrd 1982).
The augmented interpreter then constitutes the
MMU referred to above. The data definition
for the current experiment presents the user
with a database consisting of an ordered
collection of trees, over which he may define
arbitrary transductions.

The CPU and MMU run in psrallel, and
communicate with each other through a pair of
Unix pipelines using a defined protocol that
minimises the quantity of information passed.
A small bootstrap program initialises the MMU
and sets up the pipelines.

B. Congtructing the System

The decomposition of a system instance
into parts can be largely described within the
shell language. Figure 5. below summarises
the organisation using the convention that a
module preceded by a colon is constructed by
executing the shell commands on the next
line. The runnable version of figure 4. (that
contains rather more odd symbols) conforms to
the input requirements of the Unix 'make’
progranm.

targettext :
((cpu { bootstratp) { eurotra){ sourcetext
> targettext /*capply*/
eurotra

compiler (usd »eurotra /*apply 1*x/
COMPILER :

yace (uld | cc) compiler /*apply 2%/
controldef :

fpcomp { cdy controldef

MMU :
echo 'save(mmu)' | prolog dd

CPU :
echop '(dumplisp cpu)’ | lisp controldef

Fig. 5

v. CONCLUSION

We have argued for the need of
theory-specific software for computational
linguisties.

In cases where, as in MT, such a theory is
not available from the beginning of a project,
but rather, is expected as a result of it, we
have argued for the need of a problem-oriented
system generator.

We have proposed a solution by which,
starting from the notion of a compiler generator
driven by an external definition, one arrives at
a way of building runnable, problem-oriented
systems which are almost entirely externally
defined. 1In our view, this approach has the
advantage, for a domain where the class of
problems to be solved is underdetermined, that
the semantics of the underlying machine can be
redefined rapidly in a clean and elegant way.

By a careful choice of definition languages, we
can use the definitions simultaneously as input
to a generator for experimental prototype
implementations and as the central part of a
formal specification of a particular
application-oriented machine.

VI REFERENCES

Aho, A.V & Johnson, S.C. (1974) - LR
parsing. Computing Surveys 6 : 2

Aho, A.V. & Ullmen, J.D. (1977) -
Principles of Compiler Design. Addison-Wesley.

Backus, J (1978) - Can programming be
liberated from the von Neumann style? Comm. ACM
21 : 8.

Baden, S. (1982) - Berkeley FP User's
Manual, rev 4.1. Department of Computer
Science, University of California, Berkeley.

Davis, R. & King, J.J. (1977) - An overview
of production systems, in : Elcock, E.W. &
Michie, D. (eds) - Machine Intelligence B:
Machine representation of knowledge, Ellis
Horwood.

Foderaro J.K. & Skowler K. (1982). The
Franz Lisp Manual. University of California.

Georgeff, M.P. (1982) - Procedural control
in production systems. Artificial Intelligence
18 : 2.

Johnson, S.C. (1975) -~ Yacc : Yet another
Compiler-Compiler, Computing Science Technical
Report No. 32, Bell Laboratories, NJ

Knuth, D.E. (1965) - On the translation of
languages from left to right. Information and
Control 8:6.

Lesk, M.E. (1975) - Lex : a Lexical
Analyzer Generator, Computing Science Technical
Report No. 39, Bell Laboratories, NJ.

Pereira & Byrd (1982) - C-Prolog, Ed CAAD,
Department of Architecture, University of
Edinburgh.

Richards, M & Whitby-Strevens, C. (1979) -

BCPL: The language and its compiler, Cambridge
University Press.

235

Williams, (1982) - Notes on the FP
functional style of programming, in:
Darlington, J., Henderson, P. and Turner, D.A.
(eds), Functional programming and its
applications, CUP.

Wirth, N. (1976) - Algorithms + Data
Structures = Programs, Prentice Hall,
Englewood Cliffs, New Jersey.

VII. APPENDIX

Below we give a BNF definition of the
inner program syntax. Capitalized symbols
denote non-terminal symbols, lower case
symbols denote terminals.

PROG 11= (QUINT*S
QUINT ::= { NAME EXPECTN FOCUS BODY
GOALL >
NAME ::= IDENTIFIER
IDENTIFIER ::= *X
EXPECTN ti= PAT | nil
FOCUS 1= VARPAIR
VARPAIR 1:= (ARG ARG)>
VAR 1= VARID
VARID = A%
BODY := ¢nonprim CEXP)(prim PRIMSF)
CEXP := COMPLEX | SIMPLEX
COMPLEX = (CONTRLTYP CEXP*>
SIMPLEX = NAME
CONTRLTYP = serial | parallel |iterate
PRIMSP ::= {RULE*>
RULE 1:= {PAT_ PAT)
GOALL t1= (PATY
PAT ::= {SYMBTAB ASSERT >
SYMBTAB ::= ARGL
ARGL 1:= {ARG*>
ASSERT t:= (& ASSRT ASSRT)|
(VASSRT ASSRT |(~ASSRT
ASSRT = SIMPLASSRT | ASSERT
SIMPLASSRT ::= (RELNAM TERML
RELNAM ii= 2] =] #]
IDENTIFIER |
prec | dom | prefix|
suffix| infix
TERML :1= (TERM* >
TERM ::= ARG |{FUNC TERML)
ARG ::= {TYP VARD |LITERAL null
LITERAL 112 A%
FUNC ::= IDENTIFIER | length
TYP ti= node | tree | chain | bound

For each instance of the system, there is
an instance of the inner program syntax which
differs from the bare inner program syntax in
that certain symbols are expanded differently
depending on other definitions supplied to the
system.

*x trivial expansions omitted here.:= pPAT®

