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Abs t r ac t  
This paper proposes a method for organizing linguistic 

knowledge in both systematic and flexible fashion. We 
introduce a purely applicative language (PAL) as an 
intermediate representation and an object-oriented 
computation mechanism for its interpretation. PAL enables 
the establishment of a principled and well-constrained method 
of interaction among lexicon-oriented linguistic modules. The 
object-oriented computation mechanism provides a flexible 
means of abstracting modules and sharing common knowledge. 

1. In t roduc t ion  
The goal of this paper is to elaborate a domain-independent 

way of organizing linguistic knowledge, as a step forwards a 
cognitive processor consisting of two components: a linguistic 
component and a memory component. 

In this paper we assume the existence of the latter 
component meeting the requirements described in [Schank 82]. 
Thus the memory component attempts to understand the 
input in terms of its empirical knowledge, predict what 
happens next, and reorganize its knowledge based on new 
observations. Additionally, we assume that  the memory 
component can judge whether a given observation is plausible 
or not, by consulting its empirical knowledge. 

The role of the linguistic component, on the other hand, is 
to supply "stimulus" to the memory component. More 
specifically, the linguistic component attempts to determine 
the propositional content, to supply missing constituents for 
elliptical expressions, to resolve references, to identify the 
focus, to infer the intention of the speaker, etc. In short, the 
role of the [iguistic component is to "translate" the input into 
an internal representation. 

For example, the output of the linguistic component for an 
input: 

When did you go to New York? 

is something like the following2: 

There is an event e specified by a set of predicates: 
isa(e)=going A past(e) A agent(e)=the_hearer A 
destination(e)=New_York. The speaker is asking the 
hearer for the time when an event e took place. The hearer 
presupposes that the event e actually took place at some 
time in the past. 

1Currently visiting Department of Computer Science, Yale University, 
New Haven, Connecticut 06520, USA. 

If the presupposition contradicts what the memory component 
knows, then the memory component will recognize the input as 
a loaded question [Kaplan 82]. As a result, the memory 
component may change its content or execute a plan to 
informing the user tha t  the input is inconsistent with what it 
knows. 

The primary concern of this paper is with the linguistic 
component. The approach we take in this paper is to combine 

the notion of eompositionality a and an object-oriented 
computational mechanism to explore a principled and flexible 
way of organizing linguistic knowledge. 

2 .  I n t e r m e d i a t e  R e p r e s e n t a t i o n  a n d  
C o m p u t a t i o n a l  D e v i c e  f o r  
I n t e r p r e t a t i o n  

2 .1  P A L  ( P u r e l y  Applicative Language) 
Effective use of intermediate representations is useful. We 

propose the use of a language which we call PAL (Purely 
Applicative Language). 

In PAL, new composite expressions are constructed only 
with a binary form of function application. Thus, if z and I/ 
are well-formed formulas of PAL, so is a form z(y). 
Expressions of PAL are related to expressions of natural 
language as follows: 

Generally, when a phrase consists of its immediate 
descendants, say z and y, a PAL expression for the phrase is 
one of the following forms: 

< z > (  < V > )  or < p > (  < z > )  

where ~ a >  stands for a PAL expression for a phrase ~*. 
Which expression is the case depends on which phrase modifies 
which. If a phrase z modifies V then the PAL expression for z 
takes the functor position, i.e., the form is ~ z ~ ( ~ y ~ ) .  

Simple examples are: 

big apple =* big~apple) ; adjectives modify .anne 
very big ~ very(big) ; adverbs modify adjectives 
very big apple ~ (very(big)Xapple) ; reeuesive composition 

2As illustrated in this example, we assume a predicate notation a~ an 
output of the linguistic component. But this choice is only for descriptive 
purposes and is not significant. 

awe prefer the term *functionality" to "eompositionality", reflecting a 
procedural view rather than a purely mathematicaJ view. 
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How about other cases? In principle, this work is based on 
Montague's  observations [Montague 74]. Thus we take the 
position tha t  noun phrases modify (are functions of, to be 
more precise) verb phrases. But unlike Montague grammar  we 
do not  use iambda expressions to bind case elements. Instead 
we use special functors standing for case markers. For 
example, 

he runs ~ (*subject(he)Xruns) 
he eats it ~ (*subject(he)X(*object(it)Xeats)) 

Another  example, involving a determiner,  is illustrated below: 

a big apple ~ a(big(apple)) ; determiners modlf~l nouns 

Sometimes we assume "null" words or items corresponding 
to morphemes, such as, role indicators, nominalizer, null NP, 
etc. 

apple which he eats 
~ (which 

((*subject(he)) 
((*object(*null)) 

(eats)))) 
(apple) 

; restrictive relative clauses modif~ nouns, 

; rdativizers modify sentences to make adjectives 

In the discussion above, the notion of modi fy  is crucial. 
What  do we mean when we say z modif ies  y? In the case of 
Montague grammar,  this question is answered based on a 
predetermined set theoretical model. For example, a noun is 
interpreted as a set of entities; the noun "penguin",  for 
instance, is interpreted as a set of all penguins. An adjective, 
on the other  hand, is interpreted as a function from sets of 
entities to sets of entities; an adjective "small" is interpreted 
as a selector function which takes such a set of entities 
( interpretat ion of each noun) and picks up from it a set of 
"small" entities. Note tha t  this is a simplified discussion; 
intension is neglected. Note also tha t  different conception may 
lead to a different definition of the relation modifp, which will 
in turn lead to intermediate representations with different 
function-argument relationships. 

After all, the choice of semantic representation is relative to 
the underlying model and how it is interpreted. A good choice 
of a semantic representation - interpretation pair leads to a 
less complicated system and makes it easier to realize. 

The next section discusses a computational  device for 
interpreting PAL expressions. 

2 . 2  O b j e c t - O r i e n t e d  D o m a i n  
The notion of object-orientedness is widely used in computer  

science. We employ the notion in LOOPS [Bobrow 81]. The 
general idea is as follows: 

We have a number of objects. Objects can be viewed as 
both data and procedures. They are data in the sense that 
they have a place (called a local variable) to store 
information. At the same time, they are procedures in that 
they can manipulate data. An object can only update local 
variables belonging to itself. When data belongs to another 
object, a message must be sent to request the update. A 
message consista of a label and its value. In order to send a 
message, the agent has to know the name of the receiver. 

There is no other means for manipulating data. Objects 
can be classified into classes and instances. A class defines 
a procedure [called a method) for handling incoming 
messages of its instances. A class inherits methods of its 
superclasses. 

Z. Interpretat ion  o f  P A L  Express ions  in 
Object-Oriented Domain 

A class is defined for each constant  of PAL. A class object  
for a lexical item contains linguistic knowledge in a procedural 
form. In other  words, a class contains information as to how a 
corresponding lexical item is mapped into memory structures. 

A PAL expression is interpreted by evaluating the form 
which results from replacing each constant  of a given PAL 
expression by an instance of an object whose class name is the 
same as the label of the constant.  The evaluation is done by 
repeating the following cycle: 

• an object  in argument  position sends to an object 
in functor  position a message whose label is 
"argument  ~ and whose value is the object  itself. 

• a corresponding method is invoked and an object is 
returned as a result of application; usually one 
object  causes another  object  to modify its content  
and the result is a modified version of either a 
functor  or an argument.  

Note tha t  objects can interact only in a constrained way. This 
is a stronger claim than tha t  allowing arbitrary 
communication.  The more principled and constrained way 
modules of the linguistic component  interact, the less 
complicated will be the system and therefore the better  
perspective we can obtain for writing a large grammar.  

a . 1  A S i m p l e  Example 
Let's s tar t  by seeing how our simple example for a sentence 

"he runs" is interpreted in our framework. A PAL expression 
for this sentence is: 

(*subject(he)Xruus) 

Class definitions for related objects are shown in figure 3.1. 

The interpretat ion process goes as follows: 

• lns tant ia t ing '*subject ' :  let 's call the new instance 
*subject 0. 

• lns tant ia t ing 'he': a referent is looked for from the 
memory.  The referent (let 's call this i0) is set to 
the  local variable den, which stands for 
'denotat ion ' .  Let the new instance be he 0. 

• Evaluating '*subject0(he0)': a message whose label 
is 'case' and whose value is 'subject '  is sent to the 
object  he 0. As a result, he0's variable case has a 
value 'subject ' .  The  value of the  evaluation is a 
modified version of he0, which we call he I to 
indicate a different version. 

• Iustant iat ing 'runs':  let 's call the  new instance 
runs 0. An event  node (of the memory component)  
is created and its reference (let 's call this e0) is set 
to the local variable den. Then a new proposition 
' takes_place(e0) '  is asserted to the  memory 
component .  
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class *subject: 
argument: scndImcssage , case:subject]; 

return[sc/j~. 
; i f  a message with label 'argument' comes, this method will send to 

the object pointed to bll the variable rrtessage a message whose 
label is 'ease' and whose value is 'subject '. 

; a variable rrteasage holds the value of  an incoming message and a 
variable s e l f  points to the oSjeet itself. 

class he: 
if  instantiated t h e n  dcn*-'look for referent'. 

; when a new instance is created, the referent is looked for and the 
value is set to the local variable den. 

ease: ease*-messagc; return[selJ]. 
; when a message comes whleh is labeled "ease', the local variable e a s e  

will be assigned the value the incoming message contains. The 
value of this method is the object itself. 

argument: return[send[message, case:sol,l; 
; when this instance is applied to another object, this object will send 

a message whose label is the value of  the local variable cone and 
whose value field is the object itself. The value of  the message 
processing is the value of  this application. 

class runs: 
if  instantiated t h e n  den.---ereate['event:run']; 

assert[takes_ place(den)]. 
; when a new instance of  class '~ns" is instantiuted t a new ¢oent will 

be asserted to the memorf eornpanent. The referenee to the new 
event is set to the local variable den. 

subject: assert['agent~den)~message.den']; return[sel~. 
; when a message with label 'subject' comes, a new proposition is 

asserted to the mernor~ component. 7he value of this message 
handling is this obfeet itself. 

Figure 3.-1: Definitions of Sample Objects 

3.3 L i n k i n g  C a s e  Elements 
One of the basic tasks of the linguistic component is to find 

out which constituent is linked explicitly or implicitly to which 
constituent. From the example shown in section 3.1, the 
reader can see at least three possibilities: 

Case  l i nk ing  by s e n d i n g  messages .  Using conventional 
terms of case grammar, we can say that  "governer" receives a 
message whose label is a surface ease and whose value is the 
"dependant ' .  This implementation leads us to the notion of 
abstraction to be discussed in section 3.4. 

L e x l e o n - d r l v e n  m e t h o d s  of  d e t e r m i n i n g  deep ease.  
Surface case is converted into deep case by a method defined 
for each governer. This makes it possible to handle this hard 
problem without being concerned with how many different 
meanings each function word has. Governers which have the 
same characteristics in this respect can be grouped together as 
a superclass. This enables to avoid duplication of knowledge 
by means of hierarchy. The latter issue is discussed in section 
3.2. 

T h e  use  of  imp l i c i t  case  m a r k e r s .  We call items such as 
*subject or *object implicit, as they do not appear in the 
surface form, as opposed to prepositions, which are explicit 
(surface} markers. The introduction of implicit case marker 
seems to be reasonable if we see a language like Japanese in 
which surface case is explicitly indicated by postpositions. 
Thus we can assign to the translation of our sample sentence a 
PAL expression with the same structure as its English version: 

KARE GA HASHIRU ~ (GA(KARE)XHASHIRU) 

where, "KARE" means "he", "GA" postposition indicating 
surface subject, "HASHIRU" "run ~, respectively. 

• Evaluating hel(runs0): a message whose label is 
'subject' and whose value is he ! is sent to runs0, 
which causes a new proposition 'agent(e0)--i 0, to 
be asserted in the memory component. The final 
result of the evaluation is a new version of the 
object runs0, say runs 1. 

The above discussion is overly simplified for the purpose of 
explanation. The following sections discuss a number of other 
issues. 

3.2 S h a r i n g  C o m m o n  Knowledge 
Object-oriented systems use the notion of hierarchy to share 

common procedures. Lexical items with similar eharacterics 
can be grouped together as a class; we may, for example, have 
a class 'noun' as a superclass of lexicai items 'boy', 'girl', 
'computer' and so forth. ~,Vhen a difference is recognized 
among objects of a class, the class may be subdivided; we may 
subcategorize a verb into static verbs, action verbs, 
achievement verbs, etc. Common properties can be shared at 
the supercla~s. This offers a flexible way for writing a large 
grammar; one may start by defining both most general classes 
and least general classes. The more observations are obtained, 
the richer will be the class-superclass network. Additionally, 
mechanisms for supporting a multiple hierarchy and for 
borrowing a method are useful in coping with sophistication of 
linguistic knowledge, e.g., introduction of more than one 
subcategorization. 

3.4 A b s t r a c t i o n  
By attaching a sort of a message controller in front of an 

object, we can have a new version of the object whose 
linguistic knowledge is essentially the same as the original one 
but whose input /output  specification is different. As a typical 
example we can show how a passivizer *en is dealt with. An 
object *en can have an embedded object as a value of its local 
variable embedded. If an instance of *en receives a message 
with label '*subject', then it will send to the object pointed by 
embedded the message with its label replaced by '*object'; if it 
receives a message with label 'by', then it will transfer the 
message to the "embedded" object by replacing the label field 
by '*subject'. 

Thus the object *en coupled with a transitive verb can be 
viewed as if they were a single intransitive verb. This offers 
an abstracted way of handling linguistic objects. 

The effect can be seen by tracing how a PAL expression: 

( *subject(this(sentence))) 
((by(a~computer))) 

[*en{understand))) 
"This sentence is understood by a computer." 

is interpreted 4. 

4Notice how the method for a transitive verb "understand" is defined, by 
extending the definition for an intransitive verb ~run ~. 
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3 .5  I m p i i e i t  C a s e  L i n k l n g  
We can use a very similar mechanism to deal with case 

linking by causative verbs. Consider the following sentence: 

z wants It to do z. 

This sentence implies tha t  the subject of the infinitive is the 
grammatical object of the main verb "wants ~. Such a 
property can be shared by a number of other verbs such as 
"allow ~, "cause ~, "leC, "make", etc. In the object-oriented 
implementation, this can be handled by letting the object 
defined for this class transfer a message from its subject to the 
infinitive. 

Note that  the object for the these verbs must pass the 
message from its subject to the infinitive when its grammatical 
object is missing. 

Another example of implicit case linking can be seen in 
relative clauses. In an object-oriented implementation, a 
relativizer transfers a message containing a pointer to the head 
noun to a null NP occupying the gap in the relative clause. 
Intermediate objects serve as re-transmitting nodes as in 
computer networks. 

3 .6  O b l i g a t o r y  C a s e  versus N o n - O b l i g a t o r y  C a s e  
In building a practical system, the problem of distinguishing 

obligatory case and non-obligatory case is always controversial. 
The notion of hierarchy is useful in dealing with this problem 
in a "lazy" fashion. What  we means by this is as follows: 

In procedural approach, the distinction we make between 
obligatory and non-obligatory cases seems to be based on 
economical reason. To put this another way, we do not 
want to let each lexical item have cases such as locative, 
instrumental, temporal, etc. This would merely mean 
useless duplication of knowledge. We can use the notion of 
hierarchy to share methods for these cases. Any exceptional 
method can be attached to lower level items. 

For example, we can define a class "action verb" which has 
methods for instrumental cases, while its superclass ~verb ~ 
may not. 

This is useful for not only reflecting linguistic generalization 
but also offering a grammar designer a flexible means for 
designing a knowledge base. 

4 .  A F e w  R e m a r k s  
As is often pointed out, there are a lot of relationships which 

can be determined purely by examining linguistic structure. 
For example, presupposition, intra-sentential reference, focus, 
surface speech acts, etc. This eventually means that  the 
linguistic component itself is domain independent. 

However, other issues such as, resolving ambiguity, resolving 
task-dependent reference, filling task-dependent ellipsis, or 
inferring the speaker's intention, cannot be solved solely by the 
linguistic component [Sehank 80]. They require interaction 
with the memory component. Thus the domain dependent 
information must be stored in the memory component. 

To go beyond the semantics-on-top-of-syntax paradigm, we 
must allow rich interaction between the memory and linguistic 
components. In particular, the memory component must be 
able to predict a structure, to guide the parsing process, or to 
give a low rating to a partial structure which is not plausible 

based on the experience, while the linguistic component must 
be able to explain what is going on and what it tries to see. 
To do this, the notion of object-orientedness provides a fairly 
flexible method of interaction. 

Finally, we would like to mention how this framework 
differs from the authors'  previous work on machine 
translation [Nishida 83], which could be viewed as an 
instantiation of this framework. The difference is that  in the 
previous work, the notion of lambda binding is used for linking 
cases. We directly used inteusional logic of Montague 
grammar as an intermediate language. Though it brought 
some advantages, this scheme caused a number of technical 
problems. First, using lambda forms causes difficulty in 
procedural interpretation. In the case of Montague grammar 
this is not so, because the amount of computation doet not 
cause any theoretical problem in a mathematical theory. 
Second, though lambda expressions give an explicit form of 
representing some linguistic relations, other relations remain 
implicit. Some sort of additional mechanism should be 
introduced to cope with those implicit relations. Such a 
mechanism, however, may spoil the clarity or explicitness of 
lambda forms. This paper has proposed an alternative to 
address these problems. 
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