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ABSTRACT

Problem localization is the identification of
the most significant fallures in the AND-OR tree
resulting from an unsuccessful attempt to achieve a
goal, for instance, in planning, backward-chaining
inference, or top-down parsing. We examine beuris-
tics and strategies for problem localization in the
context of using a planner tc¢ check for pragmatic
failures in natural language input to computer sys=-
tems, such as a cooperative natural language
interface to Unix®e, Our heuristics call for
selecting the most hopeful branch at ORs, but the
most problematic ome at ANDs, Surprise scores and
special-purpose rules are the main strategies sug~
gested to determine this.

- I PRAGMATIC OVERSHGOT AND PRCBLEM LOCALIZATION

Even if the syntactic and semantic content of
a request is correct, so that 2 natural language
front end can derive a coherent representation of
its meaning, its pragmatic content or the structure
of the underlying system may make any direct
response to the request impossible or misleading.
According to Sondheimer and Weischedel (Sondheimer,

1980), an input exhibits pragmatic overshoot if the-

representation of its meaning is beyond the capa-
bilities of the underlying system. Kaplan (1979),
Mays (1980a), and Carberry (1984) have each worked
on strategies for dealing with particular classes
of such pragmatic failures. This paper addresses
the problem of identifying the most significant
reason that a plan to achieve a user goal cannot be
carried out.

The approach to pragmatic fallure taken in
this paper is to use a planner to verify the
presummptions in a request. The presumptions behind
a request become the subgoals of a plan to fulfill
the request. Using Mays' (1980a) example, the
query "ihich faculty members take courses?® is here
handled as an instance of an IDENTIFY-SET-MEMBERS
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goal, and the pragmatics of the query are checked
by looking for & plan to achieve that goal. Deter-
mining both that faculty members and courses do
exist and that faculty members can take courses are
subgoals within that plan. A presuppositional
failure 1s noted if the planner is unable to com=-
plete a plan for the goal.

Furthermore, information for recovery process-
ing or explanatory responses can be derived
directly from the failed plan by ildentifying what-
ever blocked goal in the planning tree of subgoals
1s most significant., Thus, in the example above,
if the planner failed because it was unable to show
that faculty can take courses, the helpful response
would Dbe to explain this presumption fallure, We
concentrate here on identifying the significant
blocks rather than on generating natural language
responses,

The examples in this paper will be drawn from
a planning system intended to function as the prag-
matic overshoot component of a cooperative natural
language interface to the Unix operating system.
We chose Unix, much as Wilensky (1982) did for his
Unix Consultant, as a femiliar domain that was
still complex enough to require interesting plan-
ning. In this system, the pragmatics of a user
request are tested by building a tree of plan
structures whose leaves are elementary facts avail-
able to the operating system. For instance, the
following planning tree is built in response to the
request to print a file:

(PRINT-FILE %user ?file %?device)
& (IS-TEXT-FILE %?file)
& (UP-AND-RUNNING ?device)
& (READ-PERM ?user ?file)
| (WORLD-READ-PERM-BIT-SET ?file)
| (READ-PERM-USER ?user %file)
& (IS-OWNER ?user ?file)
& (USER-READ-PERM~-BIT-SET %?file)’
| (READ-PERM~GROUP %user ?file)
& (SAME-GROUP 7user ?file)
& (GROUP-READ-PERM~BIT-SET ?file)
| (READ-PERM-SUPER-USER %fuser)
& (AUTHORIZED-SUPER-USER Zuser)
& (SUPER-USER-PASSWORD-GIVEN ?user)

(The children of AND nodes are preceded by amper-
sands, and OR children by vertical bars. Initial
question marks precede plan variables.) If a single
node in this planning tree fails, say (IS~TEXT-FILE
?file), that information can be used in explaining
the fallure to the user.



The failure of certain nodes could
trigger recovery processing, as in the following
example, where the failure of (UP-AND-RUNNING

?device) triggers the suggestion of an alternative
device:

also

User:
System:

Please send the file to the laser printer.
The laser printer is down.
Is the line printer satisfactory?

This planning scheme offers a way of recognizing
and responding to such temporarily unfulfillable
requests as well as to other pragmatic failures
from requests unfulfillable in context, which is an
important, though largely untouched, problem,

A difficulty arises, however, when more than
one of the planning tree precondition nodes fail,
Even in a tree that was entirely made up of AND
nodes, multiple failures would require either a
list of responses, or else some way of choosing
which of the failures is most meaningful to report.
In a plan tree containing OR nodes, where there are
often many alternative ways that have all failed of
achieving particular goals, it becomes even more
important that the system be able to identify which
of the failures is most significant. This process
of identifying the significant fallures is called
"problem localization", and this paper describes
heuristics and strategies that can be used for
problem localization in failed planning trees.

I HEURISTICS FOR PROBLEM LOCALIZATION

The basic heuristics for problem localization
can be derived by considering how 2 human expert
would respond to someone who was pursuing an impos-
sible goal. Not finding any successful plan, the
expert tries to explain the block by showing that
every plan must fail, Thus, if more than one
branch of an AND node in a plan fails, the most
significant one to be reported is the one that the
user is least likely to be able to change, since it
makes the strongest case. (The planner must check
all the branches of an AND node, even after one
fails, to know which is most significant to
report.) For instance, if all three of the children
of PRINT-FILE in our example fail, (IS-TEXT-FILE

?file) is the one that should be reported, since it

is least likely that the user can affect that node.
If the READ-PERM failure were reported first, the
user would waste time changing the read permission
of a nop-text file. Unix's actual behavior, which
reports the first problem that it happens to dis-
cover in trying to execute the command, is often
frustrating for exactly that reason. This heuris-
tic of reporting the most serious failure at an AND
node is closely related to ABSTRIP's use of "eriti-
cality® numbers to divide a planner into levels of
abstraction, so that the most critical features are
dealt with first (Sacerdoti, 1974).

where
the most
long as
the most

The situation is different at OR nodes,
only a single child has to succeed. Here
serious failure can safely be ignored, as
some other branch can be repaired. Thus
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.our example,

significant branch at an OR node should be the one
the user 1is most likely to be able to affect. In
READ-PERM-USER should usually be
reported rather than READ-PERM-SUPER~USER, if both
have failed, since most users have more hope of
changing the former than the latter. There is a
duality here between the AND and OR node heuristics
that is like the duality in the minimax evaluation
of a move in a game tree, where one picks the best
score at nodes where the cholce is one's own, and
the worst score at nodes where the opponent gets to
choose,

III STRATEGIES FOR PRCBLEM LOCALIZATION

Identification of the most significant failure
requires the addition to the planner of knowledge
about significance to be used in problem 1localiza-
tion. Many mechanisms are possible, ranging from
fixed, pre-set ordering of the children of nodes up
through complex knowledge~based mechanisms that
include knowledge about the user's probable goals,
In this paper, we suggest a combination of statist-
ical "surprise scores" and special-purpose rules,

4 Statistical Rapking Using Surprise Scores

This strategy relies on statistics that the
system keeps dynamically on the number of times
that each branch of each plan has succeeded or
failed. These are used to define a success ratio
for each branch., For example, the PRINT-FILE plan
might be annotated as follows:

SUCCESSES FAILURES RATIO
(PRINT-FILE %user ?file ?device)

& (IS-TEXT-FILE ?file) 235 3 0.99
& (UP~-AND-RUNNING ?device) 185 53 0.78
& (READ-PERM ?user ?file) 228 10 0.96

From these ratios, we derive surprise scores

to provide some measure of how usual or unusual it
is for a particular node to have succeeded or
failed in the context of the goal giving rise to
the node. The surprise score of a successful node
1s defined as 1.0 minus the success ratio, so that
the success of a node 1like IS-TEXT-FILE, that
almost always succeeds, is less surprising than the
success of UP-AND-RUNNING. Failed nodes get nega-
tive surprise scores, with the absolute value of
the score again reflecting the amount of surprise.
The surprise score of a failed node is set to the
negative of the success ratio, so that the failure
of IS-TEXT-FILE would be more surprising than that
of UP-AND-RUNNING, and that would be reflected by a
more strongly negative score.

Here is an example of our PRINT-FILE plan
instantiated for an unlucky user who has failed on
all but two preconditions, with surprise scores
added:



SURPRISE
SUCCESS/FAILURE SCORE
(PRINT-FILE Ann Filel laser)
& (IS-TEXT-FILE Filetl) F -.99
& (UP- AND-RUNNING laser) F =-.78
& (READ-PERM Ann Filet) F =-.96
| (WORLD-READ~PERM-BIT-SET Filet) F =.02
| (READ-PERM-USER Ann Filel) F -.87
& (IS~-OWNER Ann Filet) F -.87
& (USER~READ-PERM-BIT-SET Filel) S +.01
| (READ-PERM-GROUP Ann Filet) F «.55%
& (SAME-~GROUP Ann Filel) S +.05
& (GROUP- READ-PERM-BIT-SET Filel) F -.58
| (READ-PERM-SUPER-USER Ann) F -.02
& (AUTHORIZED-SUPER-USER Ann) F -.03

& (SUPER-USER-PASSWORD-GIVEN Ann) F -,02
Note that the success of USER-READ-PERM-BIT-SET is
not very surprising, since that node almost always
succeeds; the failure of a node 1like READ-PERM-
CUPER-USER, which seldom succeeds, is much less
surprising than the failure of UP-AND-RUNNING.

We suggest keeping statistics and deriving
surprise scores because we believe that they pro-
vide a useful if imperfect handle on judging the
significance of failed nodes. Regarding OR nodes,
strongly negative surprise scores identify branches
that in the past experience of the system have usu-
ally succeeded, and these are the best guesses to
be 1likely to succeed again., Thus READ-PERM-USER,
the child of READ-PERM with the most strongly nega-
tive score, turns out to be the most likely to be
tractable. The negative surprise scores at a
failed OR node give & profile of the typical suc-
cess ratios; to select the nodes that are generally
most likely to succeed, we pick the most surprising
failures, those with the most strongly negative
surprise scores,

At AND nodes, on the other hand, the goal is -

to identify the branch that is most critical, that
is, least likely to succeed. Surprisingly, we find
that the most critical branch tends in this case
also to be the most surprising fallure. In our
example, IS-TEXT-FILE, which the user can do noth-
ing about, 1s the most surprising failure under
PRINT-FILE, READ-PERM is next most surprising, and
UP-AND-RUNNING, for which simply waiting often
works, comes last. Therefore at AND nodes, like at
OR nodes, we will report the child with the most
negative surprise score; at AND nodes, this tends

to identify the most critical failures, while at OR .

nodes, it tends to select the most hopeful. Note
that the combined effect of the AND and OR stra-
tegies is to choose from among all the failed nodes
those that were statistically most likely to
succeed,

The main advantage of the statistical surprise
score strategy is its low cost, both to design and
execute, Another nice feature is the self-
adjusting character of the surprise scores, based
as they are on success statistics that the system
updates on an ongoing basis. For example, the
likelihood of GROUP-READ-PERM being reported would
depend on how often that feature was used at a par-
ticular site. The mein difficulty is that surprise

141

scores are only a rough guide to the actual signi-
ficance of a falled node. The true significance of
a failure in tbe context of a particular command
may depend on world knowledge that is beyond the
grasp of the planning system (e.g., the laser
printer is down for days this time rather than
hours), or even on a part of the planning context
itself that is not reflected in the statistical
averages (e.g., READ-PERM-SUPER-USER is much more
likely to succeed when READ-PERM is called as part
of a system dump command than when it is called as
part of PRINT-FILE). To get a more accurate grasp
on the significance of particular failures, more
knowledge-intensive strategies must be employed.

B. Special-Purpose Problem Localization Rules

As a mechanism for adding extra knowledge, we
propose supplementing the surprise scores with
condition-action rules attached to particular nodes
in the planning tree. The conditions in these
rules can test the success or failure of other
nodes in the tree or determine the higher-level
planning context, while the actions alter the prob-
lem localization result by changing the surprise
scores attached to the nodes.

The special-purpose rules which we bave found
useful so far add information about the criticality
of particular nodes. Consider the following plan-
ning tree, which is somewhat more successful than
the previous one:

SURPRISE
SUCCESS/FAILURE SCORE
(PRINT-FILE Ann File2 laser)

& (IS-TEXT-FILE File2) S +.01
& (UP- AND-RUNNING laser) 8 +.22
& (READ-PERM Ann File2) F -.9
! (WORLD-READ-PERM-BIT-SET File?) F -.02

| (READ-PERM~USER Ann File2) F .87

& (IS-CGMNER Ann File2) F -.87

& (USER-READ-PERM-BIT-SET File2) S +.01

| (READ-PERM-GROUP Ann File2) F =-.55

& (SAME-GROUP Ann File2) S +.05

& (GROUP- READ-PERM-BIT-SET File2) F =-.58

| (READ~PERM-SUPER-USER &nn) F =-.02

& (AUTHORIZED-SUPER-USER Ann) S +.97

& (SUPER-USER~PASSWORD-GIVEN Ann) F =.02

Relying on surprise scores alone, the most signifi-
cant child of READ-PERM would be READ~-PERM-USER,
since its score is most strongly negative. How~
ever, since IS-OWNER has failed, a node which most
users are powerless to change, it is clearly not
helpful to choose READ-PERM-USER as the path to
report. This is an example of the general rule that
if we know that one child of an AND node is criti-
cal, we should include a rule to suppress that AND
node whenever that child fails. Thus we attach the
following rule to READ-PERM-USER:

IF (FAILED-CHILD (IS-OWNER ?user ?file))
THEN (SUPPRESS-SCORE 0.8)

In our current formulation, the numeric argument to
SUFFPRESS-SCORE gives the factor (i.e., percentage)



by which the score should be reduced. The rule's
affect is to change READ-PERM-USER's score to =-.17,
which prevents it from being selected.

With READ-PERM-USER suppressed, the surprise
scores would then select READ-PERM-GROUP, which is
a reasonable choice, but probably not the best one.
While the failure of IS-OWNER makes us less
interested in READ-PERM-USER, the very surprising
success of AUTHORIZED-SUPER-USER should draw the
system's attention to the READ~PERM-SUPER-USER
branch. We can arrange for this by attaching to
READ-PERM~SUPER-USER a rule that states:

IF (SUCCESSFUL-CEILD
(AUTHORIZED-SUPER-USER ?user))
THEN (ENHANCE-SCORE 0.8)

This rule would change READ=PERM~SUPER=-USER!'s score
from -.02 to =~.79, and thus cause it to be the
branch of READ-PERM selected for reporting.

While our current rules are all in these two
forms, either suppressing or enhancing a parent's
score on the basis of a critical child's failure or
success, the mechaniam of special-purpose rules
could be expanded to handle more complex forms of
deduction.
rules that calculate a criticality score for each
node, working upward from preassigned scores
assigned to the leaves. If the rules could access
information about the state of the system, they

its parent being reported. While such a formula
could perhaps do much of the work now done by
special-purpose rules, it seems a harder approach
to control, and one more likely to be sensitive to
inaccuracies in the surprise scores themselves.

D Proper Level of Detail

One final question concerns identifying the
proper level of detail for helpful responses. The
strategies discussed so far have all focused on
choosing which of multiple blocked children to
report, so that they identify a path fram the root

to a leaf. Yot the leaves of the planning tree may
well be too detailed to represent helpful
responses. A selection strategy could report the

node containing the appropriate level of detail for
a glven user. Modeling the expertise of a user and
using that to select an appropriate description of
the problem are significant problems in natural

. language generation which we have not addressed.

For example, it might be useful to add ,

could also use that in judging criticality, so that

an UP-AND-RUNNING failure would be more critical if
the device was expected to be down for a long time.

C. Other Problem Localization Strategies

While our system depends on surprise scores
and rules, an entire range of strategies is possi-
ble. The simplest strategy would be to hand-code
the problem localization into the plans themselves
by the ordering of the branches. At AND nodes, the
children that are more critical would be listed
first, while at OR nodes, the less critical, more
hopeful, children would come first. In such a
blocked tree, the first failed child could be
selected below each node. A form of this hand-
coded strategy is in force in any planner that
stops exploring an AND node when a single child
blocks; that effectively selects the first child
tested as the significant failure in every case,
since the others are not even explored. Hand-
coding is an alterpative to surprise scores for
providing an initial comparative ranking of the
children at each node, but it also would need sup~
plementing with a strategy that can take account of
unusual situations, such as our special-purpose
rules.

It might be possible to improve the perfor-
mance of a surprise score system without adding the
complexity of special-purpose rules by using a for-
mula that allows the surprising success or failure
.of a child to increase or decrease the chances of
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IV RELATED APPLICATION AREAS

While developed here in the context of a prag-
matics planner, strategies for problem localization
could have wide applicability. For instance, the
MYCIN-1like "How?" and ™Why?" questions (Shortliffe,
1976) used in the explanation components of many
expert systems already use either the already-built
successful proof tree or the portion currently
being explored as a source of explanations, Swar-
tout (1983) adds extra knowledge that allows the
system to justify its answers in the user's terms,
but the user must still direct the exploration. An
effective problem localization facility would allow
the system to answer the question "Why not?%; that
is, the user could ask why a certain goal was not
substantiated, and the system would reply by iden-
tifying the surprising nodes that are likely to be
the significant causes of the failure. Such "Why
not?" questions could be useful not only in expla-
nation but also in debugging. ’

In the same way, since the execution of a PRO-
LOG program can be seen as the exploration of and
AND-COR tree, effective problem localization tech-
niques could be useful in debugging the failed
trees that result from incorrect logic programs.

Another example 1is recovery processing in
top-down parsing, such as using augmented transi-
tion networks (Woods, 1970). When an ATN fails to
parse a sentence, the blocked parse tree is quite
similar to a blocked planning tree. Weischedel
(1983) suggests an approach to understanding ill-
formed input that makes use of meta-rules to relax
some of the constraints on ATN arcs that blocked
the original parse. Recovery processing in that
model requires searching the blocked parse tree for
nodes to which meta~rules can be applied. A prob-
lem localization strategy could be used to scrt the



list of blocked nodes, so that the most likely can=
didates would be tested first., The statistics of
success ratios here would describe 1likely paths
through the grammar. Nodes that exhibit surprising
failure would be prime candidates for meta-rule
processing.

Before problem localization can be applied 4in
these related areas, further work needs to be done
to see how many of the heuristics and strategies
that apply to problem localization in the planning
context can be carried over. The larger and more
complex trees of an ATN or PROLOG program may well
require development of further strategies. How=
ever, the npature of the problem is such that even
an imperfect result is likely to be useful.

V IMPLEMENTATION DESCRIPTION

The examples in this paper are takem from an
Interlisp implementation of a plamnner which does
pragmatics checking for a 1limited set of Unix-
domain requests, The problem localization com-
ponent uses a combination of surprise scores and
special purpose rules, as described. The statis-
tics were derived by running the planner on a test
set of commands in a simulated Unix enviromment.

VI CONCLUSIONS

In planning-based pragmatics processing, prob-
lem localization addresses the largely untouched
problem of providing helpful responses to requests
unfulfillable in context. Problem localization in
the planning context requires identifying the most
hopeful and tractable choice at OR nodes, but the
most critical and problematic one at AND nodeas.
Statistical surprise scores provide a cheap but
effective base strategy for problem localization,
and condition-action rules are an appropriate
mechanism for adding further sophistication.

Further work should address (1) applying
recovery strategies to the localized problem, if
any recovery is appropriate; (2) investigating
other applications, such as expert systems,
backward-chaining inference, and top-down parsing;
and (3) exploring natural language generation to
report a block at an appropriate level of detail.
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