
A PARSING ARCHITECTURE BASED ON DISTRIBUTED MEMORY MACHINES

Jon M. Slack
Department of Psychology

Open University
Milton Keynes MK7 6AA

ENGLAND

ABSTRACT

The paper begins by defining a class of
distributed memory machines which have useful
properties as retrieval and filtering devices.
These memory mechanisms store large numbers of
associations on a single composite vector. They
provide a natural format for encoding the
syntactic and semantic constraints associated
with linguistic elements. A computational
architecture for parsing natural language is
proposed which utillses the retrieval and
associative features of these devices. The
parsing mechanism is based on the principles of
Lexlcal Functional Grammar and the paper
demonstrates how these principles can be derived
from the properties of the memory mechanisms.

I INTRODUCTION

Recently, interest has focussed on
computational architectures employing massively
parallel processing lip2]. Some of these
systems have used a distributed form of
knowledge representation [3]. This type of
representation encodes an item of knowledge in
terms of the relationships among a collection of
elementary processing units, and such
assemblages can encode large numbers of items.
Representational similarity and the ability to
generalize are the principal features of such
memory systems. The next section defines a
distributed memory machine which incorporates
some of the computational advantages of
distributed representations within a traditional
yon Neumann architecture. The rest of the paper
explores the properties of such machines as the
basis for natural language parsing.

II DISTRIBUTED MEMORY MACHINES

Distributed memory machines (DMM) can be
represented formally by the septuple
DMM=(V,X,Y,Q,qo,p,A) , where

V is a finite set denoting the total vocabulary;
X is a finite set of inputs, and XGV;
Y is a finite set of acceptable outputs and Y~V;
Q is a set of internal states;

q0 is a distinguished initial state;
~.QxX-->Q, the retrieval function;
A:Q-->Qxy, the output function.

Further, where Y" denotes the set of all finite
concatenations of the elements of the set Y,
Q~Y', and therefore QgV'. This statement
represents the notion that internal states of
DMMs can encode multiple outputs or hypotheses.
The vocabulary, V, can be represented by the
space I k, where I is some interval range defined
within a chosen number system, N; IoN. The
elements of X, Y and Q are encoded as k-element
vectors, referred to as memory vectozs.

A. Holographic Associative Memory

One form of DMM is the holographic associative
memory [4,5,6] which encodes large numbers of
associations on a single composite vector.
Items of information are encoded as k-element
zero-centred vectors over an interval such as
[-I,+I]; <X>=(...x.t,x0,x~t,...). Two items, <A>
and (angular brackets denote memory
vectors), are associated in memory through the
operation of convolution. This method of
association formation is fundamental to the
concept of holographic memory and the resulting
associative trace is denoted <A>*. The
operation of convolution is define by the
equation (<A>*~=.~AIB~. i and has the
following propertles*[7]:

Commutative: <A>* = *<A>,
Associative: <A>*(*<C>) = (<A>*)*<C>.

Further, where a delta vector, denoted ~, is
defined as a vector that has values of zero on
all features except the central feature, which
has a value of one, then <A>* ~ffi <A>. Moreover,
<A>*0 ffi 0, where 0 is a zero vector in which all
feature values are zero. Convolving an item
wlth an attenuated delta vector (i.e., a vector
with values of zero on all features except the
central one, which has a value between 0 and i)
produces the original item with a strength that
is equal to the value of the central feature of
the attenuated delta vector.

The initial state, qo, encodes all the
associations stored in the machine. In this
model, associative traces are concatenated (+)
through the operations of vector addition and
normalization to produce a single vector.
Overlapping associative items produce composite

92

vectors which represent both the range of items
stored and the central tendency of the those
items. This form of prototype generation is a
basic property of distributed memories.

The retrieval function,@ , is simulated by the
operation of correlation. If the state, q~,
encodes the association <A>*, then presenting
say <A> as an input, or retrieval key, produces
a new state, q{~, which encodes the item ', a
noisy version of , under the operation of
correlation. This operation is defined by the
equation (<A>#~=~A%Bm,%and has the
following properties: % An item correlated with
itself, autocorrelation, produces an
approximation to a delta vector. If two similar
memory vectors are correlated, the central
feature of the resulting vector will be equal to
their similarity, or dot product, producing an
attenuated delta vector. If the two items are
completely independent, correlation produces a
zero vector.

The r e l a t i o n between c o n v o l u t i o n and
c o r r e l a t i o n i s g i v e n by
<A>~(<A>*) = (<A>~<A>)* +

(<A>~)*<A> + noise ...(I)
where the noise component results from some of
the less significant cross products. Assuming
that <A> and are unrelated, Equation (I)
becomes:

<AMI(<A>*) = ~* + 0*<A> + noise
- + 0 + noise

Extending these results to a composite trace,
suppose that q encodes two associated pairs of
four unrelated items forming the vector (<A>*
+ <C>*<D>). When <A> is given as the retrieval
cue, the reconstruction can be characterized as
follows:

<A>~(<A>* + <C>*<D>)
= (<A>~t<A>)* + (<A>~)*<A> + noise

+ (<A>~<C>)*<D> + (<A>@<D>)*<C> + noise
= ~ *+0*<A>+noise+O*<D>+O*<C>+noise
- + noise + noise

When the additional unrelated items are added to
the memory trace their affect on retrieval is to
add noise to the reconstructed item , which
was associated with the retrieval cue. In a
situation in which the encoded items are related
to each other, the composite trace causes all of
the related items to contribute to the
reconstructed pattern, in addition to producing
noise. The amount of noise added to a retrieved
item is a function of both the amount of
information held on the composite memory vector
and the size of the vector.

III BUILDING NATURAL LANCUACZ PARSERS

A. Case-Frame Parsing

The computational properties of distributed
memory machines (DMM) make them natural
mechanisms for case-frame parsing. Consider a
DMM which encodes case-frame structures of the
following form:

<Pred>*(<Cl>*<Pl> + <C2>*<P2> + ...+ <Cn>*<Pn>)
where <Pred> i s the v e c t o r r e p r e s e n t i n g the
p r e d i c a t e a s s o c i a t e d w i th t he verb of an i n p u t
c l a u s e ; <C1> to <Cn> a r e t he c a se v e c t o r s such
as <agent>, <instrument>, etc., and <PI> to <Pn>
are vectors representing prototype concepts
which can fill the associated cases. These
structures can be made more complex by including
tagging vectors which indicate such features as
o b l i g a t o r y c a s e , as shown in the case-frame
vector for the predicate BREAK:

(<agent>*<anlobJ+natforce> + <obJect>*<physobJ>
<obllg> + <instrument><physobJ>)

In this example, the object case has a prototype
covering the category of physical objects, and
is tagged as obligatory.

The initial state of the DMM, qo, encodes the
concatenation of the set of case-frame vectors
stored by the parser. The system receives two
types of inputs, noun concept vectors
representing noun phrases, and predicate vectors
representing the verb components. If the system
is in state qo only a predicate vector input
produces a significant new state representing
the case-frame structure associated with it.
Once in this state, noun vector inputs identify
the case slots they can potentially fill as
illustrated in the following example:
In p a r s i n g the s e n t e n c e Fred broke t h e window
w i t h e s t o n e , t he i n p u t v e c t o r e n c o d i n E broke
w i l l r e t r i e v e t he c a s e - f r a m e s t r u c t u r e f o r b r e ak
g i v e n a bove . The i n p u t of <Fred> now g i v e s

<Fred>~q<agent>*<Pa>+<obJ>*<Po>+<instr>*<Pi>) "
<Fred>g<agent>*<Pa>+<Fred>~<Pa>*<agent> + ... -
0*<Pa>+ee*<agent> O*<Po>+e@*<obJ> +
O*<Pi>+e%*<instr> :
e~agent> + e~obJ> + es<instr>

where ej is a measure of the similarity between
the vectors, and underlying concepts, <Fred> and
the case prototype <Pj>. In this example,
<Fred> would be identified as the agent because
e 0 and e~ would be low relative to ee. The
vector is "cleaned-up" by a threshold function
which is a component of the output function,)%.
This process is repeated for the other noun
concepts in the sentence, linking <window> and
<stone> with the object and instrument cases,
r e s p e c t i v e l y . However, t he p a r s e r r e q u i r e s
a d d i t i o n a l m a c h i n e r y to h a n d l e the l a r g e s e t of
s e n t e n c e s i n which t he c a s e a s s i g n m e n t i s
ambiguous u s i n g s e m a n t i c knowledge a l o n e .

B. Encodin~ Syntactic Knowledge

Unambiguous c a se a s s i g n m e n t can on ly be
a c h i e v e d t h r o u g h t he i n t e g r a t i o n of s y n t a c t i c
and s e m a n t i c p r o c e s s i n g . Moreover , an a de qua t e
p a r s e r shou ld g e n e r a t e an encod ing of t he
grammatical relations between sentential elements
i n a d d i t i o n to a s e m a n t i c r e p r e s e n t a t i o n . The r e s t
o f t he paper d e m o n s t r a t e s how the p r o p e r t i e s o f
DMMs can be combined w i th the i d e a s embodied i n
t he t h e o r y of L e x t c a l - f u n c t i o n a l CTammar (LFG) [8]
in a parser which builds both types of relational
structure.

93

In LFG the mapping between grammatical and
semantic relations is represented directly in
the semantic form of the lexlcal entries for
verbs. For example, the lexlcal entry for the
verb hands is given by

hands: V, #participle) = NONE
#tense) = PRESENT
(tsubJ hum) = SO
~pred) = HAND[@subJ)#obj2)@obJ)]

where the arguments of the predicate HAND are
ordered such that they map directly onto the
arguments of the semantic predicate-argument
structure. The order and value of the arguments
in a lexical entry are transformed by lexlcal
rules, such as the passive, to produce new
lexical entries, e.g., HAND[#byobJ)~subJ)(~oobJ)].
The direct mapping between lexical predicates and
case-frame structures is encoded on the case-frame
DMM by augmenting the vectors as follows:

Hands:- <HAND>*(<agent>*<Pa>*<subJ> +
<obJect>*<Po>*<obJ2>+<goal>*<Pg>*<obJ>)

When the SUBJ component has been identified
through syntactic processing the resulting
association vector, for example <subJ>*<John>
for the sentence John handed Mary the book, will
retrieve <agent> on input to the CF-DMM,
according to the principles specified above.
The multiple lexical entries produced by lexical
rules have corresponding multiple case-frame
vectors which are tagged by the appropriate
grammatical vector. The CF-DMM encodes multiple
case-frame entries for verbs, and the grammatical
vector tags, such as <PASSIVE>, generated by the
syntactic component, are input to the CF-DMM to
retrieve the appropriate case-frame for the verb.

The grammatical relations Between the
sententlal elements are represented in the form
of functional structure (f-structures) as in
LFG. These structures correspond to embedded
lists of attrlbute-value pairs, and because of
the Uniqueness criterion which governs their
format they are efficiently encoded as memory
vectors. As an example, the grammatical
relations for the sentence John handed Mary a
book are encoded in the f-structure below:

SUBJ NUM
RED 'JO

PAST

'HAND[(SUBJ)(OSJ2)(OBJ)]

TENSE

PRED

OBJ [~UM MARY 3 SG
RED "

OBJ2 [~C ASG K~"

[,PRED "BOO

The lists of grammatical functions and features
are encoded as single vectors under the +
operator, and the embedded structure is
preserved by the associative operator, *. The
f-structure is encoded by the vector

(<SUBJ>*(<NUM>*<SG>+<PRED>*<JOHN>) + <TENSE>
<PAST> + <PRED>(<HAND>*(<#SUBJ>*<TOBJ2>*
<TOBJ>)) + <OBJ>*(<NUM>*<SG>+<PRED>*<MARY>)+
<OBJ2>*(<SPEC>*<A>+<NUM>*<SG>+<PRED>*<BOOK>))

This compatibility between f-structures and
memory vectors is the basis for an efficient
procedure for deriving f-structures from input
strings. In LFG f-structures are generated in
three steps. First, a context-free grammar
(CFG) is used to derive an input string's
constituent structure (C-structure). The grammar
is augmented so that it generates a phrase
structure tree which includes statements about
the properties of the string's f-structure. In
the next step, this structure is condensed to
derive a series of equations, called the functional
description of the string. Finally, the f-structure
is derived from the f-description. The properties
of DMMs enable a simple procedure to be written
which derives f-structures from augmented phrase
structure trees, obviating the need for an
f-descrlptlon. Consider the tree in figure 1
generated for our example sentence:

~SUBJ) - & St&

~ENSE)-PAST \
@FRED) =HAND[..] ~ \

(I'NUM)- SO [~OBJ)-~,
~PRED)=JOHN) I (~qUM) =SG

~PRED)=MARY #OBJ2)=&

/ [b John handed Mary a k

Figure I. Augmented Phrase Structure Tree

The f-structure, encoded as a memory vector, can
be derived from this tree by the following
procedure. First, all the grammatical
functions, features and semantic forms must be
encoded as vectors. The~-variables, f,-f#,
have no values at this point; they are derived
by the procedure. All the vectors dominated by
a node are concatenated to produce a single
vector at that node. The symbol '=" is
interpreted as the association operator ,*.
Applying this interpretation to the tree from
the bottom up produces a memory vector for the
value of f! which encodes the f-structure for
the string, as given above. Accordingly, f~
takes the value (<TNUM>*<SG>+<TPRED>*<JOHN>);
applying the rule specified at the node, (f, SUBJ)=f~
gives <tSUBJ>*(<tNUM>*<SG>+<TPRED>*<JOHN>) as a
component of f,. The other components of fl are
derived in the same way. The front-end CFG can
be veiwed as generating the control structure
for the derivation of a memory vector which
represents the input string's f-structure.

94

The properties of memory vectors also enable
the procedure to automatically determine the
consistency Df the structure. For example, in
deriving the value of f& the concatenation
operator merges the (%NUM)~SG features for A and
book to form a single component of the f~vector,
(<SPEC>*<A>+<NUM>*<SG>+<PRED>*<MARY>). .owever,
if the two features had not matched, producing
the vector component <NU}~*(<SG>+<PL>) for
example, the vectors encoding the incompatible
feature values are set such that their
concatenation produces a special control vector
which signals the mismatch.

C. A Parsing Architecture

The ideas outlined above are combined in the
design of a tentative parsing architecture shown
in figure 2. The diamonds denote DMMs, and the

r

Figure 2. Parsing Archi tec ture

ellipse denotes a form of DMM functioning as a
working memory for encoding temporary f-structures.

As elements of the input string enter the
lexicon their associated entries are retrieved.
The syntactic category of the element is passed
onto the CFG, and the lexical schemata {e.g.,
~PRED)='JOHN'}, encoded as memory vectors, are
passed to the f-structure working memory. The
lexical entry associated with the verb is passed
to the case-frame memory to retrieve the
appropriate set of structures. The partial
results of the CFG control the formation of
memory vectors in the f-structure memory, as
indicated by the broad arrow. The CFG also
generates grammatical vectors as inputs for
case-frame memory to select the appropriate
structure from the multiple encodings associated
with each verb. The partial f-structure
encoding can then be used as input to the
case-frame memory to assign the semantic forms
of grammatical functions to case slots. When
the end of the string is reached both the
case-frame instantiation and the f-structure
should be complete.

IV CONCLUSIONS

This paper attempts to demonstrate the value of
distributed memory machines as components of a

parsing system which generates both semantic and
grammatical relational structures. The ideas
presented are similar to those being developed
within the connectlonist paradigm [I]. Small,
and his colleagues [9], have proposed a parsing
model based directly on connectionist principles.
The computational architecture consists of a large
number of appropriately connected computing units
communicating through weighted levels of excitation
and inhibition. The ideas presented here differ
from those embodied in the connectionist parser
in that they emphasise distributed information
storage and retrieval, rather than distributed
parallel processing. Retrieval and filtering
are achieved through simple computable functions
operating on k-element arrays, in contrast to
the complex interactions of the independent
units in connectlonist models. In figure 2,
although the network of machines requires
heterarchical control, the architecture can be
considered to be at the lower end of the family
of parallel processing machines [i0].

V BEF~e~wCES

[I] Feldman, J.A. and Ballard, D.H. Connection-
ist models and their properties. Cognitive
Science, 1982, 6, 205-254.

[2] Hinton, G.E. and Anderson, J.A. (Eds)
Parallel Models of Associative Memory.
Hillsdale, NJ: Lawrence Erlhat~Q Associates,
1981.

[3] Hinton, G.E. Shape representation in parallel
systems. In Proceedinss of the Seventh
International Joint Conference on Artificial
I n t e l l i ~ e n c e , Vol. 2, Vancouver BC, Canada,
August, 1981.

[4] Longuet-Higgins, H.C., Willshaw, D.J., and
Bunemann, O.P. Theories of associative recall.
~uarterly Reviews of Biophysics, 1970, 3,
223-244.

[5] Murdock, B.B. A theory for the storage and
retrieval of item and associative information.
Psychological Review, 1982, 89, 609-627.

[6] Kohonen, T. Associative memory~ system-
theoretical approach. Berlin: Springer-
Verlag, 1977.

[7] Borsellino, A., and Poggio, T. Convolution
and Correlation algebras. Kybernetik,
1973, 13, 113-122.

[8] Kaplan, R., and Bresnan, J. Lexical-Functional
Grammar: A formal system for grammatical
representation. In J. Bresnan (ed.), The
Mental 9~presentation of Grammatical Relations.
Cambridge, Mass.:MIT Press, 1982.

[9] Small, S.L., Cottre11, G.W., and Shastri, L.
Toward connectlonlst parsing. In Proceedings
of the National Conference on Artificial
Intelligence, Pittsburgh, P~nsylvanla, 1982.

[10] Fahlman, S,E. , Hinton, G.E., and Sejnowski, T.
Massively p a r a l l e l a r c h i t e c t u r e s for AI: NETL,
THISTLE, and BOLTZMANNmachines. In Proceed-
ings o f the National Conference on A r t i f i c i a l
Intelli~enc~e, Washington D.C., I~3o

95

