THE SYNTAX AND SEMANTICS OF USER-DEFINED MODIFIERS

INA

TRANSPORTABLE NATURAL LANGUAGE PROCESSOR

Bruce W. Ballard
Dept. of Computer Science
Duke University
Durham, N.C. 27708

ABSTRACT
The Layered Domain Class system (LDC) is an
experimental natural language processor being

developed at Duke University which reached the
prototype stage in May of 1983. Its primary goals are
(1) to provide English-language retrieval capabilities
for structured but unnormalized data files created by
the user; (2) to allow very complex semantics, in terms
of the information directly available from the physical
data file; and (3) to enable users to customize the
system to operate with new types of data. In this paper
we shall discuss (a) the types of modifiers LDC provides
for; (b) how information about the syntax and
semantics of modifiers is obtained from users; and (c)
how this information is used to process English inputs.

1 INTRODUCTION

The Layered Domain Class system (LDC) is an
experimental natural language processor being
developed at Duke University. In this paper we
concentrate on the typ:s of modifiers provided by LDC
and the methods by which the system acquires
information about the syntax and semantics of user-
defined modifiers. A more complete description is
available in [4,5], and further details on matters not
discussed in this paper can be found in [1,2,6,8,9].

The LBC system is made up of two primary
components. First, the knowledge acquisition
component, whose job is to find out about the
vocabulary and semantics of the language to be used
for a new domain, then inquire about the composition
of the underlying input file. Second, the User-Phase
Processor, which enables a user to obtain statistical
reductions on his or her data by typed English inputs.
The top-level design of the User-Phase processor
involves a linear sequence of modules for scanning the
input and looking up each token in the dictionary;
parsing the scanned input to determine its syntactic
structure; (ranslation of the parsed input into an
appropriate formal query; and finally query processing.

This research has been supported in part by the
National Science Foundation, Grants MCS-81-16607 and
IST-83-01994; in part by the National Library of
Medicine, Grant LM-07003; and in part by the Air Force
Office of Scientific Research, Grant 81-0221.

52

The User-Phrase portion of LDC resembles familiar
natural language database query systems such as
INTELLECT, JETS, LADDER, LUNAR, PHLIQA, PLANES, REL,
RENDEZVOUS, TQA, and USL (see [10-23]) while the
overall LDC system is similar in its objectives to more
recent systems such as ASK, CONSUL, IRUS, and TEAM
(see [24-31]).

At the time of this writing, LDC has been
completely customized for two fairly complex domains,
from which examples are drawn in the remainder of the
paper, and several simpler ones. The complex domains
are a final grades domain, giving course grades for
students in an academic department, and a building
organization domain, containing information on the
floors, wings, corridors, occupants, and so forth for one
or more buildings. Among the simpler domains LDC has
been customized for are files giving employee
information and stock market quotations.

11 MODIFIER TYPES PROVIDED FOR

As shown in [4], LDC handles inputs about as
complicated as

students who were given a passing grade by an
instructor Jim took a graduate course from

As suggested here, most of the syntactic and semantic
sophistication of inputs to LDC are due to noun phrase
modifiers, including a fairly broad coverage of relative
clauses. For example, if LDC is told Lthat "students take
courses from instructors”, it will accept such relative
clause forms as

students who took a graduate course from Trivedi
courses Sarah took from Rogers

instructors Jim took a graduate course from
courses that were taken by Jim

students who did not take a course from Rosenberg

We summarize the modifier types distinguished by LDC
in Table 1, which is divided into four parts roughly
corresponding to pre-nominal, nominal, post-nominal,
and negating modifiers. We have included several
modifier types, most of them anaphoric, which are
processed syntactlcally. and methods for whose
semantic processing are being implemented along the
lines suggested in [7].

Most of the narmes we give to modifier types are self-
explanatory, but the reader will notice that we have
chosen to categorize verbs, based upon their
semantics, as trivial verbs, implied parameter verbs,
and operational verbs. "Trivial" verbs, which involve no
semantics to speak of, can be roughly paraphrased as
"be associated with". For example, students who take a
certain course are precisely those students associated
with the database records related to the course.
"Implied parameter” verbs can be paraphrased as a
longer "trivial” verb phrase by adding a parameter and
requisite noise words for syntactic acceptability. For

example, students who fail a course are those students
who make a grade of F in the course. Finally,
"operational” verbs require an operation to be
performed on one or more of its noun phrase
arguments, rather than simply asking for a comparison
of its noun phrase referent(s) against values in
specified fields of the physical data file. For example,
the students who outscore Jim are precisely those
students who make a grade higher than the grade of
Jim. At present, prepositions are treated semantically
as trivial verbs, so that "students in Al" is interpreted
as "students associated with records related to the Al
course”.

Table 1 - Modifier Types Available in LDC

| Syntax Semantics
f Modifier Type Example Usage Implemented | Implemented
i Ordinal the second floor yes yes
]
i Buperlative the largest office yes yes
Anaphoric better students
Comparative more desirable instructors yes no
Adjective the large rooms
classes that were small yes yes
Anaphoric
Argument-Taking Adjective | adjacent offices yes no
Anaphoric
Implied-Parameter Verb failing students yes no
Noun Modifier conference rooms yes yes
Subtype offices yes yes
Argument-Taking Noun classmates of Jim
Jim's classmates yes yes
Anaphoric
Argument-Taking Noun the best classmate” yes no
Prepositional Phrase students in CPS215 yes (yes)
Comparative Phrase students better than Jim
a higher grade thana C yes yes)
Trivial instructors who teach Al
Verb Phrase students who took Al from Smith yes yes
Implied-Parameter
Verb Phrase students who failed Al yes yes
Operational
Verb Phrase students who outscored Jim yes yes
Argument-Taking Adjective | offices adjacent to X-238 yes yes
Negations the non graduate students
(of many sorts) offices not adjacent to X-238
instructors that did not teach Al yes yes
ete.

53

11 KNOWLEDGE ACQUISITION FOR MODIFIERS

The job of the knowledge acquisition module
of LDC, called "Prep"” in Figure 1, is to*find out about
{(a) the vocabulary of the new domain and (b) the
composition of the physical data file. This paper is
concerned only with vocabulary acquisition, which
occurs in three stages. In Stage 1, Prep asks the user
to name each entity, or conceptual data item, of the
domain. As each entity name is given, Prep asks for
several simple kinds of information, as in

ENTITY NAME? section

SYNONYMS: class

TYPE (PERSON, NUMBER, LIST, PATTERN, NONE)?
pattern

GIVE 2 OR 3 EXAMPLE NAMES: cps51.12, ee34.1

NOUN SUBTYPES: none

ADJECTIVES: large, small

NOUN MODIFIERS: none

HIGHER LEVEL ENTITIES: class

LOWER LEVEL ENTITIES: student, instructor

MULTIPLE ENTITY? yes

ORDERED ENTITY? yes

Prep next determines the case structure of verbs
having the given entity as surface subject, as in

ACQUIRING VERBS FOR STUDENT:

A STUDENT CAN pass a course
fail a course
take a course from an instructor
make a grade from an instructor
make a grade in a course

In Stage 2, Prep learns the maorhological variants of
words not known to it, e.g. plurals for nouns,
comparative and superlative forms for adjectives, and
past tense and participle forms for verbs. For example,

PAST-TENSE VERB ACQUISITION

PLEASE GIVE CORRECTED FORMS, OR HIT RETURN
FAIL. FAILED >
BITE BITED > bit
TRY TRIED >

In Stage 3, Prep acquires the semantics of adjectives,
verbs, and other modifier types, based upon the
following principles.

1. Systems which attempt to acquire complez
semantics from relatively untrained users had
better restrict the class of the domains they seek
to provide an interface to.

For this reason, LDC restricts itself to a class of
domains [1] in which the important relationships
among domain entities involve hierarchical
decompositions.

2. There need not be any correlation between the type
of modifier being defined and the way in which its
meaning relates to the underlying data file.

For this reason, Prep acquires the meanings of all
user-defined modifiers in the same manner by
providing such primitives as id, the identity function;

val, which retrieves a specified field of a record; num,
which returns the size of its argument, which is
assumed to be a set; sum, which returns the sum of its
list of inputs; avg, which returns the average of its list
of inputs; and pct, which returns the percentage of its
list of boolean arguments which are true. Other user-
defined adjectives may also be used. Thus, a "desirable
instructor” might be defined as an instructor who gave
a good grade to more than half his students, where a
"good grade” is defined as a grade of B or above. These
two adjectives may be specified as shown below.

ACQUIRING SEMANTICS FOR DESIRABLE INSTRUCTOR

PRIMARY? section
TARGET? grade
PATH IS: GRADE /STUDENT /SECTION-
FUNCTIONS? good /id /pet
PREDICATE? > 50
ACQUIRING SEMANTICS FOR GOOD GRADE
PRIMARY? grade
TARGET? grade
PATH IS: GRADE
FUNCTIONS? val
PREDICATE? >=B

As shown here, Prep requests three pieces of
information for each adjective-entity pair, namely (1)
the primary (highest-level) and turget {(lowest-level)
entities needed to specify the desired adjeclive
meaning; (2) a list of functions corresponding to the
arcs on the path from the primary to the target nodes;
and finally (3) a predicate to be applied to the
numerical value obtained from the series of function
calls just acquired.

IV UTILIZATION OF THE INFORMATION ACQUIRED
DURING PREPROCESSING

As shown in Figure 1, the English-language
processor of LDC achieves domain independence by
restricting itself to (a) a domain-independent,
linguistically-motivated phrase-structure grammar [6]
and (b) and the domain-specific files produced by the
knowledge acquisition module.

The simplest file is the pattern file, which
captures the morphology of domain-specific proper
nouns, e.g. the entity type "room" may have values
such as X-238 and A-22, or "letter, dash, digits". This
information frees us from having to store all possible
field values in the dictionary, as some systems do, or to
make reference to the physical data file when new data
values are typed by the user, as other systems do.

The domain-specific dictionary file contains
some standard terms (articles, ordinals, etc.) and also
both root words and inflections for terms acquired
from the user. The sample dictionary entry

(longest Super! long {nt meeting week))

says that "longest" is the superlative form of the
adjective "long", and may occur in noun phrases whose
‘head noun refers to entities of type meeting or week.
By having this information in the dictionary, the parser
can perform "local" compatibility checks to assure the

54

.
User ———>| PREP

o g >
%Zg _ / v
S.g) ‘///‘/ \
?;3 h T \l -~
£ Pattern Dictionary Compat Macro
N< File e File File

C \

\ /
d v
\ P, |
D n
85 | User—| SCANNER |—| PARSER |—| TRANSLATOR |—| RETRIEVAL |
g J
Lo
g [+
3& | .
Augmented Text-Edited
Phrase-Structured Data
L Grammar File

Figure 1 - Overview of LDC

integrity of a noun phrase being built up, i.e. to assure
all words in the phrase can go together on non-
syntactic grounds. This aids in disambiguation, yet

avoids expensive interaction with a subsequent
semantics module.
An oppertunity to perform "non-local”

compatibility checking is provided for by the compat
file, which tells (a) the case structure of each verb, ie.
which prepositions may occur and which entity types
may fill each noun phrase "slot", and (b) which pairs of
entity types may be linked by each preposition. The
former information will have been acquired directly
from the user, while the latter is predicted by
heuristics based upon the sorts of conceptual
relationships that can occur in the "layered" domains
of interest [1]. :

Finally, the macro file contains the meanings
of modifiers, roughly in the form in which they were
acquired using the specification language discussed in
the previous section. Although this required us to
formulate our own retrieval query language 3], having
complex modifier meanings directly exceutable by the
retrieval module enables us to avoid many of the
problems typically arising in the translation from parse
structures to formal retrieval queries. Furthermore,
some modifier meanings can be derived by the system
from the meanings of other modifiers, rather than
separately acquired from the user. For example, if the
meaning of the adjective "large” has been given by the
user, the system autormatically processes "largest” and
"larger than .." by appropriately interpreting the
macro body for "large".

A partially unsolved problem in macro
processing involves the resolution of scope ambiguities

55

related to negation Interestingly, most meaningful
interpretations of phrases containing "nnn” or "not”
can be obtained by inserting the retrieval riodule's Not
command at an appropriate point in the macro body
for the modifier in question. For example,

students who were not failed by Rosenberg

might or might not be intended to include students
who did not take a course from Rosenberg. The
retrieval query commands generated by the positive
usage of "fail”, as in

students that Rosenberg failed
would be the sequence

instructor = Rosenberg;
student -> fail

so. the question is whether to introduce "not” at the
phrase level

not {instructor = Rosenberg;
student -> fail}

or instead at the verb level

instructor = Rosenberg;
not {student -> fail}

Our current system takes the literal reading, and thus
generates the first interpretation given. The example
points out the close relationship between negation
scope and the important problem of "presupposition”,
in that the user may be interested only in students who
bad a chance to be failed.

10.

11.

12.

13.

14.

. Ballard, B. and Lusth, J.

. Ballard, B,

. Ballard, B.

. Harris, L.

REFERENCES

. Ballard, B. A "Domain Class" approach to transportable

patural language processing. Cognition and Brain

Theory, 5 (1982), 3, pp. 269-287.

. Ballard, B. and Lusth, J. An English-language processing

system that "learns” about new domains. AFIPS National
Computer Conference, 1983, pp. 38-46.

The design of DOMINO: a
knowledge-based information retrieval processor for
office enviroments. Tech. Report CS-1984-2, Dept. of
Computer Science, Duke University, February 1984.

Lusth, J. and Tinkham, N. LDC-1: a
transportable, knowledge-based natural language
processor for office environments. ACM Trans. on Office

Information Systems, 2 (1984), 1, pp. 1-25.

. Ballard, B., Lusth, J. and Tinkham, N. Transportable

English language processing for office environments.
AFIPS National Computer Conference, 1984, to appear in
the proceedings.

and Tinkham, N. A phrase-structured
grammatical formalism for transportable natural
language processing. Amer. J. Computational Linguistics,
to appear.

. Biermann, A. and Ballard, B. Toward natural language

computation. Amer. J Compulational

Linguistics, 6
(1980), 2, pp. 71-86. .

. Lusth, J. Concéptual Information Retrieval for Improved

Natural Language Processing (Master's Thesis). Dept. of
Computer Science, Duke University, February 1884.

. Lusth, J. and Ballard, B. Knowledge acquisition for a

natural language processor. Conference on Artificial
Intelligence, Oakland University, Rochester, Michigan,
April 1883, to appear in the proceedings.

Bronnenberg, w., Landsbergen, s., Scha, R.,
Schoenmakers, W. and van Utteren, E. PHLIQA-1, a
question-answering system for data-base consultation in
natural English. Philips tech. Rev. 38 (1978-79), pp.
229-239 and 269-284.

Codd, T. Seven steps to RENDEZVOUS with the casual
user. In Data Base Management, J. Kimbie and K
Koffeman (Eds.), North-Hoiland, 1974.

Codd, T. RENDEZVOUS Version 1: An experimental
English-language query formulation system for casual
users of relational data bases. IBM Research Report
RJ2144, San Jose, Ca., 1978.

Finin, T., Goodman, B. and Tennant, H. JETS: achieving
completeness through coverage and closure. ht. J. Conf.
on Artifictal ntelligence, 19789, pp. 275-281.

Harris, L. User-oriented data base query with the Robot
natural language system. Mnt. J. Man-Machine Studies, 9
(1977), pp. 697-713.

The ROBOT system: natural language
processing applied to data base query. ACHM National
Conference, 1978, pp. 185-172.

. Hendrix, G. Human engineering for applied natural

language processing. Mht. J Conf. on Artificial
Intelligence, 1977, pp. 183-191.

56

17.

18.

19.

20.

21.

Q2.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Hendrix, G., Sacerdoti, E., Sagalowicz, D. and Slocum, J.
Developing a natural language interface to complex data.
ACH Trans. on Database Systems, 3 (1978), 2, pp. 105-147.

Lehmann, H. Interpretation of natural language in an
information system. IBM J. Res. Dev. 22 (1978), 5, pp.
560-571.

Plath, W. REQUEST: a natural language question-
answering system. IBM J. Res. Dev., 20 (1976), 4, pp. 326-
336.

Thompson, F. and Thompsen, B. Practical natural
language processing: the REL system as prototype. In
Advances in Computers, Vol. 3, M. Rubinoff and M. Yovits,
Eds., Academic Press, 1975.

Waltz, D. An English language question answering system
for a large relational database. Comm. ACM 21 (1978), 7,
pp. 526-539.

Woods, W. Semantics and quantification in natural
language question answering. In Advances in Compulers,
Vol. 17, M. Yovits, Ed., Academic Press, 1978.

Woods, W., Kaplan, R. and Nash-Webber, B. The Lunar
Sciences Natural Language Mformation System: Final
Report. Report 2378, Boit, Beranek and Newman,
Cambridge, Mass., 1872.

Ginsparg, J. A robust portable natural language data
base interface. Conf. on Applied Natural Language
Processing, Santa Manica, Ca., 1983, pp. 25-30.

Grosz, B. TEAM: A transportable natural language
interface system. Conf. on Applied Natural Language
Processing, Santa Monica, Ca., 1983, pp. 39-45.

Haas, N. and Hendrix, G. An approach to acquiring and
applying knowledge. First Nat. Conf. on ifict
htelligence, Stanford Univ., Palo Alto, Ca., 1980, pp. 235-
239.

Hendrix, G. and Lewis, W. Transportable natural-language
interfaces to databases. Proc. 19th Annual Meeting of the
ACL, Stanford Univ., 1981, pp. 159-1685.

Mark, W. Representation and inference in the Consul
system. Int. Joint Conf. on Artificial ntelligence, 1881.

Thompson, B. and Thompson, F. Introducing ASK, a
simple knowledgeable system. Conf. on Applied Natural
Language Processing, Santa Monica, Ca., 1983, pp. 17-24.

Thompson, F. and Thompson, B. Shifting to a higher gear
in a natural language system. National Computer
Conference, 1981, 657-662.

Wilczynski, D. Knowledge acquisition in the Consul
system. Int. Joint Conf. on Artificial Intelligence, 1981.

