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ABSTRACT

Natural languages are often assumed to be constrained so that they
arc cither casily learnable or parsable, but fow studics have
investigated  the conncection between  these two  “functional”
demands. Without a formal model of parsability or learnability, it is
difficult to determine which is more “dominant™ in fixing the
propertics of natural languages. In this paper we show that if we
adopt one precise model of “casy™ parsability, namely, that of
bounded context parsability. and a precise model of “easy”
learnability. namely, that of degree 2 learnability, then we can show
that certain families of grammars that meet the bounded context
parsability condition will also be degree 2 Icarnable. Some
implications of this result for lcarning in other subsystems of
linguistic knowledge are suggcsted.1

I INTRODUCTION

Natural ]anguagés are usually assumed to be constrained so that
they are both learnable and parsable. But how are these two
functional demands related computationally? With some
exceptions.? there has been little or no work connecting these two
key constraints on natural languages. even though linguistic
rescarchers conventionally assume that learnability somehow plays
a dominant role in “shaping™ language, while computationalists
usually assume that cfficient processability is dominant. Can these
two functional demands be reconciled? There is in fact no a priori
reason to believe that the demands of learnability and parsability
are necessarily compatible. After all. lcarnability has to do with the
scattering of possible grammars with respect tu evidence input to a
learning procedure. This is a property of a family of grammars.
Efficient parsability, on the other hand, is a property of a single
grammar. A family of grammars could be easily learnable but not
easily parsable, or vice-versa. It is easy to provide examples of both
sorts.  For example, there are finite collections of grammars
generating non-recursive languages that are casily learnable (just
use a disjoint vocabulary as triggering evidence to distinguish
among them). "Yet by definition these languages cannot be casily
parsable. On the other hand as is well known even the class of all

1. This work has been zarried out at the MIT Artificial Intelligence Laboratory.
Support for the Laboratory's artificial intelligence rescarch is provided in part by the
Defense Advanced Rescarch Projects Agency.

2. Sce Berwick 1980 for a sketch of the connections between learnability and
parsability.
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finite languages plus the universal infinite language covering them
all is not learnable from just positive evidence (Gold 1967). Yet
cich of these languages is finite state and hence cfficiently
analyzable.

This paper cstablishes the first known results formaily linking
cfficient parsability to efficient lcarnability. it conncets a particular
model of cfficient parsing. namely. bounded context parsing with
lookahead as developed by Marcus 1980. to a particutar model of
language acquisition, the Bounded Degree of Error (BDIE) model of
Wexler und Culicover 1980.  ‘The key result: bounded context
parsability implies “casy™ learnability. Here, “casily lcarnable”
means “learnable from simple, positive (grammatical) sentences of
bounded degree of embedding.” In this case then, the constraints
required to guarantee casy parsability, as enforced by the bounded
context constraint, are at least as strong as those required for casy
lcarnability. ‘Ihis means that if we have a language and associated
grammar that is known to he parsable by a Marcus-type machine,
then we alrcady know that it meets the constraints of bounded
degree learning, as defined by Wexler and Culicover.

A number of cxtensions to the learnability-parsability
conncection arc also suggested. Onc is to apply the result to other
linguistic subsystems. notably, morphological and phonological rule
systems. Although these subsystems are finite state. this does not
automatically imply casy learnability. as Gold (1967) shows. In fact,
identification is still computationally intractable -- it is NP-hard
(Gold 1978). taking an amount of cvidence exponentially
proportional to the number of states in the target finite state system.
Since a given natural language could have a morphological system
of a few hundred or cven a few thousand states (Kimmo 1983, for
Finnish), this is a serious problem. Thus we must find additional
constraints to make natural morphological systems tractably
learnable.  An analog of the bounded context model for
morphological systems may suffice. If we require that such systems
be k-reversible, as defined by Angluin (in press), then an efficient
polynomial time induction algorithm exists.

To summarize, what is the importance of this result for
computational linguistics?

o It shows for the first time that
parsability is swronger constraint than
learnability. at lcast given this particular
way of defining the comparison. ‘Thus
computationalists may have been right
in focusing on cfficient parsability as a
metric for comparing theories.



o It provides an explicit criterion for
learnability. “This criterion can be tied to
known grammuar and language class
results. For cxample. we can say that the

language a"bRc? will be easily learnable,
since it is bounded context parsable (in
an eatended sensc).

o I formially connects the Marcus model
for parsing to a modet of acquisition. 1t
pinpoints the relationship of the Marcus
parser o the LR(k) and bounded context
parsing models.

o It suggoests criteria for the learnability
of phonological  and  morphological
systems.  In particular, the notion of
k-reversibility. the analog of bounded
context  parsability  for  finite  state
systems. may play a key role here. The
reversibility  constraint - thus  lends
learnability  support o computational
frameworks that proposc “reversible™
rules (such as that of Koskenniemi 1983)
versus  those that do not (such as
standard gencrative approaches).

This paper is organized as follows. Section 1 reviews the basic
definitions of the bounded context model for parsing and the
bounded degree of error model for learning. Scction 2 sketches the
main result, leaving aside the details of certain lemmas.  Section 3
extends the bounded context--bounded degree of crror model to
morphological and phonological systcms, and advances the notion
of k-reversibility as the analog of bounded context parsability for
such finite state systems.

[T BOUNDED CONTEXT PARSABILITY AND
BOUNDED DEGREE OF ERROR LEARNING

To begin, we define the models of parsing and learning that will be
used in the sequel. The parsing model is a variant of the Marcus
parser. ‘The learning theory is the Degree 2 theory of Wexler and
Culicover (1980). The Marcus parser defines a class of languages
(and associated grammars) that are casily parsable; Degree 2 theory,
a class of languages (and associated grammars) that is easily
learnable.

To begin our comparison, we must say what class of “casily
learnable™ languages Iegree 2 theory defines. The ain of the
theory is to define constraints such that a family of transformational
grammars will be learnable from “simple” data; the learning
procedure can get positive (grammatical) example sentences of
depth of embedding of two or less (sentences up to two embedded
sentences. but no morc). The key property of the transformational
family that establishes learnability is dubbed Bounded Degree of
Error. Rouvghly and intuitively, BDE is a property related to the
“separability” of languages and grammars given simple data: if
there is a way for the learner o tell that a currently hypothesized
language (and grammar) is incorrect, then there must be some
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simnle sentence that reveals this - afl languages in the family must
be separable by simple sentences.

‘The way that the learner can tell that a currendy hy pothesized
grammar is wrong given some sample sentence is by trying to see
whether the current grammar can miap from a deep structure for the
sentence to the observed sample sentence. That is, we imagine the
learner being fed with a series of base (deep structure)-surface
sentence (denoted “h, s7) pairs. (See Wexier and Culicover 1980 for
details and justification of this approach, as well as i weakening of
the requirement that base structures be availuble: see Berwick 1980
1982 for an independemly developed computational version.) If the
learner’s current transformational component, ‘l‘]. can map from b

to s, then alt is well. If not. and 'l'](b)= s‘ does not cqual s. then a
detectable error has been uncovered.

With this background we can provide a precise definition of the
BDE property:

A family of transformationally-generated languages L
possesses the BDE property iff for any base grammar B
(for languages in 1.} there exists a finite integer U, such
that for any possible adult transfurmational component
A and learner component C, if A and C disagree on any
phrase-marker b gch{ulcd by B. then they disagree on

some phrase-marker b generated by B, with b of degree
at most U. Wexler and Culicover 1980 page 108.

If we substitute 2 for U in the theorem, we get the Degree 2
constraint.

Once BDE is cstablished for some family of languages, then
convergence of a learning procedurc is casy to proved. Wexler and
Culicover 1980 have the details, but the key insight is that the
number of possible errors is now bounded from above.

The BDE property can be defined in any grammatical
framework, and this is what we shall do here. We retain the idea of
mapping from some underlying “base™ structure to the surface
sentence.  (If we arc parsing, we must map from the surface
sentence to this underlying structure) The mapping is not
necessarily transformational. however; for cxample, a set of
context-free rules could carry it out. In this paper we assume that
the mapping from surface sentences to underlying structures is
carried out by a Marcus-type parser. The mapping from structure
to sentence is then defined by the inverse of the operation of this
machine. This fixes one possible target language. (The full version
of this paper defines this mapping in full.)

Note further that the BDE property is defined not just with
respect to possible adult target languages, but also with respect to
the distribution of the learner's possible guesses. So for example,
even if there were just ten target languages (defining 10 underlying
grammars), the BDE property must hold with respect to those
languages and any intervening learner languages (grammars). So
we must also define a family of languages to be acquired. This is
donc in the next section.

BDE, then, is our critcrial property for casy learnability. Just
those familics of grammars that possess the BDE property (with
respect o a learner's guesses) are casily learnable.

Now let us turn 0 bounded context parsability (BCP). ‘The
definition of BCP used here an extension of the standard definition
as in Aho and Ullman 1972 p. 427, Intuitively. a grammar is BCP if
it is “hackwards deterministic™ given a radius of & tokens around



cvery  parsing  decision.  That is. it is puossible to find
deterministically the production that applied at a given step in a
derivation by examining just a bounded number of tokens (fixed in
advance) to the left and right at that point in the derivation,
FFollowing Aho and Ullman we have this definition for bounded
right-context granmars:

G is bounded right-context if the following four conditions:

(1) S=aAw=>afu and
(2)S=>yBy=>y8x = a'B¥
are rightmost derivations in the grammar;

(3) the length of x is less than or cqual w the length of ¢
and

(4) the last 2 symbols of « and o’ coincide,
and the first # symbols of « and ¢ coincide

imply that A=B, a'=y, and ¢y =x.

We will use the term “bounded context™ instcad of “bounded
right-context.™ To cxtend the dcfinition we drop the requirement
that the derivation is rightmost and use instcad non-canonical
derivation sequences as defined by Szymanski and Williams (1976).
This model corresponds to Marcus's (1980) usc of attention shifis to
postponc parsing decisions until more right context is examined.
The effect is to have a lookahead that can include nonterminal
names like NP or VP. For example, in order to successfully parse
Have the studen:ts take the exam, the Marcus parser must dclay
analyzing have until the full NP the students is processed. Thus a
canonical (rightmost) parse is not produced, and the lookahcad for
the parser includes the scquence NP--take, successfuily
distinguishing this parse from the NP--taken scquence for a yes-no
question., This cxtension was first proposed by Knuth (1965) and
developed by Szymanski and Williams (1976). In this model we can
postpone a canonical rightmost derivation some fixed number of
times « This corresponds to building ¢ complcte subtrees and
making these part of the lookahead before we rcturn to the
postponced analysis.

The Marcus machine (and the modcl we adopt here) is not as
general as an LLR(k) type parscr in onc key respect.  An LR(k)
parser can use the entire left context in making its parsing decisions.
(It also uses a bounded right context, its lookahead.): The LR(k)
machine can do this because the entire left context can be stored as
a regular set in the finite control of the parsing machine (sce Knuth
1965). ‘I'hat is, LR(k) parscrs make use of an encoding of the left
context in order to keep track of what w do. ‘The Marcus machine
is much morce limited than this. 1.ocal parsing decisions arc made
by examining strictly /ireral contexts around the current locus of
parsing contexts. A finite state encoding of left context is not
permitted.

The BCP class also makes sense as a proxy for “efficiently
parsiable” because all its members are analyzable in time lincar in
the length of their input sentences, at least if the associated
grammars are context-free. It the grammars are not context-free,
then BCP members are parsable in at worst quadratic (# squared)
time.  (See Szymanski and Williams 1976 for proofs of these
results.)
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111 CONNECTING PARSABILITY AND LLEARNABILITY

We can now at least formalize our problem of comparing
learnability and parsability. The question now becomes: What is
the relationship between the BDE property and the BCP property?
Intuitively, a grammar is BCP if we can always tell which of two
rules applied in a given bounded context. Also intuitively, a family
of grammars is BDE if. given any two gramunars in the family G and
G’ with different rules R and R’ say. we can tell which rule is the
correct one by looking at two derivations of bounded degree, with R
applying in one and yiclding surface string s, and R" applying in the
other yiclding surface string s'. with s not cqual to s”. This property
must hold with respect to all possible adult and learner grammars.
So a space of possible target grammars must be considered. The
way we do this is by considering some “fixed” grammar G and
possible variants of G formed by substituting the production rules
in G with hypothesized alternatives.
The theorem we want to now prove is:

If the grammars formed by augmenting G with possible
hypothesized grammar rules arc BCP, then that family is
also BDE,

The theorem is established by using the BCP property to directly
construct a small-degree phrase marker that meets the BDE
condition. We select two grammars G, G’ from the family of
grammars. Both are BCP, by definition. By assumption, there is a
detectable error that distinguishes G with rule R from G’ with rule
R’. Letus say that Rule R is of the form A=>a; R’ is B=>a’.

Since R’ determines a detectable error, there must be a
derivation with a common scntential form ¢ such that R applics to
o and eventually derives sentence s, while R* applies to ¢ and
eventually derives §* different from s. The number of steps in the
derivation of the the two sentences may be arbitrary, however.,
What we must show is that there are two derivations bounded in
advance by some constant that yicld two different sentences.

The BCP conditions state that identical (m.n) contexts imply
that A and B arc equal. 'Taking the contrapositive, if A and B are
uncqual, then the (m,n) context must be nonidentical. ‘This

establishes that BCP implics (m.n) context error (lClCCl:lhilily."

We are not yet done though. An (m.n) context detectable error
could consist of terminal and nonerminal clements, not just
terminals (words) as required by the detectable crror condition. We
must show that we can extend such a detectable error to a surface
sentence detectable error with an underlying structure of bounded
degree. An casy lemma cstablishes this.

If R" is an (m.n) context detectable crror, then R’ is
bounded degree of error detectable.

The proof (by induction) is omitted: only a sketch will be given
here. Intuitively, the reason is that we can extend any nonterminals
in the error-detectable (m,n) context to some valid surface sentence
and bound this derivation by some constant fixed in advance and
depending only on the grammar.  This is because unbounded
derivations arc possible only by the repetition of nonterminals via
recursion; since there are only a finite number of distinct
nonterminals. it is only via recursion that we can obtain a derivation
chain that is arbitrarily deep. But. as is well known (compare the
proof of the pumping lemma for context-free grammars), any such
arbitrarily deep derivation producing a valid surface sentence also
has an associated truncated derivation, bounded by a constant



dependent on the grammar. that viclds a valid sentence of the
language. Thus we can convert any (m.n) context detectable error
to a bounded degree of error sentence. This proves the basic result.

As an application, consider the strictly context-sensitive
language a"b"c™. This language has a grammar that is BCP in the
extended sense (Szymanski and Williams 1976). The family of
grammars obtained by replacing the rules of this BCP grammar by
alternative rules that are also BCP (including the original grammar)
meets the BDE condition. This result was  cstablished
independently by Wexler 1982,

1V EXTENSIONS OF THE BASIC RESULT

In the domain of syntax, we have scen that constraints ensuring
cfficient parsability also guarantee casy learnability. This result
suggests an extension to other domains of linguistic knowledge.
Consider morphological rule systems.  Several recent models
suggest finite state transducers as a way to pair lexical (surface) and
underlying forms of words (Koskenniemi 1983; Kaplan and Kay
1983). While such systems may well be cfliciently analyzable, it is
not so well known that casy learnability docs not follow directly
from this adopicd formalism. To learn cven a finite state system
onc must examince all possible state-transition combinations. ‘This is
combinatorially explosive, as Gold 1978 proves. Without additional
constraints, {inite transducer induction is intractable.

What is needed is some way to localize errors; this is what the
bounded degree of error condition doces.

Is there an analog of the the BCP condition for finite state
systems that also implies casy learnability? "Fhe answer is yes. ‘The
assence of BCP is that derivations are backwards and forwards
deterministic within local (m,n) contexts. But this is precisely the
notion of k-reversibility, as defined by Angluin (in press). Angluin
shows that k-reversible awomata have polynomial time induction
algorithms. in contrast to the result for general finite statc automata.
It then becomes important to see if k-reversibility holds for current
theories of morphological rule systems. ‘The full paper analyzes
both “classical”™ generative theories (that do not scem to meet the
test of reversibility) and recent transducer theories.  Since
k-reversibility is a sufficient, but cvidently not a necessary
constraint  for lcarnability. there could be other conditions
guarantecing the learnability of finite state systems. For instance,
One of these, the strict cycle condition in phonology, is also
cxamined in the full paper. We show that the strict cycle also
suffices 10 meet the BDE condition.

In short, it appears thit at least in terms of one framework in which
a formal comparison can be made, the same constraints that forge
cificient parsability also ensure casy lcarnability.

3 Onc of the nther three BCP conditions could alsa be violdted, but (hese are
Wo assume the existence of dedvations miceting

asumied 1ve DY asantic
conditions (1 and (2 in the extended reme, a8 well as condition (3).
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