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AIISTRACI" 

Natural langt~ages are often assumed to be constrained so that they 
are either easily learnable or parsdble, but few studies have 
investigated the conrtcction between these two "'functional'" 
demands, Without a fonnal model of pamtbility or learnability, it is 
difficult to determine which is morc "dominant" in fixing the 
properties of natural languages. In this paper we show that if we 
adopt one precise model of "easy" parsability, namely, that of  
boumled context parsabilio,, and a precise model of "easy" 
learnability, namely, that of degree 2 learnabilio" then we can show 
that certain families of grammars that meet the bounded context 
parsability ct~ndition will also be degree 2 learnable. Some 
implications of this result for learning in other subsystems of 
linguistic knowledge are suggested. 1 

I INTRODUCTION 

Natural languages are usually assumed to be constrained so that 
they arc both learnable and par'sable. But how are these two 
functional demands related computationally? With some 
exceptions, 2 there has been little or no work connecting these two 
key constraints on natural languages, even though linguistic 
researchers conventionally assume that learnability somehow plays 
a dominant role in "shaping" language, while eomputationalists 
usually assume that efficient prncessability is dominant. Can these 
two functional demands be recrtnciled? There is in fact no a priori 
reason to believe that the demands of learnability and parsability 
are necessarily compatible. After all. learuability has to do with the 
scattering of possible grammars with respect tu evidence input to a 
learning procedure. This is a property of a family of grammars. 
Efficient parsability, on the other hand. is a property of a single 
grammar. A family of grammars could be easily learnable but not 
easily parsable, or vice-versa. It is easy to provide examples of both 
sorts. For example, there are finite collections of grammars 
generating non-rccursivc languages that are easily learnable (just 
use a disjoint vocabulary as triggering evidcncc to distinguish 
among them), Yet by dcfinition these languages cannot be easily 
parsable. On the other hand as is wcll known even the class of all 

1. This v,'ork has h~n ~rried out at the MIT Artificial Intelliger.¢e I,aboratory. 
Support for the l.aborator3"s artificial intdligenc¢ research ~s provided m part by the 
Dcf~:nse Advanced Research Projects Agency. 
2. See Ik~r~iek 1980 for a sketch of the connections between learnability and 
parsability. 

Iinite languages plus the tmiver~d inlirtite language coxcring them 
all is not learnable from just positive evidence (Gold 1967). Yet 
each of these languages is linite state and hence efficiently 
analyzable. 

'lhis paper establishes tile first known resolts lbnnally linking 
efficient par~tbility to efficient Icarnability. It connects a particular 
model of efficient parsing, namely, bounded context pal.'sing with 
lookahead as developed by Marcus 1980. to a particular model of 
language acqnisilitm, the Bounded l)egree of Error (Ill)E) model of 
Wexlcr and Culicovcr 1980. The key result: bounded context 
parsability implies "'easy" learnability. Here, "easily learnable" 
means "'learnable from simple, positive (grammatical) sentences of 
bounded dcgrec of embedding." In this case then, the constraints 
required to guarantee easy parsability, as enforced by the bounded 
context eortstraJllt, are at least as strong as those required for easy 
learnability. This means that if we have a language and associated 
grammar that is known to be parsable by a Marcus-type machine. 
then we already know that it meets the constraints of bounded 
degree learning, as defined by Wcxler and Culicover. 

A number of extensions to the learnability-parsability 
connection are also suggested. One is to apply the result to other 
linguistic subsystems, notably, morphological and phonological rule 
systems. Although these subsystems are finite state, this does not 
automatically imply easy learnability, as Gold (1967) shows. In fact, 
identification is still computationally intractable -- it is NP-hard 
(Gold 1978), taking an amount of evidence exponentially 
proportional to the number of states in the target finite state system. 
Since a given natural language could have a morphological system 
of a few hundred or even a few thousand states (Kimmn 1983, for 
Finnish), this is a serious problem, Thus we must find additional 
constraints to make natural morphological systems tractably 
learnable. An analog of the bounded context model for 
morphological systems may suffice. If we require that such systems 
be k-reversible, as defined by Angluin (in press), then art efficient 
polynomial time induction algorithm exists. 

To summarize, what is the importance of this result for 
computational linguistics? 

o It shows for the first time that 
parsability is stronger constraint titan 
learnability, at least given this particular 
way of defining the comparison. Thus 
computationalists may have been right 
in tbcusing on efficient parsability as a 
metric for comparing theories. 
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o It provides an explicit criterion for 
learnability. This criterion can bc tied to 
known grammar and language class 
results. For example, we can .say that the 

language anbncn will be easily learnable, 
since it is hounded context parsablc (in 
an extended sense). 

u It Ibrlnall.~ cnnnects the Marcus model 
fi~r p.nsing to a model of acquisition. It 
pinf~oints the rcl,ttionship of tile Marcus 
parser ~o the 1.1~,( k I and btmndcd context 
p,trsmg models. 

o It suggests criteria fi~r tile learnability 
~f phomflogical and rnorphulugical 
systems. In particular, fl~c notitm of 
k-reversibility, the anah~g of bounded 
context par.~d'~ility Ibr Iinite slaue 
s3,stems, may play a key nile here. The 
reversibility constraint thus lends 
learnahilit.v support to computational 
frameworks that propose "'reversible" 
rules (such as that of Koskcnnicmi 1983) 
versus those that do not (such as 
standard generative approaches). 

This paper is organized as follows. Section l reviews the basic 
definitions of the bounded context model for parsing and the 
bounded degree of error model for learning. Section 2 sketches the 
main result, leaving aside the details of certain lemmas. Section 3 
extends the bounded context--bounded degree of error model to 
morphological and phtmological systems, and advances the notion 
of k.reversibility as the analog of bounded context parsability for 
such finite state sysiems. 

1I IIOUNDED CONTEXT PARSAIflI.ITY AND 
I)OUNDED DEGREE OF EI~,ROR I.EARNING 

To begin, we define the models of parsing and learning that will be 
used in the sequel. The parsing model is a variant of the Marcus 
parser. "I11e learning theory is the Degree 2 theory of  Wexler and 
Culicover (1980). The Marcus parser defines a class of  languages 
(and associated grammars) that are easily pa~able; Degree 2 theory, 
a class of  languages (and asstx:iated grammars) that is easily 
learnable. 

To begin our comparison, We must say what class of "easily 
learnable" languages l)egrec 2 theory defines. The aim of the 
theory is to define constraints such that a family of transfonnational 
grammars will be learnable from "'simple" data; the learning 
procedure can get positive (grammatical) example sentences of 
depth of  embedding of  two or tess (sentences up to two embedded 
sentences, but no more). The key property of the translbrmational 
family that establishes learnability is dubbed Bounded Degree of  
I?rror. Roughly and intuitively. BI)E is a property related to the 
"separability" of langu:tges and grammars given simple data: if 
there is a way for the learner to tell that a currently hypnthesized 
language {and grammar) is incorrect, then there must be some 

simple scntc'~ce that reveals this -- all languages in the family must 
be separable b',' simple sentences. 

The wa.~ that the learner can tell that a currentl~ I1H~othesizcd 
grammar is wrong given some sample sentence is by trying to see 
whether the current granlmar can nl~lp from a deep structure for the 
sentence to the observed ~mple sentence. That is, we imagine the 
learner being li~d with a series of hase (deep structnre)-st, rface 
sentence (denoted "'b, s") pairs. (See Wexler and Culicover 1980 fur 
details and justification of this approach, as well as a weakening of 
the requirement that base structures be available: see Berwick 1980 
1982 for an independently developed conlputational version.) Ifthe 
learner's current transformational component. '1 I, can map from b 

to s. then all is well. If not. and Tl(b)=s does not equal s. then a 

detectable error has been uncovered. 
With this background we can provide a precise definition of the 

BI)E property: 

A family of transrormationally-generated languages k 
possesses the BI)t- property iff for any base grammar B 
(fur languages in 13 there exists a finite integer U. such 
that for an). possible adult transformational component 
A and learner component C, if A and C disagree on any 
phrase-marker b generated by B. then they disagree on 

some phrase-marker b generated by B, with b' ofdegree 
at most U. Wexler and Culicover 1980 page 108. 

If we substitute 2 for U in the theorem, we get the Degree 2 
constraint. 

Once IIDE is established for some family of languages, then 
convergence of a learning procedure is easy to proved. Wexler and 
Culicover 1980 have the details, but the key insight is that the 
number of possible errors is now bounded from above. 

The BDE property can be defined in any grammatical 
framework, and this is what we shall do here. We retain the idea of 
mapping from some underlying "base" structure to the surface 
sentence. (If we are parsing, we must map from the surface 
sentence to this underlying structure.) The mapping is not 
necessarily transformational, however; for example, a set of  
context-free rules could carry it out. In this paper w? assume that 
the mapping from surface sentences to underlying structures is 
carried out by a Marcus-type parser. The mapping from structure 
to sentence is then defined by the inverse of the operation of this 
machine. This fixes one possible target language. (The full version 
of  this paper defines this mapping in full.) 

Note further that the BDE property is defined not just with 
respect to possible adult target languages, but also with respect to 
the distribution of the learner's possible guesses. So for example, 
even if there were just ten target languages (defining 10 underlying 
grammars), the BDE property must hold with respect to those 
languages and any intervening learner languages (grammars). So 
we must also define a family of languages to be acquired. This is 
done in the next section. 

BI)E, then, is our criterial property for easy learnability. Just 
those lhmilies of grammars that possess the BI)E property (with 
respect to a learner's guesses) are easily learnable. 

Now let us I11rn to bounded context parsal)ilit). (llCl>). The 
definition ~)1" IICI ) used here an extension t)f the standard delinition 
as in Aht)and Lillmall 1972 p. 427. Intuitively. a grammar is IICP if 
it is "'backwards deterministic" given a radius nf k tokens around 
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cvcry parsing decision. That is. it is possible to find 
dcte.rmiuistically the production that vpplied at a given step in a 
derivation by examining just a btnmded mnuber of tokens (fixed in 
advance) to the left and right at that point in the derivation. 
Following Aho and UIIman we have this definition for bounded 
right-context grammars: 

G is bounded right-context if the following four conditions: 

(1) S=:'aA,~=:'a#~ and 

(2) S=%,Bx=~-~,~x = a'B,b 
are rightmost derivations in the grammar; 

(3) the length o fx  is less than or equal to the length of,/, 
and 

(4) the last m symbols of  a and a' coincide, 
and the first n symbols of,., and ~, coincide 

imply that A=B,  a'=v, and ,/' = x. 

We will u ~  the term "bounded context" instead of  "bounded 
right-context." To extend the definition we drop the requirement 
that the derivation is rightmost and use instead non-canonical 
derivation sequences as defined by Szymanski and Williams (1976). 
This model corresponds to Marcus's (1980) use of attention shi.Bs to 
postpone parsing decisions until more right context is examined. 
The effect is to have a lookahead that can include nonterminai 
names like NP or VP. For example, in order to successfully parse 
Have the students take the exam, the Marcus parser must delay 
analyzing hare until the full NP the students is processed. Thus a 
canonical (rightmost) parse is not produced, and the lookahead for 
the parser includes the sequence NP--take, successfully 
distinguishing this parse from the NP--taken sequence for a yes-no 
question. This extension was first proposed by Knuth (1965) and 
developed by Szymanski and Williams (1976). In this model we can 
postpone a canonical rightmost derivation some fixed number of  
thnes t. This corresponds to building t complete subtrees and 
making these part of  the lookahead before we return to the 
postponed analysis. 

The Marcus machine (and the model we adopt here) is not as 
general as an l.R(k) type parser in one key respect. An I.R(k) 
parser can use the entire left context m making its parsing decisions. 
(It alst) uses a bounded right context, its h)okahead.)The 1.R(k) 
,nachine can do this because the entire left context can be stored as 
a regular set in the finite control of the parsing machine (see Knuth 
1965). That is, l.R(k) parsers make use uf an encoding of the left 
context in order to keep track of what to do. The Marcus machine 
is much mure limited than this. l.ocal parsing decisions arc made 
by examining strictly litend contexts an)und file current locus of 

parsing contexts. A finite state encoding of left context is not 
permitted. 

The BCP class also makes sense its a pn)xy for "'efficiently 
parsable" because all its members are analyzable in time linear in 
the length t)[" their input sentences, at least if file associated 
gr~lllllllars are COlttext-fiee. If die  ~r~lllllTlars are nol etmtext-free. 
then BCP members are parsahle in at ~orst quadratic (n squared) 
time. (See Szymanski and Williams 1976 fur proofs of these 
results.) 

III CONNIT_q'ING PARSABII.ITY AND I.EARNABII.ITY 

We can now at least furmalize our problem of  comparing 
learnability and parsability. The question now becomes: What is 
the relationship between the Ill)t" property and the BCP property? 
Intuitively, a grammar is BCP if we can always tell which of two 
rules applied in a given bounded context. Also intuitively, a family 
of grammars is III)E il: given any two grammars in the family G and 
G" with different roles R and R" say. we can tell which rule is the 
correct one by looking at two derivations ofbotmded degree, with R 
applying in one and yielding surface string s, and R" applying in the 
udder yielding surface string s'. with s not equal to s'. This property 
must  hold with respect to all possible adult and learner grammars. 
So a space of possible target grammars must be considered. The 
way we do this is by considering some '*fixed" grammar G and 
possible variants of  G formed by substituting the production rules 
in G with hypothesized alternatives. 

The theorem we want to now prove is: 

If the grammars formed by augmenting G with possible 
hypothesized grammar rules arc BCP. then that family is 
also BDE. 

The theorem is established by using the BCP property to directly 
construct a small-degree phrase marker that meets the BDE 
condition. We select two grammars G, G'  from the family of  
grammars. Both are BCP, by definition. By assumption, there is a 
detectable error that distinguishes G with rule R from G'  with rule 
R'. Letus  .say that Rule R is of  the form A ~ a ;  R' is B=*'a'. 

Since R' determines a detectable error, there must be a 
derivation with a common sentential form ,t, such that R applies to 
,I, and eventually derives sentence s, while R' applies to ¢, and 
eventually derives s' different from s. The number of  steps in the 
derivation of the the two sentences may be arbitrary, however. 
What we must  show is that there are two derivations bounded in 
advance by some constant that yield two different sentences. 

The BCP conditions state that identical (re.n) contexts imply 
that A and B are equal. Taking the contrapositive, if A and B are 
unequal, then the 0n,n) context must be nonidentical. This 

establishes that BCP implies (re.n) context error detectability. 3 
We are not yet done though. An (Ul.U) context detectable error 

could consist of tenninal and nonterminal elements, not just 
terminals (words) as required by the detectable error condition. We 
must  show that we can extend such a detectable error to a surface 
sentence detectable error with an underlying structure of bounded 
degree. An easy lemma establishes this. 

If R' is an (m.n) context detectable error, then R' is 
bounded degree of error detectable. 

The proof (by induction) is omitted: only a sketch will be given 
here. Intuitively. the reason is that ~e can extend any nonterminals 
in the error-detectable (m,n) context to some valid surface sentence 
and bound this derivation by some constant fixed in advance and 
depending only on the grammar. This is because unbounded 
derivations are possible only by the repetitiort of nontermirmls via 
recursion: since there are only a finite number of distinct 
nonterminals, it is only via recursion that wc can obtain a derivation 
chain that is arbitrarily deep. But. as is well knuwn (compare the 
proof of the pumping lemma for context-free grammars), any such 
arbitrarily deep derivation producing a valid surface sentence also 
has an associated truncated derivation, bounded by a constant 
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dependent on the grammar, that yields a valid sentcnce of the 
language. Thus we can convert any (re.n) context detectable error 
to a bounded degree of error sentence. This proves the basic result. 

As an application, consider the strictly context-sensitive 

language anbnc n. This language has a grammar that is BCP in the 
extended sense (Szymanski and Williams 1976). The family of 
grammars obtained by replacing the rules of this IICP grammar by 
alternative rules that are also 11CP (including the original grammar) 
meets the BDE condition. This result was established 
independently by Wexler 1982. 

IV EXTENSIONS OF THE BASIC RESULT 

In the domain of syntax, we have seen that constraints ensuring 
efficiem parsability also guarantee easy lcarnability. This result 
suggests an extension to other domains of linguistic knowledge. 
Consider morphological rule systems. Several recent models 
suggest finite state transducers as a way to pair lexical (surface) and 
underlying titans of words (Koskenniemi 1983: Kaplan and Kay 
1983). While such systems may well be efficiently analyzable, it is 
not so ~ell known that easy learnability does not follow directly 
from this adopted formalism. To learn even a finite state system 
one must examine all possible state-transition combinations. This is 
combinatorially explosive, as Gold 1978 proves. Without additional 
constraints, finite trzmsducer induction is intractable. 

What is needed is some way to localize errors: this is what the 
bounded degree ofern)r condition does. 

Is there ill) an;dog tlf the the IICP condition for finite state 
systems that also implies easy learnahility? The answer is yes. The 
essence of BCP is that derivations are backwards and forwards 
deterministic within local (m.n) contexts. But this is precisely the 
notion of k-reversibilit.I; as defined by Angluin (in press). Angluin 
shows that k-reversible automata have polynomial time induction 
algorithms, in contrast to the result for general finite state automata. 
It then becomes important to .see if k-reversibility holds for current 
theories of morphological rule systems. The fifll paper analyzes 
bt)th "'classical" generative theories (that do not seem to meet the 
test of reversibility) and recent transducer theories. Since 
k-reversibility is a sufficient, but evidently not a necessary 
constraint fi,r Icarnability. there could be other conditions 
guaranteeing the Ic;,rnability of finite state systems. For instance. 
One of the~, the strict cycle condition in phonology, is also 
examined in the full paper. We show that the strict cycle also 
st, flices to meet the III)E condition. 

In short, it eppcars that .".t Icz:st in terms of one framework in which 
a fontal comparison can bc made, the same constraints that forge 
efficient parsability also ensure easy learnability. 
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