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ABSTRACT

Meta-theoretical results on the decidability, genara-
tive capacity, and recognition complexity of several syn-
tactic theories are surveyed. These include context-free
grammars, transformational grammars, lexical funec-
tional grammars, generalized phrase structure gram-
mars, and tree adjunct grammars.

1. Introduction.

The development of new lormalisms in which to
express linguistic theories has been accompanied, at
least since Chomsky and Miller's early work on context-
free languages, by the study of their meta-theory. In par-
ticular, numerous resuits on the decidability, generative
capacity, and more recently the complexity of recogni-
tion of these formalisms have been published (and
rumoured!). Strangely enough, much less attention
seems to have been devoted to a discussion of the
significance of these mathematical resuits. As a prelim-
inary to the panel on formal properties which will address
the significance issue, it seemed appropriate to survey
the existing resuits. Such is the modest goal of this
paper.

We will consider context-{ree languages. transforma-
tional grammars, lexical functional grammars, general-
ized phrase structure grammars, and tree adjunct gram-
mars. Although we will not examine them here, formal
studies of other syntactic theories have been under-
taken: e.g. Warren [51] for Montague's PTQ [30]. and Bor-
gida (7] for the stratificational grammars of Lamb '25].
There tollows a brief summary of some comments in the
literature about related empirical issues, but we avoid
entirely the issue of whether one theory is more descrip-
tively adequate than another.

2. Preliminary Definitions

We assume the reader is familiar with the basic
definitions of regular, context-free {CF), context-sensitive
{CS), recursive, and recursively enumerable (r.e.)
languages and with their acceptors as can be found in
A

Some elementary definitions lrom complexity theory
may be useful. Further details may be found in 2]
Compilexity theory is the study of the resources required
of algorithms, usually space and time. Let f/z) be a func-
tion, say the recognition function for a language L The
most interesting results we could obtain about f would be
a lower bound on the resources needed to compute f on a
machine ol a given architecture, say a von Neumann
This research was sponsored by the National Science and
Engineering Research Council of Canada under Grant
AG2PS.
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Computer or a parallel array of neurons. These results
over whole ciasses of machines are very difficult to

obtain, and none of any significance exist for parsing
problems.

Restricting ourselves to a specific machine model
and an algonthm M for f, we can ask about the cost {e.g
time or space) ¢(z) of executing M on a specific input z.
Typically ¢ is loo fine-grained to be useful: what one stu-
dies instead 13 a function ¢, whose argument is an
integer n denoting the size of the input to 4. and which
gives some measure of the cost of processing inputs of
length n. Complexity theorists have been most interestec
in the asymptotic behaviour of ¢, i.e. the behaviour of
¢, asn gets large.

if one is interested in upper bounds on the behaviou~
of M, one usuaily defines ¢ _(n) as the marimum of c(z.
over all inputs z of size n.wl‘his is called the worst-casc
complexity function for #. Notice that other definition:
are possible: one could define the expected complexity
function ¢ (n) for M as the average of c(z) aver ail input.
of length n. ¢, might be more useful than c_ if one had
an idea of what the distribution of inputs to # could be.
Unfortunately, the introduction of probabilistic con-
siderations makes the study of expected complexity
technically more difficuit that of worst case complexity
For a given problem. expected and worst case measures
may be quite different.

it is quite difficuit to get detailed descriptions of Sy
and for many purposes a cruder estimate is suffictent.
The next abstraction involves “lumping’ classes of ¢
functions into simpler ones that more clearly demon-
strate their asymptotic behaviour and are easier to mani-
pulate. This is the purpose of O-notation. Let f(n) and
g(n) be two functions. f s said to be Ofg) if a constant
multiple of g 1s an upper bound for f, for all but a finite
number of vaiues of n. More precisely, fis Ofg) if there .3
are constants £ and n, such that for ail n>n, f(n) <
K9(n).

Given an algonthm i we will say Lhal its weorst-case
time complexity is Ofg) if the worst-case time cost func-
tion ¢, () ‘or M is Ofg). Notice that this merely says that
almost all .nputs to M of size n can be processed in time
al most a constant times gfn) 1t does not say -hat ail
puts require g(n) time, or even that any do even on %
let alone on any other machine that impiements £ Also,
if two algorithms A, and A, are available for a function f.
and if their worst-case complexity can be given respec-
tively as Ofg,) and 0(g ). and 9, < g 1t may still.be the
case that for a large number of cases {maybe even for all
cases one is likely to encounter in practice) that A, will
be the preferable algorithm, simply because the constant
K, tor g, may be much smaller than A, for g,

w'



In examining known results about the recognition
complexity of various theories, it is useful to consider
how “robust” they are in the face of changes in the
machine model from which they were derived These
models can be divided into two classes: sequential models
and parallel models. Sequential models {2] include the
tamiliar single- and multi-tape Turing Machines {TMs) as
well as Random Access Machines (RAMs) and Random
Access Stored Program Machines (RASPs). A RAM is like a
TM except that its working menory is random access
rather than sequential. A RASP is like a RAM but stores
its program in its memory. Of all these models, it is most
like a von Neurnann computer.

All these sequential models can simulate each other
in ways that do not cause great changes in time complex-
ity. For example, a k-tape Turing Machine that runs in
time O(t) can be simulated by a RAM in time Oft). and
conversely, a RAM running in O(t) can be simulated by a
k-tape TM in time O(t%). In fact, all familiar sequential
models are polynomially related: they can simulate each
other with at most a polynomial loss in efficiency.

Thus if a syntactic model is known to have a difficuit
recognition problem on one sequential modet, then it will
not have a much easier one on another.

Transforming a sequential algorithm to one on a
parallel machine with a fixed number K of processors pro-
vides at most a factor X improvement in speed. More
interesting results are obtained when the number of pro-
cessors is allowed to grow with the size of the problem,
e.g. with the length of the string to be parsed. If we view
these processors as connected together in a circuit, with
inputs values entering at one end and outputs being pro-
duced at the other, then a problem that has a solution on
a sequential machine in polynomial time and in space s
will have a solution on a parallel machine with a polyno-
mial number of processors and circuit depth {or max-
umum number of processors data must be passed through
from input to output) 0(s?) . Since the depth of a paralilel
circuit corresponds to the {parallel) time required to
complete the computation, this means that algorithms
with sequential solutions requiring small space (such as

deterministic CSLs) have fast parallel solutions. For a
comprehensive survey of parallel computation, see
Cook{9].

3. Context-Free Languages.

Recognition techniques for context-free languages
are well-known (3}. The so-called "CKY" or "dynarnic pro-
gramming” method is attributed by Hays [15] to J. Cocke,
and 1t was discovered independently b“)l Kasami [54] and
Younger 53] who showed it to be Om?). It requires the
grammar to be in Chomsky Normal Form, and putting an
arbitrary grammar in CNF may square the size of the
grammar.

Earley's algorithm recognizes strings in arbitrary
CFGs 1n ume O(n?) and space 0m?), and in time Ofm?) for
unambiguous CFGs. Graham, Harrison and Ruzzo [:13]
give an algorithm that unifies CKY ar.d Earley's [ i0] algo-
rithm. and discuss implementation details.

Valiant [50] showed how to interpret the CKY algo-
rithm as the finding of the transitive closure of a matrix
and thus reduced CF recognition to matrix multiplica-
tion, for which sub-cubic algorithms exist. Because of
the enormous constants of proportionality associated
with this method, it is not likely to be of much practical
use, either an implementation methed or as a descrip-
tion of the function of the brain.
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Ruzzo [55] has shown how CFLs can be recognized by
boolean circuits of depth Oflog(n)?), and thus that paral-
lel recognition can be done in time Oflogm)?). The
required circuit has size polynomial in n.

So as not to get mystified by the upper bounds on CF
recognition, it is useful to remember that no known CFL
requires more than linear time, nor is there a (non-
constructive) proof of the existence of such a larz-

For an empirical comparison of various parsing
methods, see Slocum {44].

4. Transformational Grammar.

From its earliest days, discussions of transforma-
ticnal grammar {TG) have included mention of matters
computational.

Peters and Ritchie [33] provided the first non-trivial
results on the generative power of TGs. Their model
reflects the "Aspects” version quite closely, including
transformations that could move and add constituents,
and delete them subject to recoverability. All transforma-
tions are obligatory, and applied cyclically from the bot-
tom up. They show that every recursively enumerable
(re.) set can be generated by a TG using a context-
sensitive base. The proof is quite simple: the right-hand
sides of the type-0 rules that generate the r.e. set are
padded with a new "blank” symbol to make them at least
as long as their left-hand sides. Rules are added to allow
the blank symbols to commute with all others. These
context-sensitive rules are then used as the base of a TG
whose only transformation deletes the blank symbols.

Thus if the transformational formalism itself is sup-
posed to characterize the grammatical strings of possibie
natural languages, then the only languages being
exciuded are those which are not enumerable under any
model of computation.

At the expense of a considerably more intricate
argument, the previous result can be strengthened [32]
to show that every re. set can be generated by a
context-free based TG, as long as a filter (intersection
with a regular set) can be applied to the phrase-markers
output by the transformations. In fact, the base gram-
mar can be independent of the language being generated.
The proof involves simulating a TM by a TG. The transfor-
mations first generate an "input tape” for the TM being
sumulated, and then apply the TM productions, one per
cycle of the grammar. The filter insures that the base
grammar generated just as many S nodes as necessary to
generate the input string and do the simulation. Again, if
the transformational formalism is supposed to character-
ize the possible natural languages, then the Universal
Base Hypothesis [31] according to which all natural
languages can be generated from the same base gram-
mar is empirically vacuous: any recursively enumerable
language can.

Several attempts were then made to find a restricted
form of the transformational model that was descrip-
tively adequate and yet whose generated languages are
recursive {see e.g. {27]). Since a key part of the proof in
(32] involves the use of a filter on the final derivation
trees, Peters and Ritchie examined the consequences of
forbidding final filtering {35]). They show that if Sis the
only recursive symbol in the CF base then the generated
language L is predictably enumerable and erponentially
bounded. A language L is predictably enumerable if there
is an "easily” computable function ¢(n) that gives an
upper bound on the number of tape squares needed by its
enumerating TM to enumerate the first n elements of L.
L is exponentially bounded if there is a constant K such
that for every string z in L there is another string z'in L
whose length is at most A'times the length of z.



The class of non-filtering languages is quite unusual,
including all the CFLs (obviously), but also some (but not
all) CSLs, some (but not all) recursive languages, and
some (but not ail) r.e. languages.

The source of non-recursivity in transtormationally
generated languages is that transformations can delete
arbitrarily large parts of the tree, thus producing surface
trees arbitrarily smaller than the deep structure trees
they were derived from. This is what Chomsky's recover-
ability of deletions condition was meant to avoid. Ig his
thesis, Petrick [36] defines the following terminal-
length-increasing condition on transformational deriva-
tions: consider the following two p-markers from a
derivation, where the right one is derived from the left
one by applying the cycle of transformations to subtree ¢
producing the subtree u .

Continuing the derivation, apply the cycle to tree ¢ yield-
ing tree w.

A derivation satisfies the terminal-length-increasing con-
dition it the yield of u is always longer than the yield of
U,

Petrick shows that if all recursion in the base
“passes through S’ and if all derivations satisfy the
terminal-length-increasing condition, then the generated
language is recursive. Using a slightly more restricted
model of transformations, Rounds {42] strengthens this
result by showing that the resulting languages are in fact
context-sensitive.

In an unpublished paper. Myhill shows that if the
condition is weakened to terminal-length-non-decreasing,
then the resulting languages can be recognized in space
at most ezponential n the length of the input. This
implies that the recognition can be done i1n at most
double-exponential time, but Rounds [43] shows that not
only can recognition be done in exponential fime, but
that every language recognizable in exponential time can
be generated by a TG satisfying the terminal-length-non-
decreasing condition and recoverability of deletions.

This is a very strong result, because of the closure
properties of the class of exponential-time languages. To
see why this 1s so requires a few more definitions.

Let P be the class of all languages that can be recog-
ruzed in polynomial time on a deterministic TM, and NP
the class of all languages that can be recognized in poly-
pomial time on a non-deterministic TM. P is obviously
contained 1n NP, but the converse is not known, although
there is much evidence that is false.

There is a class of problems, the so-called NP-
coroplete problems. which are in NP and "as difficult” as
any probiem in NP in the following sense: if any of them
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could be shown to be in P, then all the problems in NP
would also be in P. One way to show that a language L is
NP-complete is to show that L is in NP and that every
other language L, in NP can be polynowmially transformed
into L, i.e. that tgere is a deterministic T™, operating in
polynomnial time; that will transform an input w te Linto
an input w, to L, such that wisin Lif and only wy1s 1n
L, 1n practice, to show that a language is NP-complete,
one shows that it 15 in NP, and that some already-known
NP-complete language can be polynomially transformed
to 1t.

All the known NP-complete languages can be recog-
nized in exponential time on a deterministic machine,
and none are known to have sub-exponential solutions.
Thus since the restricted transformational languages of
Rounds characterize the exponential languages. then if
all of them were to be in P, then P would be equal to NP.
Putting it another way, if P is not equal to NP, then some
transformational languages {even those satisfying the
terminal-length-non-increasing condition) have n
“tractable” {i.e. polynomial time) recognition pro. “cu: s
on any deterministic TM. Note that this result also noids
for all the other known sequential models of computa-
tion, and even for parallel machines with as many as a
polynomial number of processors.

S. Lexical Functional Grammar.

In part, transformational grammar seeks to account
for a range of constraints or dependencies within sen-
tences. Of particular interest are subcategorization
dependencies and predicate-argument dependencies.
These dependencies can hold over arbitrarily large dis-
tances. Several recent theories suggest different ways of
accounting for these dependencies, but without making
use of transformations. We will examine three of these,
Lexical Functional Grammar, Generalized Phrase Struc-
ture Grammar, and Tree Adjunct Grammars, (n the next
few sections.

Lexical Functional Grammar (LFG) of Kaplan and
Bresnan [24] aims to provide a descriptively adequate
syntactic formalism without transformations. All the
work done by transformations is instead encoded in
structures in the lexicon and in links established
belween nodes in the constituent structure

LFG languages are CS and properly incilude the CFLs
‘2¢). Berwick 5] shows that a set of strings whose recog-
nition problem is known to be NP-complete, namely the
set. of satisfiabie boolean formulas, is an LFG language.
Therefore, as was the case for Rounds's restricted class of
TGs, if P 1s not equal to NP, then some languages gen-
erated by LFGs do not have polynomial time recognition
algorithms. [ndeed only quite "basic” parts of the LFG
mechanism are necessary to the reduction. This
includes mechamsms necessary for feature agreement,
for forcing verbs to take certain cases, and {exical ambi-
guity. Thus no simple change to the formalism is likely
to avoid the combinatorial consequences of the full
mechanism.

Berwick has also examined the relation between LFG
and the class of languages generated by indexed gram-
mars { 1], a class known to be a proper subset of the CSLs,
but including some NP-complete languages _42]. He
claims {personal communication) that the indexed
languages are a proper subse: of the LFG [anguages.

6. Generalized Phrase Structure Grammar.

In a series of papers, Gerald Gazdar and his col-
leagues " .1] have argued for a joint account of the syntax
and semantics of English like LFG in eschewing the use of
trans{ormations but unlike it in positing only one level of



syntactic description. The syntactic apparatus is based
on a non-standard interpretation of phrase-structure
rules and on the use of meta-rules. The formal conse-
quences of both these moves have been investigated.

6.1. Node Admissibility

There are two ways of interpreting the function of CF
rules. The first, and most usual, is as rules for rewriting
strings. Derivation trees can then be seen as canonical
representatives of classes of derivations producing the
same string, and differing only in the order of application
of the same productions.

The second interpretation of CF rules is as com-
straints on derivation trees: a legal derivation tree is
.ne where each node is "admitted” by a rule, i.e. each
rode dominates a sequence of nodes in a way sanctioned
bv a rule. For CF rules, the two interpretations obviously
génerate the same strings ond the same set of trees.

Following a suggestion of McCawley's, Peters and
Ritchie {34] showed that if one considered context-
sensitive rules from the node-admissibility point of view,
the languages defined were still CF. Thus the use of CS
rules in the base to impose sub-categorization restric-
tions, for example, does not increase the weak generative
capacity of the base component. {For some different res-
trictions of context-sensitive rules that guarantee that
only CFLs will be generated. see Baker [4].)

Rounds [40] gives a simpler proof of Peters and
Ritchie's node-admissibility result using the techniques
from tree-automata theory, a generalization to trees of
fnite state automata theory for strings. Just as a finite
state automaton (FSA) accepts a string by reading it one
character at a time, changing its state at each transi-
tion, a finite state tree automaton (FSTA) traverses trees,
propagating states. The top-down FSTA “attaches” a start-
ing state {from a finite set) to the root of the tree. Tran-
sitions are allowed by productions of the form

(. a.n)>(q...9,)

such that if state g is being applied to a node labelled a
and dominating n descendants, then state g; should be
applied to its ith descendant. Acceptance occurs if all
leaves of the tree end up labelled with states in the
accepting subset. The bottomrup FSTA is similar: start-
ing stetes are attached to the leaves of the tree and the
productions are of the form

fangq,.. q,)->9

indizating that if a node labelled a dominating n descen-
dants erach labelled with states g, to g,,, then node a gets
iabelled with state q. Acceptance occurs when the root is
labeiled by a state from the subset ol accepting states.

As is the case with FSAs, FSTAs of both flavours can
be either deterministic or non-deterministic. A set of
trees s said to be recognizable if it is accepted by a non-
deterministic bottom-up FSTA. Again as with FSAs, any
set of trees accepted by a non-determinmistic bottom-up
FSTA 1; accepted by a deterministic boltom-up FSTA, but
the result does not hold for top-down FSTA, although the
recogrizable sets arc exactly the languages recognized
by non-determimstic top-down FSTAs.

A set of trees is loeal if it is the set of derivation
trees of a CF grammar Clearly, every local set :s recog-
nizable by a one-state bottom-up FSTA that checks at
each rLode that it satisfies a CF production. Also, the
yield ¢f a recognizable set of trees {the set of strings it
generztes) is CF. Although not all recognizable sets are
local, hey can all be mapped into local sets by a simple
‘homomorphic) mapping.
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Rounds's proof '41] that CS rules
admissibility generate only CFLs involves showing that
the set of trees accepted by the rules is reccgnizable,
i.e. that there is a non-deterministic bottom-up FSTA that
can check at each node that some node-admissibility
condition holds there. This requires checking that the
"strictly context-free” part of the rule holds, and that
some proper analysis of the tree passing thr~—z'. lhe
node satisfies the “context-sensitive” part of the rule.

The difficulty comes from the fact that the bottom-
up automaton cannot generate the set of proper ana-
lyses, but must instead propagate {in its state set) the
proper analysis conditions necessary to "admit” the
nodes of its subtrees. It must, of course, also check that
those rules get satisfied.

A more intuitive proof using tree transducers as well
as FSTAs .5 sketched inthe Appendix.

Joshi and Levy [21] strengthened Peters and
Ritchie's result by showing that the node admissibility
conditions could also include arbitrary Boolean combina-
tions of dominance conditions: a node could specify a
bounded set of labels that must occur immediately above
it along a path to the root, or immediately below it on a
path to the frontier.

In general the CF grammars constructed in -the
proof of weak equivalence to the CS grammars under
node admissibility are much larger than the ornginal, and
not useful for practical recognition. Joshi, Levy and Yueh
[22], however, show how Earley's algorithm can be
extended to a parser that uses the local constraints
directly.

under node-

8.2. Metarules.

The second important mechanism used by Gazdar
{11] 1s metarules, or rules that apply to rules to produce
other rules. Using standard notation for CF rules, one
example of a metarule that could repiace the transforma-
tion known as “particle movement" is:

V--> VNPt X ==>V--> VPt N[-PROV X

X here is a variable behaving like variables in structural
analyses of transformations. If such variables are res-
tricted to being used as abdreviations, that is if they are
only allowed to range over a finite subset of strings over
the vocabulary. then closing the grammar under the
metarules produces only a finite set of derived rules, and
thus the generative power of the formalism is not
increased. If. on the other hand, X is allowed to range
over strings of unbounded length, as are the essential
variables of transformational theory, then the conse-
quences are less clear. [t is well known, for example, that
if the right-hand sides of phrase structure rules are
allowed to be arbitrary regular expressions, then the gen-
eraled languages are still context-free. Might something
like this not be happening with essential variables in
metarules? It turns out not.

The formal consequences of the presence of essen-
tial. variables 1n metarules depends on the presence of
another device, the so-called phantom categories. It may
be convenient in formulating metarules to allow. in the
left-hand sides of rules. occurrences of syntactic
categories that are never introduced by the grammar,
1.e. that never appear in the right-hand sides of rules. In
standard CFLs, these are called useless categories, and
rules containing them can simply be dropped, with no
change in generative capacity. Not so with metarules: it
is possible for metarules to rewrite rules containing
phantom categories into rules without them. Such a dev-
ice was proposed at one time as a way to implement pas-
sives in the GPSG framework.



Uszkoreit and Peters {49] have shown that essential
variables in metarules are powerful devices indeed: CF
grammars with metarules that use at most one essential
variable and allow phantom categories can generate all
recursively enumerable sets. Even if phantom categories
are banned, as long as the use of at least one essential
variables is allowed, then some non-recursive sets can be
generated.

Possible restrictions on the use of metarules are
suggested in Gazdar and Pullum {12]. Shieber et al.[45]
discuss some empirical consequences of these moves.

7. Tree Adjunct Grammar.

The Tree Adjunct Grammars (TAGs) of Joshi and his
colleagues presents a different way of accounting for syn-
tactic dependencies ([17], [19]). A TAG consists of two
{finite) sets of {finite) trees, the centre trees and the
adjunct trees.

The centre trees correspond to the surface struc-
tures of the "kernel" sentences of the languages. The
root of the adjunct trees is labelled with a non-terminal
symbeol which also appears exactly once on the frontier of
the tree. All other {rontier nodes are labelled with termi-
nal symbols. Derivations in TAGs are defined by repeated
application of the operation of adjunction. If ¢ is a centre
tree containing an occurrence of a nan-terminal A and if
a is an adjunct tree whose root {and one node n on the
frontier) is labelled A, then the adjunction of a to c is per-
formed by "detaching” from c the subtree ¢ rooted at 4,
attaching a in its place. and reattaching ¢ at node n.
Adjunction may then be seen as a tree analogue of a
context-free derivation for strings [40]. The string
languages obtained by taking the yields of the tree
languages generated by TAGs are called Tree Adjunct
lLanguages, or TALs.

In TAGs all long-distance dependencies are the resuit
of adjunctions separating nodes that at one point in the
derivation were “close”. Both crossing and non-crossing
dependencies can be represented [18] The formal pro-
perties of TAGs are fully discussed in {20}, [52), [23]. Of
particular interest are the following.

TALs properly contain the CFLs and are properly con-
tained in the indexed languages, which in turn are prop-
erly contained in the CSLs. Although the indexed
languages contain NP-complete languages, TALs are
much better behaved: Joshi and Yokomori report /per-
sonal communication} an_0Ofn?) recognition algorithm
and conjecture that an O(ns) bound may be possibie.

B. A Pointer to Empirical Discussions

The literature on the empirical issues underiying
the tormal resuits reported here s not extensive.

Chomsky argues convincingly 78] that there is no
argument for natural languages necessarily being recur-
sive. Thus, or course, is different from the possibility that
l\anguages are contingently recursive. Putnam {39] gives
three reasons he claims "point in this direction™: (1)
‘speakers can presumably classify sentences as accept-
able or unacceptable, deviant or non-deviant, et cetera,
withoul reiiance on extra-linguistic contexts. There are
of course exceptions to this ruje ", (2) grammaticality
judgements can be made for nonsense sentences, aand (3)
grammars can be learned. (2) and (3) are irrelevant and
(i) contains 1ts own counter-argument.

Peters and Ritchie [33] contains a suggestive but
hardly opea-and-shut case for contingent recursivity: (1)
every TG has an exponentially bounded cycling function,
and thus generates only recursive languages, {2) every
natural fanguage has a descriptively adequate TG, and {3)
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the complexity of languages investigated so far is typical
of the class.

Hintikka{16] presents a very different argument
against the recursivity of English based on the distribu-
tion of the words any and every. His account of why JoAn
knows everything is grammatical while John knows any-
thing is not is that any can appear only in contexts where
replacing it by every changes the meaning. Taking mean-
ing to be logical equivalence, this means that grammati-
cality is dependent on the determination of logical
equivalence of logical formulas, an undecidable problem.
Chomsky [8] argues that a simpler solution is available,
namely one that replaces logical equivalence by syntac-
tic identity of some kind of logical form.

Pullum and Gazdar [38] is a thorough survey of, and
argurnent against, published claims {mainly the “respec-
tively” examples (28], Dutch cross-serial dependencies,
and nominalization in Mohawk [37]) that some natural
languages cannot be weakly generated by CF grammars.
No claims are made about the strong adequacy of CFGs.

9. Seeking Significance.

When can the supporter of a weak {syntactic) formal-
ism (i.e. low recognition complexity, low generative capa-
city) claim that it superior to a competing more powerful
formalism?

Lingustic theories can difler along several dimen-
sions, with generative capacity and recognition capacity
being only two (albeit related) ones. The evaluation must
take into consideration at least the following others:

Coverage. Do the theories make the same grammat-
ical predictions?

Extensibility. The linguistic theory of which the syn-
tactic theory is a part will want to express well-
formedness constraints other than syntactic ones These
Cconstraints may be expressed over syntactic representa-
tions. or over different representations, presumably
related to the syntactic ones. One theory may make this
connection possible when another does not. This of
course underlies the arguments for strong descriptive
adequacy.

Also relevant here (s how the linguistic theory as a
whole is decomposed. The syntactic theory can obviously
be made simpler by transferring some of the explanatory
burden to another constituent. The classic example in
programming languages is the constraint that all vari-
ables must be declared before they are used. This con-
Straint caonot be tmposed by a CFG but can be by an
indexed grammar, at the cost of a dramatic increase in
recognilion complexity. Typically, however, the require-
ment is sumply not ccnsidered part of "syntax’, which
thus remains CF, and imposed separately. In this case,
the overail recognition complexity remains some iow-
order polynomial. Some arguments of this kind can be
found 1n {38}

Separating the constraints inte different sub-
theories will not in general make the problem of recog-
nizing strings that satisfy all the constraints any more
efficient, but it may allow lLimniting the power of each con-
stituent. To take an extreme example, every r.e. set
the homomorphic image of the intersection of t»
context-free languages.

Implementation. This is probably the most subtle set
of 1ssues determining the significance of the form.l
results, and | don't claim to understand them.

Comparison between theories requires agreemeunt
between the machine models used to derive the complex-
ity resulls. As mentioned above, the sequential models
are all polynomially related, and no problem not having a

[}



polynomial time solution on a sequential machine is
likely to have one on a parallel machine limited to at
most a polynomial number of processors, at least if P is
not equal to NP. Both these results restrict the improve-
ment one can obtain by changing implementation, but
are of little use in comparing algorithms of low complex-
ity. Berwick and Weinberg [6] give examples of how algo-
rithms of low complexity may have different implementa-
tions differing by large constant factors. In particular,
changes in the form of the grammar and in its represen-
tatfon may have this eflect.

But of more interest I believe is the fact that imple-
mentation is often accompanied by some form of
resource limitation that has two effects. First it is also a
change in specification. A context-free parser umple-
mented with a bounded stack recognizes only a finite-
state language.

Second, very special implementations can be used if
one is willing to restrict the size of the problem to be
solved, or even use special-purpose methods for limited
problems. Marcus's parser [28] with its bounded look-
ahead is another good example. Sentences parsable
within the ailowed look-ahead have "quick” parses, but
some grammatical sentences, such as “garden path” sen-
tences cannot be recognized without an extension to the
mechanism that would distort the complexity measures.

There is obviously much more of this story to be
told. Allow me to speculate as to how it might go. We may
end up with a space of linguistic theories, differing in the
idealization of the data they assume, in the way they
decompose constraints, and in the procedural
specifications they postulate (I take it that two theories
may differ in that the second simply provides more detail
than the first as to how constraints specified by the first
are to be used.) Our observations, in particular our meas-
urements of necessary resources, are drawn from the
"ultimate implementation”, but this does not mean that
the "ultimately low-level theory” is necessarily the most
informative, witness many examples in the physical sci-
ences, or that less procedural theories are not useful
stepping stones to more procedural ones.

It i3 also not clear that theories of different compu-
tational power may not be useful as descriptions of
different parts of the syntactic apparatus. For exampie,
it may be easier to learn statements of constraints
within the framework of a general machine. The con-
straints once learned might then be subjected to
transformation to produce more eflicient special-purpose
processors also imposing resource limitations. Indeed,
the “possible languages” of the future may be more com-
plex than the present ones, just as earlier ones may have

been syntactically simpler. Were ancient languages reg-
ular?

Whatever we decide to make of existing formal
results, 1t is clear that continwng contact with the com-
plexity community 1s important. The driving problems
there are the P = VP question, the determination of lower
bounds, the study of time-space tradeofls, and the com-
plexity of parallel computations. We still have some
methodological house-cleaning to do, but [ don't see how
we can avold being aflected by the outcome of their
investigations.
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‘tree automaton to recognize the accepted trees.

APPENDIX

Rounds [41] proves that context-sensitive rules
under node-admissibility generate only context-free
languages by constructing a non-deterministic bottom-up
We
sketch here a proof that makes use of several determinis-
tic transducers instead.

FSTAs can be generalized so that instead of simply
accepting or rejecting trees, they transform them, by
adding constant trees, and deleting or duplicating sub-
trees. Such devices are called finite state tree transduc-
ers (FSTT), and like the FSTA they can be top-down or
bottom-up. First motivated as models of syntax-directed
translations for compilers, they have been extensively
studied (e.g. [47], {48], [40]) but a simple subset is
sufficient here.

The idea is this. Let Tbe the set of trees accepted by
the CS-based grammar. Let { be in 7. FSTTs can be used
to label each node m of t with the set of all proper ana-
lyses passing through n. It will then be simple to check
that each node satisfies one of the node admissibility
conditions by sweeping through the labelled tree with a
bottom-up FSTA.

The node labelling is done by two FSTTs 7, and 7,. Let
m be the maximum length of any left or right-context of
any node admissibility condition. Thus we need only label
nodes with sets of strings of length at most m, and over a
finite alphabet there are only a finite number of such
strings.

T, operates bottom-up on a tree { and labels each
node n of ¢ with three sets Frefiz(n), Suffiz(n). and
Yield(n) of proper analyses: if P is the set of ail proper
analyses of the subtree rooted at n, then Prefiz(n)is the
set of all substrings of length at most m that are prefixes
of strings of P. Similarly, Suffiz(n) is the set of all
suffixes of lepgth at most m, and Yield(n) is the set of all
strings of P of length at most m. It can easily be shown
that for any set of trees T, Tis recognizable if and only if
7,(T)is.

Applying to the output of 7, the second transducer
To operating top-down, labels each node n with all the
proper analyses going through n, i.e. with a pair of sets
of strings. The first set will contain all left-contexts of
node n and the second all right-contexts. T also
preserves recognizability. A bottom-up FSTA can now be
defined to check at each node that both the context-iree
part of a rule as well ag its context conditions are
satisfied.

This argument also extends easily to cover the domi-
nance predicates of Joshi and Levy: transducers can be
added to label each node with all its “top contexts” and
all its "bottom- contexts” The final FSTA must then
check that the nodes satisfy whatever Boolean combina-
tion of dominance and proper analysis predicates are
required by the node admissibility rules.
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