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ABSTRACT 

This paper descrlbes how meanings are repre- 
sented in a semantic grammar for a fragment of 
English in the logic programming language Prolog. 
The conventions of Definite Clause Grammars are 
used. Previous work on DCGs with a semantic com- 
ponent has used essentially first-order formulas 
for representing meanings. The system described 
here uses formulas of the typed ~-calculus. The 
first section discusses general issues concerning 
the use of first-order logic or the h-calculus to 
represent meanings, The second section describes 
how h-calculus meaning representations can be con- 
structed and manipulated directly in Prolog. This 
'programmed' representation motivates a suggestion, 
discussed in the third section, for an extension 
to Prolog so that the language itself would include 
a mechanism for handling the ~-formulas directly. 

I h-CALCULUS AND FOL AS MEANING 
REPRESENTATION LANGUAGES 

The initial phase of most computer programs 
for processing natural language is a translation 
system. This phase takes the English text input 
and transforms it into structures in some internal 
meaning-representation language. Most of these 
systems fall into one of two groups: those that 
use a variant of first-order logic (FOL) as their 
representation language, and those that use the 
typed h-calculus (LC) for their representation 
language. (Systems based'on semantic nets or con- 
ceptual dependency structures would generally be 
calsslfied as using variants of FOL, but see 
[Jones and Warren, 1982] for an approach that views 
them as LC-based.) 

The system considered here are several highly 
formalized grammar systems that concentrate on the 
translation of sentences of logical form. The 
first-order logic systems are exemplified by those 
systems that have developed around (or gravitated 
to) logic programming, and the Prolog language in 
particular. These include the systems described 
ill [Colmerauer 1982], [Warren 1981], [Dahl 1981], 
[Simmons and Chester 1982], and [McCord 1982]. 
The systems using the ~- calculus are those that 
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developed out of the work of Richard Montague. 
They include the systems described in [Montague 
1973], [Gawron et al. 1982], [Rosenschein and 
Sheiber 1982], [Schubert and Pelletier 1982], and 
[Warren and Friedman 1981]. For the purposes of 
this paper, no distinction is made between the 
intensional logic of Montague grammar and the 
typed h-calculus. There is a mapping from inten- 
sional logic to a subset of a typed h-calculus 
[Gallin 1975], [Clifford 1981] that shows they are 
essentially equivalent in expressive power. 

All these grammar systems construct a formula 
to represent the meaning of a sentence composi- 
tionally over the syntax tree for the sentence. 
They all use syntax directed translation. This is 
done by first associating a meaning structure with 
each word. Then phrases are constructed by syntac- 
tically combining smaller phrases together using 
syntactic rules. Corresponding to each syntactic 
rule is a semantic rule, that forms the meaning 
structure for a compound phrase by combinging the 
meanin~ structures of the component phrases. This 
is clearly and explicitly the program used in 
Montague grammar. It is also the program used in 
Prolog-based natural language grammars with a 
semantic component; the Prolog language itself 
essentially forces this methodology. 

Let us consider more carefully the meaning 
structures for the two classes of systems of inter- 
est here: those based on FOL and those based on 
LC. 

Each of the FOL systems, given a declarative 
sentence as input, produces a well-formed formula 
in a first-order logic to represent the meaning of 
the sentence. This meaning representation lo~ic 
will be called the MRFOL. The MILFOL has an 
intended interpretation based on the real world. 
For example, individual variables range over ob- 
jects in the world and unary predicate symbols are 
interpreted as properties holding of those real 
world objects. 

As a particular recent example, consider 
Dahl's system [1981]. Essentially the same 
approach was used in the Lunar System [Woods, et 
al. 1972]. For the sentence 'Every man walks', 
Dahl's system would produce the expression: 

for(X,and(man(X),not walk(X)), 
equal(card(X),0)) 

where X is a variable that ranges over real-world 
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individuals. This is a formula in Dahl's MRFOL, 

and illustrates her meaning representation lang- 
uage. The formula can be paraphrased as "the X's 
which man is true of and walk is not true of have 
¢ardinality zero." It is essentially first-order 
because the variables range over individuals. 
(There would need to be some translation for the 
card function to work correctly.) This example 
also shows how Dahl uses a formula in her MRFOL as 
the meaning structure for a declarative sentence. 
The meaning of the English sentence is identified 
with the meaning that the formula has in the in- 
tended interpretations for the MRFOL. 

Consider mow the meaning structure Dahl uses 
for phrases of a category other than sentence, a 
noun phrase, for example. For the meaning of a 
noun phrase, Dahl uses a structure consisting of 
three components: a variable, and two 'formulas'. 
As an example, the noun phrase 'every man' has the 
following triple for its meaning structure: 

[X1,X/,for(Xl,and(man(Xl),not(X2)), 
eqnal(card(Xl),0))]. 

We can understand this structure informally by 
thinking of the third component as representing 
the meaning of 'every man'. It is an object that 
needs a verb phrase meaning in order to become 
a sentence. The X2 stands for that verb-phrase 
meaning. For example, during constz~ction of the 
meaning of a sentence containing this noun phrase 
as the subject, the meaning of the verb-phrase of 
the sentence will be bound to X2. Notice that the 
components of this meaning structure are not them- 
selves formulas in the MRFOL. They look very much 
like FOL formulas that represent meanings, but on 
closer inspection of the variables, we find that 
they cannot be. X2 in the third component is in 
the position of a formula, not a term; 'not' 
applies to truth values, not to individuals. Thus 
X2 cannot be a variable in the M1%FOL, because X2 
would have to vary over truth values, and all FOL 
variables vary over individuals. So the third 
Component is not itself a MIRFOL formula that (in 
conjunction with the first two components) repre- 
sents the meaning of the noun phrase, 'every man'. 

The intuitive meaning here is clear. The 
third compdnent is a formula fragment that partici- 
pates in the final formula ultimately representing 
the meaning of the entire sentence of which this 
phrase is a subpart. The way this fragment Dartic- 
ipates is indicated in part by the variable X2. 
It is important to notice that X2 is, in fact, a 
syntactic variable that varies over formulas, i,e., 
it varies over certain terms in the MRFOL. X2 will 
have as its value a formula with a free variable in 
it: a verb-phrase waiting for a subject. The X1 
in the first component indicates what the free 
variable must become to match this noun phrase 
correctly. Consider the operation of putting XI 
into the verb-phrase formula and this into the 
noun-phrase formula when a final sentence meaning 
is constructed. In whatever order this is done, 
there must be an operation of substitution a for- 
mula with a free variable (XI) in it, into the 
scope of a quantifier ('for') that captures it. 
Semantically this is certainly a dubious operation. 

The point here is not that this system is 
wrong or necessarily deficient. Rather the repre- 
sentation language used to represent meanings for 
subsentential components is not precisely the 
MRFOL. Meaning structures built fo~ subcomponents 
are, in general, fra~rments of first-order formulas 
with some extra notation to be used in further 
formula construction. This means, in general, that 
the meanings of subsentential phrases are not given 
a semantles by first-order model theory; the 
meanings of intermediate phrases are (as far as 
traditional first-order logic is concerned) merely 
uninterpreted data structures. 

The point is that the system is building terms, 
syntactic objects, that will eventually be put to- 
gether to represent meanings of sentences. This 
works because these terms, the ones ultimately 
associated with sentences, always turn out to be 
formulas in the MRFOL in just the right way. How- 
ever, some of the terms it builds on the way to a 
sentence, terms that correspond to subcomponents of 
the sentence, are not in the MRFOL, and so do not 
have a interpretation in its real world model. 

Next let us move to a consideration of those 
systems which use the typed l-calculus (LC) as 
their meaning representation language. Consider 
again the simple sentence 'Every man walks'. The 
grammar of [Montague 1973] associates with this 
sentence the meaning: 

forail(X,implies(man(X),waik(X))) 

(We use an extensional fragment here for simplic- 
ity.) This formula looks very much like the first- 
order formula given above by the Dahl system for 
the same sentence. This formula, also, is a for- 
mula of the typed X-calculus (FOL is a subset of 
LC). Now consider a noun phrase and its associated 
meaning structure in the LC framework. For 'every 
man' the meanin~ structure is: 

X(P,forall(X,implies(man(X),P(X)))) 

This meaning structure is a formula in the k- 
calculus. As such it has an interpretation in the 
intended model for the LC, just as any other for- 
mula in the language has. This interpretation is 
a function from properties to truth-values; it 
takes properties that hold of every man to 'true' 
and all other properties to 'false'. This shows 
that in the LC framework, sentences and subsenten- 
tial phrases are given meanings in the same way, 
whereas in FOL systems only the sentences have 
meanings. Meaning structures for sentences are 
well-formed LC formulas of type truth-value; those 
for other phrases are well-formed LC terms of 
other types. 

Consider this k-formula for 'every man' and 
compare it with the three-tuple meaning structure 
built for it in the Dahl system. The ~-variable 
P plays a corresponding role to the X2 variable of 
the triple; its ultimate value comes from a verb- 
phrase meaning encountered elsewhere in the 
sentence. 

First-order logic is not quite expressive 
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enough to represent directly the meanings of the 
categories of phrases that can be subcomponents of 
sentences. In systems based on first-order logic, 
this limitation is handled by explicitly construc- 
ting fragments of formulas, with extra notation to 
indicate how they must later combine with other 
fragments to form a true first-order formula that 
correctly represents the meaning of the entire 
sentence. In some sense the construction of the 
semantic representation is entirely syntactic until 
the full sentence meaning structure is constructed, 
at which point it comes to a form that does have a 
semantic interpretation. In contrast, in systems 
that use the typed l-calculus, actual formulas of 
the formal language are used at each step, the 
language of the l-calculus is never left, and the 
building of the semantic representation can actu- 
ally be understood as operations on semantic 
objects. 

The general idea of how to handle the example 
sentence 'Every man walks' in the two systems is 
essentially the same. The major difference is how 
this idea is expressed in the available languages. 
The LC system can express the entire idea in its 
meaning representation language, because the typed 
l-calculus is a more expressive language. 

The obvious question to ask is whether there 
is any need for semantically interpretable meaning 
representations at the subsentential level. One 
important reason is that to do formal deduction on 
subsentential components, their meanings must be 
represented in a formal meaning representation 
language. LC provides such a language and FOL 
does not. And one thing the field seems to have 
learned from experience in natural language proc- 
essing is that inferencing is useful at all levels 
of processing, from words to entire texts. This 
points us toward something like the LC. The 
problem, of course, is that because the LC is so 
expressive, deduction in the full LC is extremely 
difficult. Some problems which are decidable in 
FOL become undecidable in the l-calculus; some 
problems that are semi-decidable in FOL do not 
even have partial decision procedures in the LC. 
It is certainly clear that each language has limi- 
tations; the FOL is not quite expressive enough, 
and the LC is much too powerful. With this in 
mind, we next look at some of the implications of 
trying to use the LC as the meanin~ representation 
language in a Proiog system. 

II LC IN PROLOG 

PROLO~ is extremely attractive as a lan~uaFe 
for expressinE grammars. ~tamorphosis ~rammars 
[Colmerauer 197g] and Definite Clause Grammars 
(DCGs) [Pereira and ICarren 1980] are essentially 
conventions for representing grammars as logic 
programs. DCGs can perhaps most easily be under- 
stood as an improved cersion of the Augmented 
Transition Network language [Woods 1970]. Other 
work on natural language in the PROLOG framework 
has used firs$-order meaning representation lang- 
uages. The rest of this paper explores the impli- 
cations of using the l-calculus as the meaning 

representation language for a system written in 
PROLOG using the DCG conventions. 

The followin~ paragraphs describe a system 
that includes a very small grammar. The point of 
this system is to investigate the use of PROLOG to 
construct meanings with the %-calculus as the 
meaning representation language, and not to 
explore questions of linRulstic coverage. The 
grammar is based on the grammar of [Montague 1973], 
but is entirely extensional. Including inten- 
sionality would present no new problems in 
principle. 

The idea is very simple. Each nonterminal 
in the grammar becomes a three-place predicate in 
the Prolog program. The second and third places 
indicate locations in the input string, and are 
normally suppressed when DCGs are displayed. The 
first piece is the LC formula representing the 
meaning of the spanned syntactic component. 

Lambda-formulas are represented by Prolo~ 
terms. The crucial decision is how to represent 
variables in the h-formulas. One 'pure' way is to 
use a Prolog function symbol, say ivar, of one 
argument, an integer. Then Ivar(37) would repre- 
sent a l-variable. For our purposes, we need not 
explicitly encode the type of %-terms, since aii 
the formulas that are constructed are correctly 
typed. For other purposes it might be desirable 
to encode explicitly the type in a second argument 
of ivar. Constants could easily be represented 
using another function symbol, icon. Its first 
argument would identify the constant. A second 
argument could encode its type, if desired. Appli- 
cation of a l-term to another is represented using 
the Prolog function symbol lapply, which has two 
argument places, the first for the function term, 
the second for the argument term. Lambda abstrac- 
tion is represented using a function symbol ~ with 
two arguments: the ~-variable, and the function 
body. Other commonly used connectives, such as 
'and' and 'or', are represented by similarly named 
function symbols with the appropriate number of 
argument places. With this encoding scheme, the 
h-term: 

%P(3x(man(x) & P(x)) 

would be represented by the (perhaDs somewhat 
awkward-looking) Prolo~ term: 

lambda(Ivar(3),Ithereis(ivar(1),land( 
lapply(icon(man),l~r(1)) 
lapply(ivar(3),ivar(1)) 

))) 

~-reduction would be coded as a predicate ireduce 
(Form, Reduced), whose first argument is an arbi- 
trary %-formula, and second is its ~-reduced form. 

This encoding requires one to generate new 
variables to create variants of terms in order to 
avoid collisions of %-variables. The normal way 
to avoid collisions is with a global 'gensym' 
counter, to insure the same variable is never used 
twice. One way to do this in Prolog is to include 
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a place for the counter in each grarmnar predicate. 
This can be done by including a parameter which 
will always be of the form gensym(Left,Right), 
where Left is the value of the gensym counter at 
the left end of the phrase spanned by the predicate 
and Right is the value at the right end. Any use 
of a k-variable in building a l-formula uses the 
counter and bumps it. 

An alternative and more efficient way to en- 
code k-terms as Prolog terms involves using Prolog 
variables for l-variables. This makes the substi- 
tution trival, essentially using Prolog's built-ln 
facility for manipulating variables. It does, how- 
ever, require the use of Prolog's meta-logical 
predicate var to test whether a Prolog variable is 
currently instantiated to a variable. This is 
necessary to prevent the k-varlables from being 
used by Prolog as Prolog variables, In the example 
below, we use Prolog variables for X-varlables and 
also modify the Icon function encoding of con- 
s=ants, and let constants stand for themselves. 
This results in a need to use the meta-logical 
predicate atom. This encodin E scheme might best 
be considered as an efficiency hack to use Prolog's 
built-in variable-handllng facilities to speed the 
A-reduction. 

We give below the Prolog program that repre- 
sents a small example grammar with a few rules. 
This shows how meaning structures can be repre- 
sented as l-formulas and manipulated in Prolog. 
Notice the simple, regular structure of the rules. 
Each consists of a sequence of grammar predicates 
that constructs the meanings of the subcomponents, 
followed by an instance of the ireduce predicate 
that constructs the compound meaning from the com- 
ponent meanings and l-reduces the result. The 
syntactic manipulation of the formulas, which re- 
sults for example in the relatively simple formula 
for the sentence 'Every man walks' shown above, is 
done in the h-reductlon performed by the ireduce 
predicate. 

/* 
*/ 

tS(M,X,Y) :- 
te(Ml,X,Z). 
iv(M2,Z,Y), 
ireduce(lapply(Mi,M2),M). 

te(M,X,Y) :- 
det(Mi,X,Z), 
cn(M2,Z,Y), 
lreduce(lapply(}~,M2),M). 

te(lambda(P,lapply(P,j)),[johnIX],X). 

cn(man,[manlX],X). 
cn(woman,[womanIX],X). 

det(lambda(P,lambda(Q,iforall(Z, 
limplies(lapply(P,Z),lapply(Q,Z))))), 
[everyIX],X) 

iv(M,X,Y) :- 
tv(MI,X,Z), 
te(M2,Z,Y), 
ireduce(lapply(Mi,M2),M). 

*/ 

iv(walk,[walkslX],X). 

tv(lambda(P,lambda(Q,lapply(P, 
lambda(Y,lapply(lapply(love,Y),Q))))), 
[loves[X],X). 

/* 

III I-CAT.CULUS IN THE PROLOG INTERPRETER 

There are several deficiencies in this Prolog 
implementation of grammars using the X-calculus as 
a meaning representation language. 

First, neither of the suggested implementa- 
tions of X-reduction in Prolog are particularly 
attractive. The first, which uses first-order 
constants to represent variables, requires the 
addition of a messy gensym argument place to every 
predicate to simulate the global counter, This 
seems both inelegant and a duplication of effort, 
since the Prolog interpreter has a similar kind of 
variable-handling mechanism built into it. The 
second approach takes advantage of Prolog's built- 
in variable facilities, but requires the use of 
Prolog's meta-logical facilities to do so. This 
is because Prolog variables are serving two func- 
tions, as Prolog varlabies and as h-variables. 
The two kinds of variables function differently 
and must be differentiated. 

Second, there is a problem with invertibility. 
Many Prolog programs are invertible and may be run 
'backwards'. We should be able, for example, to 
evaluate the sentence grammar predicate giving the 
meaning of a sentence and have the system produce 
the sentence itself. This ability to go from a 
meaning formula back to an English phrase that 
would produce it is one of the attractive proper- 
ties of logic grammars. The grammar presented 
here can also be run this way. However, a careful 
look at this computation process reveals that with 
this implementation the Prolog interpreter performs 
essentially an exhaustive search. It generates 
every subphrase, h-reduces it and checks to see if 
it has the desired meaning. Aside from being theo- 
retically unsatisfactory, for a grammar much larger 
than a trivially-small one, this approach would not 
be computationally feasible. 

So the question arises as to whether the 
Prolog interpreter might be enhanced to know about 
l-formulas andmanipulate them directly. Then the 
Prolog interpreter itself would handle the X-reduc- 
tion and would be responsible for avoiding variable 
collisions. The logic grammars would look even 
simpler because the ireduce predicate would not 
need to be explicitly included in each grammar 
rule. For example, the ts clause in the grammar in 
the figure above would become: 

ts(lapply(MI,M2),X,Y) 
te(MI,X,Z), 
iv(M2,Z,Y). 
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Declarations to the Prolog interpreter could 
be included to indicate the predicate argument 
places that contain l-terms. Consider what would 
be involved in this modification to the Prolog sys- 
tem. It might seem that all that is required is 
just the addition of a l-reduction operator 
applied to l-arguments. And indeed when executing 
in the forward direction, this is essentially all 
that is involved. 

Consider what happens, however, if we wish 
to execute the grammar in the reverse direction, 
i.e., give a l-term that is a meaning, and have 
the Prolog system find the English phrase that has 
that meaning. Now we find the need for a 'l-expan- 
sion' ability. 

Consider the situation in which we present 
Prolog with the following goal: 

ts(forall(X,implies(man(X),walk(X))),S,[]). 

Prolog would first try to match it with $he head 
of the ts clause given above. This would require 
matching the first terms, i.e., 

forall(X,implies(lapply(man,X),lapply(walk,X))) 

and 

lapply(Mi,M2) 

(using our encoding of l-terms as Prolog terms.) 
The marcher would have available the types of the 
variables and terms. We would like it to be able 
to discover that by substituting the right terms 
for the variables, in particular substituting 

lambda(P,forall(X,implies( 
lapply(man,X),lapply(P,X)))) 

and 

walk for M2 

for M1 

in the second term, it becomes the same as the 
first term (after reduction). These MI and M2 
values would then be passed on to the te and iv 
predicates. The iv predicate, for example, can 
easily find in the facts the word to express the 
meaning of the term, walk; it is the work 'walks' 
and is expressed by the fact iv(walk,[walksIX],X), 
shown above. For the predicate re, given the value 
of MI, the system would have to match it against 
the head of the te clause and then do further 
computation to eventually construct the sentence. 

~at we require is a general algorithm for 
matching l-terms. Just as Prolog uses unification 
of first-order terms for its parameter mechanism, 
to enhance Prolog to include l-terms, we need 
general unification of l-~erms. The problem is 
that l-unlficatlon is much more complicated than 
first-order unification. For a unifiable pair of 
first-order terms, there exists a unique (up to 
change of bo~md variable) most general unifier 
(mgu) for them. In the case of l-terms, this is 
not true; there may be many unifiers, which are 
not generalizations of one another. Furthermore 
unification of l-terms is, in general, undecidable. 

These facts in themselves, while perhaps dis- 
couraging, need not force us to abandon hope. The 
fact that there is no unique mgu just contributes 
another place for nondeterminism to the Prolog 
interpreter. And all interpreters which have the 
power of a universal Turing machine have undecid- 
able properties. Perhaps another source of unde- 
cidability can be accommodated. Huet [197~] ',-s 
given a semi-decision procedure for unification in 
the typed l-calculus. The question of whether this 
approach is feasible really comes down to the finer 
properties of the unification procedure. It seems 
not unreasonable to hope that in the relatively 
simple cases we seem to have in our grammars, this 
procedure can be made to perform adequately. 
Notice that, for parsing in the forward direction, 
the system will always be unifying a l-term with a 
variable, in which case the unification problem is 
trivial. We are in the process of programming 
Huet's algorithm to include it in a simple Prolog- 
like interpreter. We intend to experiment with it 
to see how it performs on the l-terms used to 
represent meanings of natural language expressions. 

Warren [1982] points out how some suggestions 
for incorporating l-calculus into Prolog are moti- 
vated by needs that can easily and naturally be 
met in Prolog itself, unextended. Following his 
suggestions for how to represent l-expressions in 
in Prolo~ directly, we would represent the meaning 
of a sentence by a set of asserted Prolog clauses 
and an encoding atomic name, which would have to 
be generated. While this might be an interesting 
alternate approach to meaning representations, it 
is quite different from the ones discussed here. 

IV CONCLUSIONS 

We have discussed two alternatives for meaning 
representation languages for use in the context of 
lo~ic grammars. We pointed out how one advantage 
of the typed l-calculus over first-order logic is 
its ability to represent directly meanings of 
phrases of all syntactic cateBories. We then 
showed how we could implement in Prolog a logic 
grammar using the l-calculus as the meaning repre- 
sentation languaEe. Finally we discussed the 
possibility and some of the implications of trying 
to include part of the l-calculus in the logic pro- 
gramming system itself. We suggested how such an 
integration might allow grammars to be executed 
backwards, generating English sentences from input 
logical forms. ~ intend to explore this further 
in future work. If the l-calculus can be smoothly 
incorporated in the way suggested, then natural 
language grammar writers will find themselves 
'programming' in two languages, the first-order 
language (e.g. Prolog) for syntax, and the typed 
l-calculus (e.g. typed LISP) for semantics. 

As a final note regarding meaning representa- 
tion languages: we are still left with the feeling 
that the first-order languages are too weak to 
express the meanings of phrases of all categories, 
and that the l-calculus is too expressive to be 
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computatlonally tractable. There is a third class 
of languages that holds promise of solving both 
these difficulties, the function-level languages 
that have recently been developed in the area of 
progranm~ing languages [Backus 1978] [$hultis 1982]. 
These languages represent functions of various 
types and thus can be used to represent the mean- 
ings of subsentential phrases in a way similar to 
the l-calculus. Deduction in these languages is 
currently an active area of research and much is 
beginning to be known about their algebraic prop- 
erties. Term rewriting systems seem to be a 
powerful tool for reasoning in these languages. 
I would not be surprised if these functlon-level 
languages were to strongly influence the formal 
meaning representation languages of the future. 
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