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ABSTRACT 

An extension to the GPSG grammatical formalism is 

proposed, allowing non-terminals to consist of 

finite sequences of category labels, and allowing 

schematic variables to range over such sequences. 

The extension is shown to be sufficient to provide 

a strongly adequate grammar for crossed serial 

dependencies, as found in e.g. Dutch subordinate 

clauses. The structures induced for such 

constructions are argued to be more appropriate to 

data involving conjunction than some previous 

proposals have been. The extension is shown to be 

parseable by a simple extension to an existing 

parsing method for GPSG. 

I. INTRODUCTION 

There has been considerable interest in the 

community lately with the implications of crossed 

serial dependencies in e.g. Dutch subordinate 

clauses for non-transformational theories of 

grammar. Although context-free phrase structure 

grammars under the standard interpretations are 

weakly adequate to generate such languages as anb n, 

they are not capable of assigning the correct 

dependencies - that is, they are notstrongly 

adequate. 

In a recent paper (Bresnan Kaplsn Peters end 

Zaenen 1982) (hereafter BKPZ), a solution to the 

Dutch problem was presented in terms of LFG (Kaplan 

and Bresnan 1982), which is known to have 

considerably more than context-free power. 

(Steedman 1983) and (Joshi 1983) have also made 

proposals for solutions in terms of Steedman/Ades 

grammars and tree adjunction grammars (Ades and 

Steedman 1982; Joshi Levy and Yueh 1975). In this 

paper I present a minimal extension to the GPSC 

formalism (Gazdar 1981c) which also provides a 

solution. It induces structures for the relevant 

sentences which are non-trivially distinct from 

those in BKPZ, and which I argue are more 

appropriate. It appears, when suitably 

constrained, to be similar to Joshi's proposal in 

making only a small increment in power, being 

incapable, for instance, of analysing anbnc n with 

crossed dependencies. And it can easily be parsed 

by a small modification to the parsing mechanisms I 

have already developed for GPSG. 

II. AN EXTENSION TO GPSG 

II.I Extendin G the s~ntax 

GPSG includes the idea of compound non-terminals, 

composed of pairs of standard category labels. We 

can extend this trivially to finite sequences of 

category labels. This in itself does not change 

the weak generative capacity of the grammar, as the 

set of non-terminals remains finite. CPSG also 

includes the idea of rule schemata - rules with 

variables over categories. If we further allow 

variables over sequences, then we get a real 

change. 

At this point I must introduce some notation. I 

will write 

[a,b ,c] 

for a non-terminal label composed of the categories 

a, b, and c. I will write 

Za b* 

to indicate that the schematic variable Z ranges 

over sequences of the category b. We can then give 

the following grammar for anb n with crossed 
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dependencies: 

S -> e 
S:Z ->  a SIZ:b . ( I )  
s:z -> a s z:b (2) 
blZ -> b z (3), 

where we allow variables over sequences to appear 

not only alone, but in simple, that is with 

constant terms only, concatenation, notated with a 

vertical bar (I). This grammar gives us the 

following analysis for a3b 5, where I have used 

subscripts to record the dependencies, and the 

marginal numbers give the rule which admits the 

adjacent node: 

S (I) 

al/~[S,bl] (I) 

a ~  (2) 

s" [bI, 2, b] (3) 

3 

With the aid of this example, we see that rule I 

generates a's while accumulating b's, rule 2 brings 

this process to an end, and rule 5 successively 

generates the accumulated b's, in the correct, 

'crossed', order. This is essentially the 

structure we will produce for the Dutch examples as 

well, so it is important to point out exactly how 

the crossed dependencies are captured. This must 

come out in two ways in GPSG - subcategorisation 

restrictions, and interpretation. That the 

subcategorisation is handled properly should be 

clear from the above example. Suppose that the 

categories a and b are pre-terminals rather than 

terminals, and that there are actually three sorts 

of a's and three sorts of b's, subcategorised for 

each other. If one used the standard GPSG 

mechanism for recording this dependency, namely by 

providing three rules, whose rule number would then 

appear as a feature on those pre-terminals 

appearing in them directly, we would get the above 

structure, where we can reinterpret the subscripts 

as the rule numbers so introduced, and see that the 

dependencies are correctly reflected. 

II.2 Semantic interpretation 

As for the semantics no actual extension is 

required - the untyped lambda calculus is still 

sufficient to the task, albeit with a fair amount 

of work. We can use what amounts to apa ...... 6 and 

unpacking approach. The compound b nodes have 

compound interpretations, which are distributed 
appropriately higher up the tree. For this, we 

need pairs and sequences of interpretations. 

Following Church, we can represent a pair <l,r> as 

~f(1)(r)]. If P is such a pair, then PO 

P(~x~x[x]) and PI = P(kxXx[y]). Using pairs we 

can of course produce arbitrary sequences, as in 

Lisp. In what follows I will use a Lisp-based 

shorthand, using CAR, CDR, CONS, and so on. These 

usages are discharged in Appendix I. 

Using this shorthand, we can give the following 

example of a set of semantic rules for association 

with the syntactic rules given above, which 

preserves the appropriate dependency, assuming that 

the b'(a',S') is the desired result at each level: 

CONS(CADR (Q')(a' )(CA~(Q' )),CDDR (Q ' )) (~ 
where Q' is short for SI, Z~,b ' , 

CO~S(CAR (Q ' )(a') (S') ,CDR(Q ' )) (2 
where Q' is short for Ziqh ' , 

ADJOIN(Z' ,b' ). (3 

These rules are most easily understood in reverse 

order. Rule 3 simply appends the interpretation of 

the immediately dominated b to the sequence of 

interpretations of the dominated sequence of b's. 

Rule 2 takes the first interpretation of such a 

sequence, applies it to the interpretations of the 

immediately dominated a and S, and prepends the 

result to the unused balance of the sequence of b 

interpretations. We now have a sequence consisting 

of first a sentential interpretation, and then a 

number of h interpretations. Rule I thus applies 

the second (b type) element of such a sequence to 

the interpretation of the immediately dominated a, 

and the first (S type) element of the sequence. 

The result is again prepended to the unused 

balance, if any. The patient reader can satisfy 

himself that this will produce the following 

(crossed) interpretation: 

17 



II.3 Parsin~ 

As for parsing context-free grammars with the 

non-terminals and schemata this proposal allows, 

very little needs to be added to the mechanisms I 

have provided to deal with non-sequence schemata in 

GPSG, as described in (Thompson 1981 b). We simply 

treat all non-terminals as sequences, many of only 

one element. The same basic technique of a bottom- 

up chart parsing strategy, which substitutes for 

matched variables in the active version of the 

rule, will do the job. By restricting only one 

sequence variable to occur once in each non- 

terminal, the task of matching is kept simple and 

deterministic. Thus we allow e.g. SIZIb but not 

ZlblZ. The substitutions take place by 

concatenation, so that if we have an instance of 

rule (~) matching first [a] and then [3,b,b,b] in 

the course of bottom-up processing, the Z on the 

right hand side will match [b,b], and the resulting 

substitution into the left hand side will cause the 

constituent to be labeled [S,b,b]. 

In making this extension to my existing system, 

the changes required were all localised to that 

part of the code which matches rule parts against 

nodes, and here the price is paid only if a 

sequence variable is encountered. This suggests 

that the impact of this mechanism on the parsing 

complexity of the system is quite small. 

III. APPLICATION TO DUTCH 

Given the limited space available, I can present 

only a very high-level account of how this 

extension to GPSG can provide an account of crossed 

serial dependencies in Dutch. In particular I will 

have nothing to say about the difficult issue of 

the precise distribution of tensed and untensed 

verb forms. 

III. 1 The Dutch data 

Discussion of the phenomenon of crossed serial 

dependencies in Dutch subordinate clauses is 

bedeviled by considerable disagreement about just 

what the facts are. The following five examples 

form the core of the basis for my analysis: 

I) omdat ik probeer Nikki te leren Nederlands 
te spreken 

2) omdat ik probeer Nikki Nederlands te leren 
spreken 

3) omdat ik Nikki probeer te leren Nederlands 
te spreken 

4) omdat ik Nikki Nederlands probeer te leren 
spreken 

5) * omdat ik Nikki probeer Nederlands te leren 
spreken. 

With the proviso that (I) is often judged 

questionable, at least on stylistic grounds, this 

pattern of judgements seems fairly stable among 

native speakers of Dutch from the Netherlands. 

There is some suggestion that this is not the 

pattern of judgements typical of native speakers of 

Dutch from Belgium. 

III.2 Grammar rules for the Dutch data 

This pattern leads us to propose the following 

basic rules for subordinate clauses: 

A) S' -> omdat NP VP 
B) VP -> V VP (probeer) 
C) VP -> NP V VP (leren) 
D) VP -> NP V (spreken). 

Taken straight, these give us (I) only. For (2) 

- (4), we propose what amounts to a verb lowering 

approach, where verbs are lowered onto VPs, whence 

they lower again to form compound verbs. (5) is 

ruled out by requiring that a lowered verb must 

have a target verb to compound with. The resulting 

compound may itself be lowered, but only as a unit. 

This approach is partially inspired by Seuren's 

transformational account in terms of predicate 

raising (Seuren 1972). 

So the interpretation of the compound labels is 

that e.g. [V,V] is a compound verb, and [VP,V,V! is 

a VP with a compound verb lowered onto it. It 

follows that for each VP rule, we need an 

associated compound version which allows the 

lowering of (possibly compound) verbs from the VP 

onto the verb, so we would have e.g. 

Di) VPIZ -> NP ZIV, 

where we now use Z as a variable over sequences of 

VS. The other half of the process must be 
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reflected in rules associated with each VP rule 

which introduces a VP complement, allowing the verb 

to be lowered onto the complement. As this rule 

must also expand VPs with verbs lowered onto them, 

we want e.g. 

cii) vPlz -> ~P wlzlv. 

Rather than enumerate such rules, we can use 

metarules to conveniently express what is wanted: 

I) VP -> ... V ... ==> VPIZ -> ... ZlV ... 

H) vP -> ... v vP o-> vPlz -> ... vP:z:v. 

(I) will apply to all three of (B) - (D), allowing 

compound verbs to be discharged at any point. (II) 

will apply to (B) and (C), allowing the lowering 

(with compounding if needed) of verbs onto 

complements. We need one more rule, to unpack the 

compound verbs, and the syntactic part of our 

effort is complete: 

E) wlz -> W Z, 

where W is an ordinary variable whose range 

consists of V. This slight indirection is necessary 

to insure that subcategorisation information 

propagates correctly. 

By suitably combining the rules (A) - (E), 

together with the meta-generated rules (Bi) - (Di), 

(Bii) and (Cii), we can now generate examples (2) 

(4). (4), which is fully crossed, is very 

similar to the example in section II.1, and uses 

meta-generated expansions for all its VP nodes: 

S' 

Nikki 

Nederlands V b [Vc,Vd] 

probeer V c V d 

i I 
te leren spreken 

(A) 

(Bii) 

( Cii ) 

(Di) 

(E) 

(E) 

Once again I include the relevant rule name in the 

margin, and indicate with subscripts the rule name 

feature introduced to enforce subcategorisation. 

Sentences (2) and (3) each involve two meta- 

generated rules and one ordinary one. For reasons 

of space, only (3) is illustrated below. (2) is 

similar, but using rules (B), (Cii), and (Di). 

s' (A) 

~P vP (Rii) a 
ik [vP,Zb] (ci) 

.~Pc [Vb,Vc]~ ~ ~  (E),(Di) 

Nikki V b ~d Vd 

pro~eer ~c . !preken te leren Nederlands te 

III.3 Semantic rules for the Dutch data 

The semantics follows that in section II.2 quite 

closely. For our purposes simple interpretations 

of (B) - (D) will suffice: 

B') v'(vP') 
c') v' (NP' , ~ ' )  
D') v'(NP'). 

The semantics for the metarules is also reasonably 

straightforward, given that we know where we are 

going: 

I ' )  F(V') ==> CONS(F(CAR(Z:V')),CDR(Z',V')) 
II') F(V',VP') ==> CONS(F(CADR(Q'),CAR(Q')), 

cm~(Q')), 

where Q' is short for VPlZl, V '. (I') will give 

semantics very much like those of rule (2) in 

section II.2, while (II') will give semantics like 

those of rule (I). (E °) is just like (3): 

E') ADJ01N(Z' ,W ' ) 

It is left to the enthusiastic reader to work 

through the examples and see that all of sentences 

(I) - (4) above in fact receive the same 

interpretation. 

III.4 Which structure is right - evidence from 
conjunction 

The careful reader will have noted that the 

structures proposed are not the same as those of 

BKPZ. Their structures have the compound verb 

depending from the highest VP, while ours depend 

from the lowest possible. With the exception of 

BKPZ's example (~3), which none of my sources judge 

grammatical with the 'root Marie' as given, I 
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believe my proposal accounts for all the judgements 

cited in their paper. On the other hand, I do not 

believe they can account for all of the following 

conjunction judgement, the first three based on 

(4), the next two on (3), whereas under the 

standard GPSG treatment of conjunction they all 

fall out of our analysis: 

6) omdat ik Nikki Nederlanda wil leren spreken 
en Frans wil laten schrijven 

because I want to teach Nikki to speak Dutch 
and let [Nikki] write French 

7) * omdat ik Nikki Nedrelands wil leren spreken 
en Frans laten schrijven 

8) omdat ik Nikki Nederlands wil leren spreken 
en Carla Frans wil laten schrijven 

because I want to teach Nikki to speak Dutch 
and let Carla write French. 

9) omdat ik Nikki wil leren Nederlands te spreken 
en Frans te schrijven 

because I want to teach Nikki to speak Dutch 
and to write French 

IO) * omdat ik Nikki wil leren Nederlands te 
spreken en Carla Frans te schrijven 

or 
... en Frans (ts) laten schrijven 

(6) contains a conjoined [VP,V,V], (8) a conjoined 

[VP,V], and (7) fails because it attempts to 

conjoin a [VP,V,V] with a [VP,V]. (9) conjoins an 

ordinary VP iaside a [VP,V], and (10) fails by 

trying to conjoin a VP with either a non- 

constituent or a [VP,V]. 

It is certainly not the case that adding this 

small amount of 'evidence' to the small amount 

already published establishes the case for the deep 

embedding, but I think it is suggestive. Taken 

together with the obvious way in which the deep 

embedding allows some vestige of compositionality 

to persist in the semantics, I think that at the 

very least a serious reconsideration of the BKPZ 

proposal is in order. 

IV. CONCLUSIONS 

It is of course too early to tell whether this 

augmentation will be of general use or 

significance. It does seem to me to offer a 

reasonably concise and satisfying account of at 

least the Dutch phenomena without radically 

altering the grammatical framework of GPSG. 

Further work is clearly needed to exactly 

establish the status of this augmented GPSG with 

respect to generative capacity and parsability. It 

is intriguing to speculate as to its weak 

equivalence with the tree adjunction grammars of 

Joahi et al. Even in the weakest augmentation, 

allowing only one occurence of one variable over 

sequences in any constituent of any rule, the 

apparent similarity of their power remains to be 

formally established, but it at least appears that 

like tree adjunction grammars, these grammars 

cannot generate anbncn with both dependencies 

crossed, and like them, it can generate it with any 

one set crossed and the other nested. Neither can 

it generate WW, although it can with a sequence 

variable ranging over the entire alphabet, if it 

can be shown that it is indeed weakly equivalent to 

TAG, then strong support will be lent to the claim 

that an interesting new point on the Chomsky 

hierarchy between CFGs and the indexed grammars has 

been found. 
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APPENDIX I 
SEQUENCES IN THE UNTYPED LAMBDA CALCULUS 

To imbed enough of Lisp in the lambda cslculus 

for our needs, we require not just pairs, but NIL 

and conditionals as well. Conditionals are 

implemented similarly to pairs - "if p then q else 
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r" is simply p applied to the pair <q,r>, where 

TRUE and FALSE are the left and right pair element 

selectors respectively. In order to effectively 

construct and manipulate lists, some method of 

determining their end is required. Numerous 

possibilities exist, of which we have chosen a 

relatively inefficient but conceptually clear 

approach. We compose lists of triples, rather than 

pairs. Normal CONS pairs are given as 

<TRUE,car,cdr>, while NIL is <FALSE,,>. 

Given this approach, we can define the following 

shorthand, with which the semantic rules given in 

sections II.2 and III.3 can be translated into the 

lambda calculus: 

TR= - Ix [~y [~]] 
FALSE- ~x.Lky.LyJ] 

NIL- ~f.Ef(FALSE)(kp.[p])(~p.[p])l 
C0NS(A,B) - ~f.Ef(TRUE)(A)(B)J 

CAe(L) - L(~x.[ ~y[ ~z[y] ]3 ) 
CDR(L) L()~x.t ),y.L ),z.[ z] ] j ) 

C0NSP(L) - T(~x [~y.[~z.[x]]]) 

CADR(L) - CAR(CDR(L)) 

ADJOINFORM - la.[ IL. [ ~N. [ 
CONSP(L)(CONS(CA~(L), 

a(CD~(L))(N))) 
(CONS(N,NIL)) ] ]] 

- ~f.[ ~.[ f(x(~) )] (~x.[ f(x(x))])] 

ADJOIN(L,N) - Y(ADJOI~0~M)(T)(N) 
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