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1 . INTRODUCTION

During the last few years there is vigorous
activity in constructing highly counstrained
grammatical systems by eliminating the
trangformational component either totally or
partially. There is increasing recognition of
the fact that the encire range of dependencies
that transformational grammars in their various
incarnations have tried to account for can be
satisfactorily captured by classes of rules that
are non-transformational and at the same time
highly constrianed in terms of the classes of
grammars and languages that they define.

Two types of dependencies are especially
important: subcategorization and filler-gap
dependencies. Moreover,these dependencies can
be unbounded. One of the motivations for
transformations was to account for unbhounded
dependencies. The so-called
non-transformational grammars account for the
unbounded dependencies in different ways. In a
tree-ad joining grammar (TAG), which has been
introduced earlier in (Joshi,1982),
unboundedness is achieved by factoring the
dependencies and recursion in a novel and, we
believe, in a linguistically interesting manner.
All dependencies are defined on a finite set of
basic structures (trees) which are bounded.
Unhoundedness is then a corollary of a
particular composition operation called
adioining. There are thus no unbounded
dependencies in a sense.

In this paper, we will first briefly
describe TAG’s, which have the following
important properties: (1) we can represent the
usual transformational relations more or less
directly in TAG’s, (2) the power of TAG's is
only slightly more than that of context-free
grammars (CFG’s) in what appears to be just the
right way, and (3) TAG’s are powerful enough to
characterize dependencies (e.g.,
subcategorization, as in verb subcategorization,
and filler-gap dependencies, as in the case of
moved constitutents in wh-questions) which might

*GPSG: Generalized phrase structure grammar,
PLG: Phrase linking grammar, and LFG: Lexical
functional grammar.
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be at unbounded distance and nested or crossed.
We will then compare some of the formal
properties of TAG’s, GPSG’s,PLG’s, and LFG’s, in
particular, concerning (1) the types of
languages, reflecting different patterns of
dependencies that can or cannot be generated by
the different types of grammars, (2) the degree
of free word ordering permitted by different
grammars, and (3) parsing complexity of the
different grammars.

2.TREE ADJOINING GRAMMAR(TAG)

A tree adjoining grammar (TAG), G = (I,A)
consists of two finite sets of elementary trees.
The trees in 1 will be called the initial trees
and the trees in A, the auxiliary trees. A tree

@ is an initial tree {f the root node of
is labeled S and the froantier nodes are all
terminal symbols (the interior nodes are all
non-terminais). A tree @ {s an auxiliary tree
if the root node of ,3 is labeled by a
non-terminal, say, X, and the frontier nodes are
all terminals except one which is also labeled
X, the same label as that of the root. The node
labeled by X on the frontier will be called the
foot node of 8 . The iaternal nodes are
non-terminals,

= S ﬁa = K

Zermimis terminals

As defined above, the initial trees and the
auxiliary trees are not constrained in any
manner other than as indicated above. The idea,
however, is that both the initial and the
auxiliary trees will be minimal in some sense.
An initial tree will correspond to a minimal
sentential tree (i.e., for example, without
recursing on any non=-terminal) and an auxiliary
tree, with the root node and the foot node
labeled X, will correspond to a minimal
structure that must be brought into the
derivation, if one recurses on X.
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We will now define a composition operétion
called adjoining (or adjunction) which composes
an auxiliary tree B with a tree ¥ . Let
be tree with a node labeled X and let B be an
auxiliary tree with the root labeled X also.
Note that B8 must have,by definition, a node
(and only one)labeled X on the frontier.
Adjoining can now be defined as follows. If
is adjoining to ¥ at the node an then the
resulting tree X' is as shown in Fig.l.
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The tree t dominated by X in ¥ is
excised, B 1is inserted at the node n in
and the tree t is attached to the foot node
(labeled X) of B , i.e., B 1{s inserted or
‘adjoined’ to the node n in ¥ pushing t
downwards. Note that ad joining 13 not a
substitution operation in the usual sense.

Example 2.1: Let G = (I,A) be a TAG where
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The voot node and the foot node of each
auxiliary tree {s circled for convenience. Let
us look at some derivations in G.

Bs will be adjoined to Yo at the
indicated node in ¥, . The resulting tree
is then 31
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We can coantinue the derivation by
ad jolning, say ﬂ,, at S as indicated in ¥4 .
The resulting tree ¥, is then
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Note that ¥o is an initial tree, a
sentential tree. The derived trees ‘fi and Xz
are also sentential trees.,

We will now define

T(G): The set of all trees derived in G
starting from the {nitifal trees in I. This set
will be called the tree setof G.

L(G): The set of all terminal strings of
the trees in T(G). This set will be called the
string language(or language) of G.

The relationship between TAG’s CFG’s and
the corresponding string languages can be
summarized as follows (Joshi, Levy, and
Takahashi, 1975).

Theorem 2.1: For every CFG, G°, there is
an equivalent TAG, G, both weakly and strongly.

Theorem 2.2: For every TAG, G, one of the
following statements holds:

(a)there is a cfg, G’, that is both weakly
and strongly equivalent to G,

(b)there is a cfg,G’, that is weakly
equivalent to G but not strongly equivalent to
G, or

(3) there is no cfg, G’, that {s weakly
equivalent to G.



Parts (a) and (¢) appear in (Joshi, Levy,
and Takahashi, 1975). Part (b) is tmplicit in
that paper, but it is important to state it
explicitly as we have done here. For the TAG,
G, in Example 2.1, it can be shown that there is
a CFG, G’, such that G’ is both weakly and
strongly equivalent to G. Examples 2.2 and 2.3
below illustrate parts (b) and (c¢) respectively.

Example 2.2: Let G = (I,A) be a TAG where
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Clearly, L(G)=L= { &*e W/ a = 0}, which
s a c¢fl. Thus there must exist a CFG, G’,
which {3 at least weakly equivalent to G. It
can be shown however that there is no CFG, G,
which is strongly e=quivalent to G,i.e.,
T(G)=T(G’). This follows from the fact that
T(G), the tree set of G, is
'non-recognizab]e’,i.e., there is no finite
sState bottom to top automaton that can recognize
precisely T(G). Thus a TAG may generate a cfl,
yet assign structural descriptions to the
strings that cannot be assigned by any CFG.

Example 2.3: Let G = (I,A) be a TAG where
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It can be shown that L(G) = Ll = { w e "/
n 2 0}, w i3 a string of a’s and b’s such that
(1) the number of a’s = the number of b’s and
(2) for any initial substring of w, the number
of as 2 the number of b’s.}

Ll can be characterized as follows. We
start with the language L = { (ba)"e ¢"/ n2 0
}. L1 is then obtained by taking strings in L
and moving (dislocating) some a’s to the left.
It can be shown that Ll is a strictly
context-sensitive language (csl), thus there can
be no CFG that is weakly equivalent to G.

TAG’s have more power than CFG’s, however,
the extra power is quite limited. The language
Ll has equal number of a’s ,b’s nad c’s;
however, the a’s and b’s are mixed in a certain
way. The Language L2 ={a"te ¢/ n 0} is
similar to Ll, except that all a’s come before
all b’s. TAG’s are not powerful to generate L2.
The so-called copy lnguage L3 = {w e w /we{a,b}™
} also cannot be generated by a TAG.

The fact that TAG’s cannot generate L2 and
L3 is important, because it shows that TAG’s are
only slightly more powerful than CFG’s. The way
TAG’s acquirve this power is linguistically
significant. With some modifications of TAG’s
or rather the operation of adjoining, which is
linguistically motivated, it is possible to
generate L2 and L3, but only in some special
ways. (This modification consists of allowing
for the possibility for checking left-right tree
context(in terms of a proper analysis) as well
as top~bottom tree coantext (in terms of
domination) around the node at which adjunction
{s made. This is the notion of local
constraines {n (Joshi and Levy,198l)). Thus L2
and L3 in some ways characterize the limiting
cases of context-sensitivity that can be
achieved by TAG's and TAG’s with local
constraints.

In (Joshi,Levy, and Takahashi,1975) it is
also shown that

CFL’s &€ TAL’s &€ IL’s € CSL’s.
F » k

where IL’s denotes indexed languages.



3. We will now consider TAG’s with links.
The elementary trees (initial and auxiliary
trees) are the appropriate domains for
characterizing certain dependencies. The domain
of the dependency is defined by the elementary
tree itself. However, the dependency can be
characterized explicitly by introducing a
special relationship between certain speci fied
pairs of nodes of an elementary tree. This
relationship is pictorially exhibited by an arc
(a dotted line) from onme node to the other. For
example, in the tree below, the nodes labeled B
and Q are linked,
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We will require the following conditions to
hold for a link in an elementary tree. If a
node nl is linked to a node n2 then (1) n2
c-commands ni and (2) nl dominates a null string
(or a terminal symbol in the non-linguistic
formal grammar examples).

The notion of a link introduced here is
closely related to that of Peters and Ritchie
(1982).

A TAG with links is a TAG where some of the
elementary trees may have links as defined
above. Henceforth, we may often refer to a TAG
with links as just a TAG. Links are defined on
the elementary trees. However, the important
idea is that the composition operation of
ad joining will preserve the links. Links
defined on the elementary trees may become
stretched as the derivation proceeds.

In a TAG the dependencies are defined on
the elementary trees(which are bounded) and
thegse dependencies are then preserved by the
ad foining(recursive) operation. This is how
recursion and dependencies are factored in a
TAG. This is in contrast to transformational
grammars (TG) where recursion is defined in the
base and the transformations essentially carry
out the checking of the dependencies. The PLG’s
and LFG’s share this aspect of TG,i.e.,
recursion bhuilds up a set of structures, some of
which are filtered out by transformations in a
TG, by the constraints on linking in a PLG, and
by the constraints introduced via functional
structures in LFG. In a GPSG on the other hand,
recursion and the checking of the dependencies
go hand in hand in a sense. In a TAG,
dependencies are defined i{anitially on bounded
structures and recursion simply preserves them.

In the APPENDI
to show how certain
in a TAG.

Fxample 2.4:
links where
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A4 and A2 each have one 1ink. ¥, and ‘6

show how the linking is preserved in
adjoining. In ¥a one of the links is
stretched. It should be clear now, how, in
general, the links will be preserved during the
derivation. We note in this example that in 7%
the dependencies between the a’s and the b’s as
reflected in the terminal string are properly
nested, while in ¥a two of them are properly
nested, and the third one is cross-serial and {t
is crossed with respect to the nested ones. The
two elementary trees 4 and B; have only one
link each. The nestings and crossings in T2
and Kg are the result of adjoining. There are
two points to note here: (!) TAG’s with links
can characterize certain cross-serial
dependencies as well as, of course, nested
dependencies. (2) The cross-serial dependencies
as well as the nested dependencies arise as a
result of adjoining. But this is not the only
way they can arise. It is possible to have two
links in an elementary tree which represent
crossed or nested dependencies, which will then
be preserved during the derivation.

It i3 clear from Example 2.4 that the
string language of TAG with links {s not
affected by the links. Thus if G is a TAG with
links. Then L(G)=L{G’) where G’ is a TAG which
is obtained from G by removing all the links in
the elementary trees of G. The links do not
affect the weak generative capacity. However,
they make certain aspects of the structural
description explicit, which is implicit in the
TAG without the links.

TAG’s (or TAL’s) also have the following
three important properties:

(1) Limited cross-serial dependencies:
Although TAG’s permit cross-serial dependencies,
these are restricted. The restriction is that
if there are two sets of crossing dependencies,
then they must be either disjoint or one of them
must be properly nested inside the other.

Hence, languages such as the double copy
language, L4 = (wewew/w € {a,b*} or L5 =
{a""d" d"e™/ n 2 I} cannot be generated by
TAG's. For details, see (Joshi,l1983).

(2)Constant growth property: In a TAG,G,at
each step of the derivation, we have a
sentential tree with the terminal string which
is a string in L(G). As we adjoin an auxiliary
tree, we augment the length of the terminal
string by the length of the terminal string of
A (not counting the single non-terminal symbol
in the frontier of B ).Thus for any string, w,
of L(G), we have
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where w,is the terminal string of some
initial tree and wi,l X1 m, the terminal
string of the {-th auxiliary tree, assuming
there are m auxiliary trees. Thus w is a linear
combination of the length of the terminal string
of some initial tree and the lengths of the
terminal strings of the auxiliary trees. The
constant growth property severely restricts the
class of languages generated by TﬁG's.
Hence,languages such as L6 = { a?*” /a 2 1} or
L8 ={a™ /n 2 1} cannot be generated by TAG's.

(3)Polynomial parsing:TAL’s can be parsed
in time O(n“ )(Joshi and Yokomori, 1983).
Whether or not an 0(n® ) algorithm exists for
TAL’s i{s not known at present.

3. A COMPARISION OF GPSG’s,TAG’s,PFG’s,and
LFG's WITH RESPECT TO SOME OF THEIR FORMAL
PROPERTIES

TABLE 1 lists (i) a set of languages
reflecting di fferent patterns of dependencies
that can or cannot be generated by the different
types of grammars, and (ii) the three properties
just mentioned ahove.

As regards the degree of free word order
permitted by each grammar, the languages
1,2,3,4,5, and 6 in TABLE | give some id2a of
the degree of freedom. The language in 3 in
TABLE | is the extreme case where the a’s,
b’s,and ¢’s can be any order, as long as the
number of a’s =the number of b’s=the number of
c¢’s. GPSGsand TAG’s cannot generate this
language (although for TAG’s a proof is not in
hand yet). LFG’'s can generate this language.

In a TAG for each elementary tree, we can
add more elementary trees, systematically
generated from the given tree to provide
additional freedom of word order (in a somewhat
similar fashion as in (Pullum,1982)). Since the
ad joining operation in a TAG gives some
additional power to a TAG beyond that of a CFG,
this device of augmenting the set of elementary
trees should give more freedom, for example, by
allowing some limited scrambling of an item

outside of the constituent it belongs to. Even
then a TAG does not seem to be capable of
generating the language in 3 in TABLE l. Thus

there {s extra freedom but it s quite limited.



TABLE 1

GPSG TAG PLG
(and CFG) (with or
without local
constraints)

1. Language obtained by
starting with
L={(ba)*® /n2 1} and no yes yes
then dislocating some a’s
to the left.
2. Same as 1 above except
that the dislocated a’s are no yes yes
to the left of all b’s.
3. L={w / w is string of
equal number of a’s,b’s and no no(?) yes
c’s but mixed in any order}
4. La{x &y/ nzl, x,y are
strings of a’s and b’s such that no no yes
the number of a’s in x and y =
the number of b’s in x and y= n}
5. Same as above except that the no yes no(?)
length of x = length of y.
6. Lu{w N/ n3l, w is string of
a’s and b’s and the number of a‘s ao yes yes(?)
in w = the number of b’s in w = a}
7. t={a"d" & /n31} no yes no
8. L-(a" A d"/n}l) no yes no
9. L-{a“ B & d" &z 1} no no no
10. L= {w w/ w is string no yes yes(?)
of a’s and b’s}(copy language)
11. L={w w w/ w is string of no no ?
a’s and b’s}(double copy language)
12. I.-(a“ PR /m;l,n),l) no no no(?)
13. L={a" o' P /n21, p # a} no yes ?
14. L-(a‘p /a3 1} no no no(?)
15. L={a™ /a3 1} no no no(?)
16. Limited cross-serial no yes ?
dependencies.
17. Constant growth property yes yes yes(?)
18. Polynomial parsing yes yes ?

Notation: ?: answer unknown to the author. yes(?):

no(?): conjectured no.

con jectured yes
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APPENDIX

We will give here some examples to show how
certain sentences could be derived in a TAG.
For further details about this TAG and its
linguistic relevance, see (Joshi, 1983 and Joshi
and Kroch, forthcoming). Only the relevarr
trees of the TAG, G=(I,A) are shown below. The
following points are worth noting: (1)In a TAG
the derivation starts with an initial tree. The
appropriate lexical insertions are made for the
ifnitial tree and the corresponding constraints
as specified by the lexicon can be checked
(e.g., agreement and subcategorization). Then
as the derivation proceeds, as each auxiliary
tree is brought into the derivacion, the
appropriate lexical items are ingerted and the
constraints checked. Thus in a TAG, lexical
insertion goes hand in hand with the derivation.
(2) Each one of the two finite sets, I and A can
be quite large, but these sets need not be
explicitely listed. The trees in I roughly
correspond to all the ‘minimal’ sentences
corresponding to different subcategorization
frames together with the ‘transforms’ of these
santences. We could , of course, provide rules
for obtaining the trees in I from a given subset
of I. These rules achieve the effect of
conventional transformational rules, however,
these rules can be formulated not as the usual
transformational rules but directly as tree
rewriting rules, since both the domains and the
co-domains of the rules are finite.
Introduction of links can be considered as a
part of this rewriting. In any case, these
rules will be abbreviatory in the sense that
they will generate only finite sets of trees.
Their adoption will be only a matter of
convenience and does not affect the TAG in any
essential manner. The set of auxiliary trees is
also finite. Again these trees could themselves
be ‘derived’ from the corresponding trees in I
by introducing appropriate tree rewriting rules.
Again these rules will be abbreviatory only as
discugsed above. It is in this sense that the
trees in I and A capture the usual
transformational relations more or less
directly.

Some derivations:
(1)The girl who met Bill is a senior.

We start with the initial tree 4 with the
appropriate lexical insertions.
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Adjoining g4 (with the appropriate lexical

insertions) to
we obtain Kz .

4 at the indicated node in )'1 .
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(2)John persuaded Bill to invite Mary.
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Adfoining /¢ to quat the indicated node
in xi' we obtain Y -
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(3)Who did John persuade Bill to invite ?
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Adjoining B¢’ to ¥y at the indicated node
in ¥,, we obtain ¥g »
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On the other haad
could be

Note the link in ¥4 s ‘preserved’ in ¥, ,
it is ‘stretched’ resulting in the so-called
(5)John seems to like Mary.
derived as follows. We will start with .(1’5

unbounded dependency.

(4)John tried to please Mary. .
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Adjoining Azgto ¥, at the indicated node
in ¥4 , we obtainy, .

Adjoining B9 to ¥4 at the indicated node

in ¥4 we obtain Y3
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