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ABSTRACT 

We argue that because the very concept of computation rests on 
notions of interpretation, the semantics of natural languages and the 
semantics of computational formalisms are in the deepest sense the 

same subject. The attempt to use computational formalisms in aid of 
an explanation of natural language semantics, therefore, is an 
enterprise that must be undertaken with particular care. We describe 
a framework for semantical analysis that we have used in the 
computational realm, and suggest that it may serve to underwrite 
computadonally-oriented linguistic ser.antics as well. The major 
feature of this framework is the explicit recognition of both the 

declarative and the procedural import of meaningful expressions; we 
argue that whereas these two viewpoints have traditionally been 
taken as alternative, any comprehensive semantical theory must 
account for how both aspects of an expression contribute to its 

overall significance. 

We have argued elsewhere 1 that the distinguishing mark of 
those objects and processes we call computational has to do with 
attn'buted semantics." we humans find computational processes 
coherent exactly because we attach semantical significance to their 
behaviour, ingredients, and so forth. Put another way, computers, 
on our view, are those devices that we understand by deploying our 
linguistic faculties. For example, the reason that a calculator is a 
computer, but a car is not, is that we take the ingredients of the 
calculator to be symbolic (standing, in this particular case, for 
numbers and functions and so forth), and understand the interactions 
and organisation of the calculator in terms of that interpretation (this 
part divides, this part represents the sum, and so on). Even though 
by and large we are able to produce an explanation of the behaviour 
that does not rest on external semantic attribution (this is the 
formality condition mentioned by Fodor, Haugeland. and othersz), 
we nonetheless speak, when we use computational terms, in terms of 
this semantics. These semantical concepts rest at the foundations of 
the discipline: the particular organisations that computers have 
their computational raison d'etre ~ emerge not only from their 
mechanical structure but also from their semantic interpretability. 
Similarly, the terms of art employed in computer science - -  program, 
compiler, implementation, interpreter, and so forth - -  will ultimately 
he definable only with reference to this attributed semantics; they 
will not, on our view, ever be found reducible to non-semantical 
predicates? 

This is a ramifying and problematic position, which we cannot 
defend here. 4 We may simply note, however, the overwhelming 
evidence in favour of a semantical approach manifested by everyday 
computational language. Even the simple view of computer science 
as the study of symbol manipulation s reveals this bias. Equally 
telling is the fact that programming languages are called languages. 
In addition, language-derived concepts like name and reference and 
semantics permeate computational jargon (to say nothing of 
interpreter, value, variable, memory, expression, identifier and so on) 
- -  a fact that would be hard to explain if semantics were not 
crucially involved. It is not just that in discussing computation we 
use language; rather, in discussing computation we use words that 
suggest that we are also talking about linguistic phenomena. 

The question we will focus on in this paper, very briefly, is 
this: if computational artefacts are fundamentally linguistic, and if, 
therefore, it is appropriate to analyse them in terms of formal 
theories of semantics (it is apparent that this is a widely held view), 
then what is the proper relationship between the so-called 
computational semantics that results, and more standard linguistic 
semantics (the discipline that studies people and their natural 
languages: how we mean, and what we are talking about, and all of .  
that good stuff)? And furthermore, what is it to use computational 
models to explain natural language semantics, if the computational 
models are themselves in need of semantical analysis? On the face 
of it, there would seem to be a certain complexity that should he 
sorted out. 

In answering these questions we will argue approximately as 
follows: in the limit computational semantics and linguistic semantics 
will coincide, at least in underlying conception, if not in surface 
detail (for example some issues, like ambiguity, may arise in one case 
and not in the other). Unfortunately, however, as presently used in 
computer science the term "semantics" is given such an operational 
cast that it distracts attention from the human attribution of 
significance to computational structures. 6 In contrast, the most 
successful models of natural language semantics, embodied for 
example in standard model theories and even in Montague's 
program, have concentrated almost exclusively on referential or 
denotational aspects of declarative sentences. Judging only by 
surface use, in other words, computational semantics and linguistic 
semantics appear almost orthogonal in concern, even though they are 
of course similar in so'le (for example they both use meta-theoretic 
mathematical techniques - -  functional composition, and so forth - -  
to recursively specify the semantics of complex expressions from a 



given set of primitive atoms and formation rules). It is striking, 
however, to observe two facts. First, computational semantics is 
being pushed (by people and by need) more and more towards 
declarative or referential issues. Second, natural language semantics, 
particularly in computationally-based studies, is focusing more and 
more on pragmatic questions of use and psychological import. Since 
computational linguistics operates under the computational 
hypothesis of mind, psychological issues are assumed to be modelled 
by a field of computational structures and the state of a processor 
running over them; thus these linguistic concerns with "use" connect 
naturally with the "operational" flavour of standard programming 
language semantics. It seems not implausible, therefore - -  we betray 
our caution with the double negative - -  that a unifying framework 
might be developed. 

It will be the intent of  this paper to present a specific, if  
preliminary, proposal for such a framework. First, however, some 
introductory comments. In a general sense of the term, semantics 
can be taken as the study of the relationship between entities or 
phenomena in a syntactic domain s and corresponding entities in a 
semantic domain t). as pictured in the following diagram. 

I S2ntactic Domain Si @ Semantic Domain D,, I 

We call the function mapping dements from the first domain into 
elements of the second an interpretation function (to be sharply 
distinguished 7 from what in computer science is called an interpreter, 
which is a different beast altogether). Note that the question of 
whether an element is syntactic or semantic is a function of the point 
of view; the syntactic domain for one interpretation function can 
readily be the semantic domain of another (and a semantic domain 
may of course include its own syntactic domain). 

Not all relationships, of course, count as semantical; the 
"grandmother" relationship fits into the picture just sketched, but 
stakes no claim on being semantical. Though it has often been 
discussed what constraints on such a relationship characterise 
genuinely semantical ones (compositionality or recursive 
specifiability, and a certain kind of formal character to the syntactic 
domain, are among those typically mentioned), we will not pursue 
such questions here. Rather, we will complicate our diagram as 
follows, so as to enable us to characterise a rather large class of 
computational and linguistic formalisms: 

[ )¢otation )¢l ] ] )~otation ~2 ] 

t ~ 

ua and N2 are intended to be notational or communicational 
expressions, in some externally observable and consensually 
established medium of interaction, st!21 an strings of characters, 
streams of words, or sequences of display images on a computer 
terminal. The relationship O is an interpretation function mapping 
notations into internal elements of some process over which the 
primary semantical and processing regimens are defined. In first- 

order logic, sl and s2 would be something like abstract derivation 
tree types of first-order formulae; if the diagram were applied to the 
human mind, under the hypothesis of a formally encoded mentalese, 
s~ and s2 would be tokens of internal mentalese, and e would be the 
function computed by the "linguistic" faculty (on a view such as that 
of Fodora). In adopting these terms we mean to be speaking very 
generally; thus we mean to avoid, for example, any claim that tokens 
of English are internalised (a term we will use for o) into 
recognisable tokens of mentalese. In particular, the proper account 
of e for humans could well simply describe how the field of 
mentalese structures, in some configuration, is transformed into some 
other configuration, upon being presented with a particular English 
sentence; this would still count, on our view, as a theory of o. 

In contrast, ~ is the interpretation function that makes explicit 
the standard denotational significance of linguistic terms, relating, we 
may presume, expressions in $ to the world of discourse. The 
relationship between my mental token for T. S. Eliot, for example, 
and the poet himself, would he formulated as pan of ~. Again, we 
speak very broadly; ¢ is intended to manifest what, paradigmatically, 
expressions are about, however that might best be formulated (,1, 
includes for example the interpretation functions of standard model 
theories), q,, in contrast, relates some internal structures or states to 
others - -  one can imagine it specifically as the formally computed 
derivability relationship in a logic, as the function computed by the 
primitive language processor in a computational machine (i.e., as 
tzsP'S EVAL), or more generally as the function that relates one 
configuration of a field of symbols to another, in terms of the 
modifications engendered by some internal processor computing over 
those states. (~ and q, are named, for mnemonic convenience, by 
analogy with philosophy and psychology, since a study of • is a study 
of the relationship between expressions and the world - -  since 
philosophy takes you "out of your mind", so to speak - -  whereas a 
study of ~v is a study of the internal relationships between symbols. 
all of which, in contrast, are "within the head" of the person or 
machine.) 

Some simple comments. First` N~, N2, Sl, S~, o~, and oz need 
not all necessarily be distinct: in a case where sl is a self-referential 
designator, for example, D~ would he the same as s~; similarly, in a 
case where ~, computed a function that was designation-preserving, 
then D~ and o 7 would be identical. Secondly, we need not take a 
stand on which of x~ and • has a prior claim to being the semantics 
of sl. In standard logic, q, (i.e., derivability: }-) is a relationship, hut 
is far from a function, and there is little tendency to think of it as 
semantical; a study of ,I, is called proof theory. In computational 
systems, on the other hand, q, is typically much more constrained, 
and is also, by and large, analysed mathematically in terms of 
functions and so forth, in a manner much more like standard model 
theories. Although in this author's view it seems a little far-fetched 
to call the internal relationships (the "use" of a symbol) semantical, 
it is nonetheless true that we are interested in characterising both, 
and it is unnecesary to express a preference. For discussion, we will 
refer to .he ",-semantics of a symbol or expression as its declarative 
/mp0rt, and refer to its *-semantics as its procedural consequence. 
We have heard it said in other quarters that "procedural" and 
"declarative" theories of semantics are contenders; 9 to the extent that 
we have been able to make sense of these notions, it appears that we 
need both. 
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It is possible to use this diagram to characterise a variety of 
standard formal systems. In the standard models of the k-calculus, 
for example, the designation function ~, takes h-expressions onto 
functions; the procedural regimen % usually consisting of =- and/l- 
reductions, can be shown to be ~,-preserving. Similarly, if in a 
standard predicate logic we take • to be (the inverse of the) 
satisfaction relationship, with each element of S being a sentence or 
set of sentences, and elements of o being those possible worlds in 
which those sentences are true, and similarly take ,I, as the 
derivability relationship, then soundness and completeness can he 
expressed as the equation 'l'(sl,s2) m [ o~ C_ D~ ]. As for all formal 
systems (these presumably subsume the computational ones), i t  i s  

crucial that ,t, he specifiable independent of ,l,. The h-calculus and 
predicate logic systems, furthermore, have no notion of a processor 
with state; thus the appropriate • involves what we may call local 
procedural conse.quence, relating a simple symbol or set of symbols 
to another set. In a more complex computational circumstance, as 
we will see below, it is appropriate to characterise a more complex 
f~rll procedural consequence involving no t  only simple expressions, 
but fuller encodings of the state of various aspects of the 
computational machine (for example, at least environments and 
continuations in the typical computational easel0). 

An important consequence of the analysis illustrated in the 
last figure is that it enables one to ask a question not typically asked 
it" computer science, about the (q,-) semantic character of the 
function computed by ~,. Note that questions about soundness and 
completeness in logic are exactly questions of this type. In separate 
research, 11 we have shown, by subjecting it to this kind of analysis, 
tJ~at computational formalisms can be usefully analysed in these 
terms as well. In particular, we demonstrated that the universally 
a:cepted LISP evaluation protocol is semantically Confused, in the 
fbllowing sense: sometimes i t  preserves • (i.e. ~(,I,(S)) = ~,(s)), and 
sometimes it embodies • (i.e., ,l,(s) = ,l,(s)). The traditional LISP 
notion of evaluation, in other words, conflates simplification and 
reference relationships, to its peril (in that report we propose some 
LISP dialects in which these two are kept strictly separate). The 
current moral, however, is merely that our approach allows the 
question of the semantical import of ,~ to be asked. 

As well as considering LISP. we may use our diagram to 
c~laracterise the various linguistically oriented projects carried o n  

under the banner of "semantics". Model theories and formal 
theories of language (we include Tarski and Montague in one sweep) 
have concentrated primarily on ~,. Natural language semantics in 
some quarters 12 focuses on o ~ on the translation into an internal 
medium ~ although the question of what aspects of a given 
sentence must be preserved in such a translation are of course of 
concern (no translator could ignore the salient properties, semantical 
and otherwise, of the target language, be it mentalese or predicate 
logic, since the endeavour would otherwise be without constraint). 
l.ewis (for one) has argued that the project of articulating O ~ an 
¢ndeavour he calls markerese semantics - -  cannot really be called 
semantics at all, 13 since it is essentially a translation relationship, 
zlthough it is worth noting that e in computational formalisms is n o t  

z.lways trivial, and a case can at least be made that many superficial 
aspects of natural language use, such as the resolution of  indexicals, 
raay be resolved at this stage (if for example you say I am warm 
then I may internalise your use of the first person pronoun into my 
iaternal name for you). 

Those artificial intelligence researchers working in knowledge 
representation, perhaps without too much distortion, can be divided 
into two groups: a) those whose primary semantical allegiance is to 
~, and who (perhaps as a consequence) typically use an encoding of 
first-order logic as.their representation language, and b) those who 
concern themselves primarily with ,~, and who therefore (legitimately 
enough) reject logic as even suggestive (* in logic - -  derivability 
is a relatively unconstrained relationship, for one thing; secondly, the 
relationship between the entailment relationship, to which 
derivability is a hopeful approximation, and the proper "~," of 
rational belief revision, is at least a matter of debatel4). 

Programming language semantics, for reasons that can at least 
be explored, if not wholly explained, have focused primarily on q,, 
although in ways that tend to confuse it with ~. Except for PROLOG, 
which borrows its • straight from a subset of first-order logic, and 
the LIsPs mentioned earlier, is we have never seen a semantical 
account of a programming language that gave independent accounts 
of • and ,1,. There are complexities, furthermore, in knowing just 
what the proper treatment of general languages should be. In a 
separate paper 16 we argue that the notion program is inherently 
defined as a set of expressions whose (~-) semantic domain includes 
data structures (and set-theoretic entities built up over them). In 
other words, in a computational process that deals with finance, say, 
the general data structures will likely designate individuals and 
money and relationships among them, but the terms in that pan of 
the process called a program will not designate these people and 
their money, but will instead designa:~' the data ztructures that 
designate people and money (plus of course relationships and 
functions over those data structures). Even on a declarative view like 
ours, in other words, the appropriate semantic domain for programs 
is built up over data structures - -  a situation strikingly like the 
standard semantical accounts that take abstract records or locations 
or whatever as elements of the otherwise mathematical domain for 
programming language semantics. It may be that this fact that all 
base terms in programs are meta-syntactic that has spawned the 
confusion between operations and reference in the computational 
setting. 

Although the details of a general story remain to be worked 
out, the LiSP case mentioned earlier is instructive, by way of 
suggestion as to how a more complete computational theory of 
language semantics might go. In particular, because of the context 
relativity and non-local effects that can emerge from processing a 
LISP expression, ~, is not specifiable in a strict compositional way. ,~ 
- -  when taken to include the broadest possible notion that maps 
entire configurations of the field of symbols and of the processor 
itself onto other configurations and states - -  is of course recursively 
specifiable (the same tact, in essence, as saying that LISP is a 
deterministic formal calculus). A pure characterlsation of ,I, without 
a concomitant account of $, however, is unmotivated - -  as empty as 
a specification of a derivability relationship would be for a calculus 
for which no semantics had been given. Of more interest is the 
ability to specify what we call a general significance .function 2, that 
recursively specifies ,I, and ,~ together (this is what we were able to 
do for LZSP). In particular, given any expression s~, any 
configuration of the rest of the symbols, and any state of the 
processor, the function z will specify the configuration and state that 
would result (i.e.. it will specify the use of sx), and also the 
relationship to the world that the whole signifies. For example, 
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given a LISP expression of the form (+ z (PROG (SETQ A 2) A)), ~g 

would specify that the whole expression designated the number 
three, that it would return the numeral "3", and that the machine 
would be left in a state in which the binding of the variable A was 

changed to the numeral "z". A modest result; what is important is 
merely a) that both declarative import and procedural significance 
must be reconstructed in order to tell .a full story about LISP; and b) 
that they must be formulated together. 

Rather than pursue this view in detail, it is helpful to set out 
several points that emerge from analyses developed within this 
framework: 

a. In most programming languages, o can be specified 
compositionally and independently of 4, or * - -  this amounts 
to a formal statement of Fodor's modularity thc~m for 

language, z7 In the ease of formal systems, O is often context 
free and compositional, but not always (reader macros can 
render it opaque, or at least intensional, and some languages 
such as ALGOL ale apparently context-sensitive). It is 
noteworthy, however, that there have been computational 
languages for which e could not be specified indepently of * 

a fact that is often stated as the fact that the programming 
language "cannot be parsed except at runtime" (TEC0 and the 
first versions of SHALLTALK had this character). 

b. Since LISP is computational, it follows that a full account of  
its * can be specified independent of 4,; this is in essence the 
formality condition. It is important to bring out, however, 
that a local version of * will typically not be compositional in 
a modem computational formalism, even though such locality 
holds in purely extensional context-free side-effect free 
languages such as the h-calculus. 

c. It is widely agreed that * does not uniquely determine ,I, (this 
is the "psychology narrowly construed" and the concomitant 
methodological solipsism of Putnam and Fodor and othemlS). 
However this fact is compatible with our foundational claim 
that computational systems are distinguished in virtue of  
having some version of 4, as part of their characterisation. A 
very similar point can be made for logic: although any given 
logic can (presumably) be given a mathematically-specified 
model theory, that theory doesn't typically tie down what is 
often called the standard model or interpretation - -  the 
interpretation that we use. This fact does not release us, 

however, from positing as a candidate logic only a formalism 
that humans can interpret. 

d. The declarative interpretation 4, cannot be wholly determined 
independent of *, except in purely declarative languages (such 
as the x-calculus and logic and so forth). This is to say that 
without some account of the effect on the processor of one 
fragment of a whole linguistic structure, it may be impossible 
to say what that processor will take another fragment as 
designating. The use of StTQ in LISP is an example; natural 
language instances will be explored, below. 

This last point needs a word of explanation. It is of course possible 
to specify 4, in mathematical terms without any explicit mention of a 
• -like function; the approach we use in LISP defines b o t h .  and 
in terms of the overarching function • mentioned above, and we 
could of course simply define 4, without defining . at all. Our 
i~oint, rather, is that any successful definition of ~, will effectively 

have to do the work of *, more or less explicidy, either by defining 
some identifiable relationship, or else by embedding that relationship 
within the recta-theoretic machinery. We are arguing, in other 
words, only that the subject we intend * to cover must be treated in 
some fashion or other. 

What is perhaps surprising about aII of this machinery is that 
it must be brought to bear on a purely procedural language - -  all 
three relationships (O, 4,, and . )  figure crucially in an account even 
of LISP. w e  are not suggesting that LzsP is like natural languages: 
to point out just one crucial difference, there is no way in LISP or in 
any other programming language (except PROLOG) tO say anything, 
whereas the ability to say things is clearly a foundational aspect of 
any human language. The problem in the procedural languages is 
one of what we may call assertional force; although it is possible to 
construct a sentence-like expression with a clear declarative semantics 
(such as some equivalent of "x • 3"), one cannot use it in such a 
way as to actually mean it - -  so as to have it carry any assertional 
weight. For example, it is trivial to set some variable x to a, or to 
ask whether x is 3, but there is no way to state that x is 3, It should 
be admitted, however, that computational languages bearing 
assertional force are under considerable current investigation. This 
general interest is probably one of the reasons for PaOLOG'S emergent 
popularity; other computational systems with an explicit declarative 
character include for example specification languages, data base 
models, constraint languages, and knowledge representation 
languages in A.I. We can only assume that the appropriate 
semantics for all of these formalisms will align even more closely 
with an illuminating semantics for natural language. 

What does all of this have to do with natural language, and 
with computational linguistics? The essential point is this: tf  this 
characterisation of formal systems is tenable, and if the techniques of 
standard programming language semantics can be fit into this mould, 
then it may be possible to combine those approaches with the 
techniques of programming language semantics and of logic and 
model theories, to construct complex and interacting accounts of * 
and of 4,. To take just one example, the techniques that are used to 
construct mathematical accounts of environments and continuations 
might be brought to bear on the issue of dealing with the complex 
circumstances involving discourse models, theories of focus in 
dealing with anaphora, and so on; both cases involve an attempt to 
construct a recursively specifiable account of non-local interactions 
among disparate fragments of a composite text. But the 
contributions can proceed in the other direction as well: even from a 
very simple application of  this framework to this circumstance of 
LISP, for example, we have been able to show how an accepted 
computational notion fails to cohere with our attributed linguistically 
based understanding, involving us in a major reconstruction of LZSP'S 
foundations. The similarities are striking. 

Our claim, in sum, is that similar phenomena occur in 
programming languages and natural languages, and that each 
discipline could benefit from the semantical techniques developed in 
the other. Some examples of these similar phenomena will help to 
motivate this view. The first is the issue ~ t,,. appropriate use of 
noun phrases: as well as employing a noun phrase in a standard 
e .~,lnmnal position, natural language semantics has concerned itself 
with more difficult cases such as intensional contexts (as in the 
underlined designator in I didn't know The Big Apple was an island. 
where the co-designating term New York cannot be substituted 
without changing the meaning), the so-called attributive~referential 
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distinction of Donellan z9 (the difference, roughly, between using a 
noun phrase like "the man with a martini" to inform you that 
someone is drinking a martini, as Opposed to a situation where one 
uses the heater's belief or assumption that someone is drinking a 
martini to refer to him), and so on. Another example different from 
either of these is provided by the underlined term in For the next 20 
years let's re~trict the president's salary to $20,000, on the reading in 
which after Reagan is defeated he is allowed to earn as much as he 
pleases, but his successor comes under our constraint. The analagous 
computational cases include for example the use of  an expression 
like (the formal analog of) make the sixth array element be 10 (i.e., 
A(B) ::~ 10). where we mean not that the current sixth element 
should be 10 (the current sixth array element might at the moment 
tie 9, and 9 can't be 10), but rather that we would like the 
description "the sixth array element" to refer to 10 ~so-called "L- 
values", analogous to HACI.ISP'S serf  construct). Or, to take a 
,:lifferent case, suppose we say set x to the sixth array element (i.e., x 
:: = A(B)), where we mean not that x should be set to the current 
sixth array element, but that it should always be equal to that 
element (stated computationaUy this might be phrased as saying that 
:~ should track a(6); stated linguistically we might say that X should 
mean "the sixth array element"). Although this is not a standard 
type of assignment, the new constraint languages provide exactly 
such facilities, and macros (classic computational intensional 
operators) can be used in more traditional languages for such 
purposes, Or, for a final example, consider the standard dec~ation: 
z~r[GeA x, in which the term "x" refers neither to the variable itself 
(variables are variables, not numbers), nor to its current designation, 
but rather to whatever will satisfy the description "the value of x" at 
any point in the course of a computation. All in all, we cannot 
ignore the attempt on the computationalists' part to provide complex 
mechanisms so strikingly similar to the complex ways we use noun 
phrases in English. 

A very different sort of lingusitic phenomenon that occurs in 
both programming languages and in natural language are what we 
might call "premature exits": cases where the processing of  a local 
fragment aborts the standard interpretation of an encompassing 
discourse. If for example I say to you I was walking down the street 
that leads to the house that Mary's aunt used to ... forget it; [ was 
taking a walk, then the "forget it" must be used to discard the 
analysis of some amount of the previous sentence. The grammatical 
structure of the subsequent phrase determines how much has been 
discarded, of course; the sentence would still be comprehensible if 
the phrase "an old house I like" followed the "forget it". We are 
not accustomed to semantical theories that deal with phenomena like 
this, of course, but it is clear that any serious attempt to model real 
language understanding will have to face them. Our present point is 
merely that continuations z° enable computational formalisms to deal 
exactly with the computational analogs of this: so-called escape 
operators like I, IACLISP'S THROW and CATCH and QUIT. 

In addition, a full semantics of language will want to deal 
with such sentences as I f  by "flustrated" you mean what I think, then 
she was certainly fluslrated. The proper treatment of the first clause 
in this sentence will presumably involve lots of ",t," sorts of 
considerations: its contribution to the rcmainder of the sentence has 
more to do with the mental states of speaker and hearer than with 
the world being describe by the presumed conversation. Once again, 
the overarching computational hypothesis suggests that the way these 
psychological effects must be modelled is in terms of alterations in 

:he state of an internal process running over a field of computational 
structures. 

As well as these specific examples, a couple of more general 
morals can be drawn, important in that they speak directly to styles 
of practice that we see in the literature. The first concerns the 
suggestion, apparently of some currency, that we reject the notion of 
logical form, and "do semantics directly" in a computational model  
On our account this is a mistake, pure and simple: to buy into the 
computational framework is to believe that the ingredients in any 
computational process are inherently linguistic, in need of 
interpretation. Thus they too will need semantics; the internalisation 
of English into a computer (O) is a translation relationship (in the 
sense of preserving ~, presumably) - -  even if it is wildly contextual, 
and even if the internal language is very different in structure from 
the st.rucmre of English. It has sometimes been informally 
suggested, in an analogous vein, that Montague semantics cannot be 
taken seriously computationally, because the models that Montague 
proposes are "too big" - -  how could you possibly carry these infinite 
functions around in your head, we are asked to wonder. But of 
course this argument comits a use/mention mistake: the only valid 
computational reading of Montague would mean that mentalse (,~) 
would consist of designators of the functions Montague propose~ 
and those designators can of course be a few short formulae, 

It is another consequence of our view that any semanticist 
who proposes some kind of "mental structure" in his or her account 
of language is commited to providing an interpretation of that 
structure. Consider for example a proposal that posits a notion of 
"focus" for a discourse fragment. Such a focus might be viewed as a 
(possibly abstracO entity in the world, or as a element of 
computational structure playing such-and-such role in the 
behavioural model of language understanding. It might seem that 
these are alternative accounts: what our view insists is that an 
interpretation of the latter must give it a designation (e~); thus there 
would be a computational structure (being biased, we will call it the 
focus-designator), and a designation (that we call the focus.itsel]). 
The complete account of focus would have to specify both of these 
(either directly, or else by relying on the generic declarative 
semantics to mediate between them), and also tell a story about how 
the focus-designator plays a causal role (,I,) in engendering the 
proper behaviour in the computational model of language 
understanding. 

There is one final problem to be considered: what it is to 
design an internal folvnatism S (the task, we may presume, of anyone 
designing a knowledge representation language). Since, on our view, 
we must have a semantics, we have the option either of having the 
semantics informally described (or, even worse, tacitly assumed), or 

else we can present an explicit account, either by defining such a 
story ourselves or by borrowing from someone else. If the LIsp case 
can be taken as suggestive, a purely declarative model theory will be 
inadequate to handle the sorts of comptuational interactions that 
programming languages have required (and there is no a priori 
reason to assume that successful computational models for natural 
language will be found that are simpler than the programming 
languages the community has found necessary for the modest sons 
of tasks computers are presently able to perform). However it is also 
reasonable to expect that no direct analog to programming language 
semantics will suffice, since they have to date been so concerned 
with purely procedural (behavioural) consequence. It seems at least 

13 



reasonable to suppose that a general interpretation function, of the z 
sort mentioned earlier, may be required. 

Consider for example the ZLONE language presented by 
Brachman et aL 21 Although no semantics for KLONE has been 
presented, either procedural or declarative, its proponents have 
worked both in investigating the o-sehaantics (how to translate 
English into KLONE), and in developing an informal account of the 
procedural aspects. Curiously, recent directions in that project would 
suggest that its authors expect to be able to provide a "declarative- 
only" account of KLONE semantics (i.e., expect to be able to present 
an account of ~, independent of ~,), in spite of our foregoing 
remarks. Our only comment is to remark that independence of 
procedural consequence is not a pre-requisite to an adequate 
semantics; the two can be recursively specifiable together; thus this 
apparent position is stronger than formally necessary ~ which makes 
it perhaps of considerable interest. 

In sum, we claim that any semantical account of either natural 
language or computational language must specify O, ,I,, and ,~; if any 
are leR out, the account is not complete. We deny, furthermore, that 
there is any fundamental distinction to be drawn between so-called 
procedural languages (of which LISP is the paradigmatic example in 
A.I.) and other more declarative languages (encodings of logic, or 
representation languages). We deny as well, contrary to at least 
some popular belief, the view that a mathcmatically well-specified 
semantics for a candidate "mcntalese" must bc satisfied by giving an 
independently specified declarative semantics (as would be possible 
for an encoding of logic, for example). The designers of zat, zz for 
example, for principled reasons denied the possibility of giving a 
semantics indcpendent of the procedures in which the Kat structures 
participated; our simple account of LISP has at least suggested that 
such an approach could be pursued on a mathematically sound 
footing. Note however, in spite of our endorsement of what might 
be called a procedural semantics, that this in no way frees one from 
from giving a declarative semantics as well; procedural semantics and 
declarative semantics are two pieces of a total story; they are not 
alternatives. 

NOTES 

* I am grateful to Barbara Grosz and Hector Levesque for their 
comments on an earlier draft of this short paper, and to Jane 
Robinson for her original suggestion that it be written. 

1. Smith (19821o) 

2. Fodor (1978), Fodor (1980), Haugeland (forthcoming) 

3. At least until the day arrives - -  if ever - -  when a successful 
psychology of language is presented wherein all of human 
semantieity is explained in non-semantical terms. 

4. Problematic because it defines computation in a manner that is 
derivative on mind (in that language is fundamentally a mental 
phenomenon), thus dashing the hope that computational 
psyc.~,:!c, td will offer a release from the semantic irreducibility 
of previous accounts of human cognition. Though we state this 
position and explore some of its consequences in Smith (1982b), 
a considerably fuller treatment will be provided in Smith 
(forthcoming). 

5. See for example Newelt (1980) 

6. The term "semantics" is only one of a large collection of terms, 
unfortunately, that are technical terms in computer science and 
in the attendant cognitive disciplines (including logic, philosophy 
of language, linguistics, and psychology), with different 
meanings and different connotations. Reference, interpretation, 
memory, and value are just a few examples of the others. It is 
our view that in spite of the fact that semantical vocabulary is 
used in different ways, the fields are both semantical in 
fundamentally the same ways: a unification of terminology 
would only be for the best. 

7. An example of the phenomenon noted in foomote 6. 

8. Fodor (forthcoming) 

9. Woods (1981) 

10. For a discussion of continuations see Gordon (1979), Steele and 
Sussman (1978), and Smith (1982a); the formal device is 
developed in Strachey & Wadsworth (1974). 

H. Smith (1982a). 

12. A classic example is Katz and Postal (1964), but much of the 
recent A.I. research in natural language in A.L can be viewed in 
this light. 

13. Lewis (1972). 

14. Israel (1980). 

15. For a discussion of P~OLOG see Clocksin & Mellish (198l); the 
LtSPS are described in Smith (1982a)° 

16. Smith (forthcoming). 

17. Fodor (forthcoming). 

18. The term "methodological solipsism" is from Putnam (1975); see 
also Fodor (1980). 

19. Donnellan (1966). 

20. See note 10, above. 

21. Brachman (1979). 

22. Bobrow and Winograd (1977). 

REFERENCES 

Bobrow, Daniel G.. and Winograd, Terry, "An Overview of KRL: A 
Knowledge Representation Language", Cognitive Science 1 pp. 3- 
46, 1977. 

Brachman, Ronald, "On the Epistemological Status of Semantic 
Networks", in Findlerl Nicholas V. (ed.), Associative Networks: 
Representation and Use of  Knowledge by Computers, New York: 
Academic Press, 1979. 

Clocksin. W. F., and Mellish, C. S., Programming in Prolog, Berlin: 
Springer-Verlag, 1981. 

Donnellan, K., "Reference and Definite Descriptions", Philosophical 
Review 75:3 (1966) pp. 281-304; reprinted in Rosenberg and 
Travis (eds.), Readings in the Philosophy of Language, Prentice- 
Hall, 1971. 

Fodor, Jerry, "Tom Swift and his Procedural Grandmother", 
Cognition 6, 1978; reprinted in Fodor (1981). 

"Methodological Solipsism Considered as a Research 
Strategy in Cognitive Psychology", The Behavioral and Brain 
Sciences, 3:1 (1980) pp. 63-73; reprinted in Haugeland (ed.), 
Mind Design, Cambridge: Bradford, 1981, and in Fodor (1981). 

14 



Israel, David, "What's Wrong with Non-Monotonic Logic?", 
Proceedings of the First Annual Conference of the American 
Association for Artificial Intelligence, Stanford, California, 1980, 
pp. 99-101. 

Katz, Jerrold, and Postal, Paul, An Integrated Theory of Linguistic 
Descriptions, Cambridge: M.I.T. Press, 1964. 

Lewis, David, "General Semantics", in Davidson and Harman (eds.), 
Semantics of Natural Langauges, Dordrecht, Holland: D. Reidel, 
1972, pp. 169-218. 

NeweU, Alien, "Physical Symbol Systems", Cognitive Science 4, pp. 
135-183, 1980. 

Putnam, Hilary, "The meaning of 'meaning'", in Putnam, Hilary, 
Mind Language and Reality, Cambridge, U.K.: Cambridge 
University Press, 1975. 

Smith. Brian C., Reflection and Semantics in. a Procedural Language, 
Laboratory for Computer Science Report LCS-TR-272, M.I.T., 
Cambridge, Mass., 1982 (a). 

, "Semantic Attribution and the Formality Condition", 
presented at the Eighth Annual Meeting of the Society for 
Philosophy and Psychology, London, Ontario, Canada, May 13- 
16, 1982 (b). 

, The Computational Metaphor, Cambridge: Bradford 
(forthcoming). 

Steele, Guy, and Sussman, Gerald J., "The Art of the Interpreter, or 
the Modularity Complex (parts Zero, One, and Two)", M.LT. 
Artificial Intelligence Laboratory Mcmo AIM-453, Cambridge, 
Mass, 1978. 

Strachey, C., and Wadsworth, C. P., "Continuations -- a 
Mathematical Semantics for Handling Full Jumps", PRG-I1, 
Programming Rcsearch Group, University of Oxford, 1974. 

Woods, William A., "Procedural Semantics as a Thcory of Meaning", 
Report No. 4627, Bolt Beranek and Newman, 50 Moulton St., 
Cambridge, Mass., 02138; reprinted in Joshi, A., Sag, I., and 
Webber, B., Computational Aspects of Linguistic Structures and 
Discourse Settings, Cambridge, U.K.: Cambridge University 
Press, 1982. 

15 


