
A Construction-Specific Approach to
Focused Interaction in Flexible Parsing

Ph i l i p J. H a y e s
Carnegie-Mel lon Universi ty

Pit tsburgh, PA 15213

Abstract ~

A flexible parser can deal with input that deviates from its grammar,
in addition to input that conforms to it. Ideally, such a parser will
correct the deviant input: sometimes, it will be unable to correct it at
all; at other times, correction will be possible, but only to within a
range of ambiguous possJbilities. This paper is concerned with
such ambiguous situations, and with making it as easy as possible
for the ambiguity to be resolved through consultation with the user
of the parser - we presume interactive use. We show the importance
of asking the user for clarification in as focused a way as possible.
Focused interaction of this kind is facilitated by a construction.
specific approach to flexible parsing, with specialized parsing
techniques for each type of construction, and specialized ambiguity
representations for each type of ambiguity that a particular
construction can give rise to. A construction-specific approach also
aids in task-specific language development by allowing a language
definibon that is natural in terms of the task domain to be interpreted
directly without compilation into a uniform grammar formalism, thus
greatly speeding the testing of changes to the language definition.

1. Introduction
There has been considerable interest recently in the topic of flexible

parsing, i.e. the parsing of input that deviates to a greater or lesser extent
from the grammar expected by the parsing system. This iriterest springs
from very practical concerns with the increamng use of natural language
in computer interfaces. When people attempt to use such interfaces,
they cannot be expected always to conform strictly to the interfece's
grammar, no matter how loose and accomodating that grammar may be.
Whenever people spontaneously use a language, whether natural or
artificial, it is inevitable that they will make errors of performance.
Accordingly, we [3] and other researchers including Weischedel and
Black [6], and Kwasny and Sondheimer [5], have constructed flexible
parsers which accept ungrammatical input, correcting the errors
whenever possible, generating several alternative interpretations if more
than one correction is plausible, and in cases where the input cannot be
massaged into lull grammaticality, producing as complete a partial parse
as possible.

If a flexible parser being used as part of an interactive system cannot

correct ungrammatical input with total, certainty, then the system user
must be involved in the resolution of the difficulty or the confirmation of
the parser's Correction. The approach taken by Weischedel and Black
[6] in such situations is to inform the user about the nature of the
difficulty, in the expectation that he will be able to use this information to
produce a more acceptable input next time, but this can involve the user
in substantial retyping. A related technique, adopted by the COOP
system [4], is to paraphrase back tO the user the one or more parses that
the system has produced from the user!s input, and to allow the user to
confirm the parse or select one of the ambiguous alternatives, This
approach still means a certain amount of work for the user. He must
check the paraphrase to see if the system has interpreted what he said
correctly and without omission, and in the case of ambiguity, he must
compare the several paraphrases to see which most ClOsely corresponds

1This i'e~earch ~ =k~oneoreO by the Air Force Office Of Scientific ReseMch url~"
Contract F49620-79.C-0143, The views anO conclusions contained in this document
thOSe Of the author and sttould not be interpreted a.s representing [he olficial policies,
eJther exl~'e~e¢l or =mDlieO. ol the Air Force Ollice of Scicmlifi¢ Researcll or the US
Government

to what he meant, a non-trivial task if the input is lengthy and the
differences small.

Experience with our own flexible parser suggests that the way
requests for clarification in such situations are phrased makes a big
difference to the ease and accuracy with which the user can correct his
errors, and that the user is most helped by a request which focuses as
tightly as possible on the exact source and nature of the difficulty.
Accordingly, we have adopted the following simple principle for the new
flexible parser we are presently constructing: w h e n the p a r s e r canno t

u n i q u e l y reso lve a p r o b l e m in i ts i npu t , i t s h o u l d as/(the u s e r for
a c o r r e c t i o n in as d i r e c t a n d f o c u s e d a m a n n e r as l~ossible.

Furthermore, this request for clarification should not prejudice the
processing of the rest of the input, either before or after the problem
occurs, in other words, if the system cannot parse one segment of the
input, it should be able to bypass it, parse the remainder, and then ask
the user to restate that and only that segment of the input. Or again, if a
small part of the input' is missing or garbled and there are a limited
number of possibilities for what ought to be there, the parser should be
able to indicate the list of possibilities together with the context from
which the information is missing rather than making the user compare
several complete paraphrases of the input that differ only slightly.

In what follows, we examine some of the implications of these ideas.
We restrict our attention to cases in which a flexible parser can correct
an input error or ungrammaticaUty, but only to within a constrained set of
alternatives. We consider how to produce a focused ambiguity
resolution request for the user to distinguish between such a set of
corrections. We conclude that:

• the problem must be tackled on a construction.specific
basis,

• and special representations must be devised for all the
structural ambiguities that each construction type can give
rise to.

We illustrate these arguments with examples involving case
constructions. There are additional independent reasons for adopting a
construction,specific approach to flexible parsing, including increased
efficiency and accuracy in correcting ungrammaticality, increased
efficiency in parsing grammatical input, and ease of task.specific
language definition. The first two of these are discussed in [2], and this
paper gives details of the third.

2. Construct ion-Specif ic Ambiguity
Representations

In this section we report on experience with our earlier flexible parser,
RexP [3], and show why it is ill.suited to the generation of focused
requests to its user for the resolution of input ambiguities. We propose
solutions to the problems with FlexP. We have already incorporated
these improvements into an initial version of a new flexible parser [2].

The following input is typical for an electronic mail system interface [1]
with which FlexP was extensively used:

the messages from Frecl Smith that atrivecl after don 5

The fact that this is not a complete sentence in FlexP's grammar causes
no problem. The only real difficulty comes from *'Jon", which should
presumably be either "Jun" or "Jan". FlexP's spelling corrector can
come to the same conclusion, so the output contains two complete

149

parses which are passed onto the next stage of the mail system interface.
The first of these parses looks like:

[D e s c r i p t ' i o n O f : Message
Sender: [O e s c r i p t i o n O f : Person

F i rstName: Fred
Surname: smith

]
AfterOate: [DesoriptionO?: Date

Month: j a n u a r y
OayOfMonth : 5

]
]

This schematized property list style of representation should be
interpreted in the obvious way, FlexP operates by bottom.up pattern
matching of a semanttc grammar of rewrite rules which allOwS it tO parse
directly into this form of representation, which is the form required by the
next phase of the interface.

if the next stage has access to other contextual information which

allows it conclude that one or other of these parses was what was
intended, then it can procede to fulfill the user's request. Otherwise it
has little choice but to ask a Question involving paraphrases of each of

the amDiguous interpretations, such as:

Do you mean:
t. the messages from Fred Smith that arrived after January 5
2. the messages from Fred Smith that arrived after June 5

Because it is not focused on the source of the error, this Question gives
the user very little held in seeing where the problem with his input
actually lies• Furthermore. the systems representation of the ambiguity
as several complete parses gives Jt very little help in understanding a
response of "June" from the user, a very natural.and likely one in the
circumstances. In essence, the parser has thrown away the information
on the specific source of the ambiguity that it once had. and would again
need to deal adequately with that response from the user. The recovery
of this lost information would require a complicated (if done in a general
manner) comparison between the two complete parses,

One straightforward solut=on tO the problem is to augment the output
language with a special ambiguity representation. The output from our

example might look like:

i'Desc r i p~ . i on0 f : Message
Sender: [O e s c r i g t i o n O f : Person

FirstName: fred
Surname: smith

]
A f t e r O a t e : [O e s c r i p t i o n O f : Date

Month: [O e s c r i p t i o n O f : Ambigu . i t ySe t
Cho ices : (j a n u a r y j u n e)

]
OayOfMonth: 5

]
]

This representation is exactly like the one above except that the Month
slot is tilled by an AmbiguitySet record. This record allows the ambiguity
between january and june to be confined to the month slot where it
belongs rather than expanding to an ambiguity of the entire input as in

the first approach we discussed. By expressing the ambiguity set s s a
disjunction, it would be straightforward to generate from this
representation a much m_"re focused request for clarification such as:

,.30 you mean the messages from Fred Smith that arrived after
Janua ry or June 5?

A reply of "June" would also De much easier to deal with.

However. this approach only works if the aml~iguity corresponds tO an
entire slot filler. Suppose. for example, that inste,~d of mistyping the
montl~, the user omitted or ,~o completely garbled the preposition "from"

that the parser effectmvely saw:

the messages Fred Smith that arrived after Jan 5

In the grammar used by FlexP for this particular application, the
connexion between Fred Smith and the message could have been
expressed (to within synonyms) only by "from", "to". or "copied to",
FlexP can deal with this input, and correct it tO within this three way
ambiguity. To represent the ambiguity, it generates three complete
parses isomorphic to the first output example above, except that Sender
is replaced by Recipient and CC in the second and third parses
respectively. Again, this form of representation does not allow the
System tO ask a focused question about the source of the ambiguity or
interpret naturally elliptical replies to a request to distinguish between the

three alternatives. The previous solution is not applicable because the
ambiguity lies in the structure of the parser output rather than at one of
its terminal nodes. Using a case notation, it is not permissible to gut an
"AmbiguitySet" in place of one of the deep case markers. 2 To localize
such ambiguities and avoid duplicate representation of unambiguous
parts of the input, it is necessary to employ a representation like the one
useO by our new flexible parser:.

[O e s c r i p t tonOf : Message
Aml3 i guousS1 o t s :

(
[P o s s J b l e S l o t s : (Sender R e c i p i e n t CC)

S l o t F i l l e r : [D e s c r i p t i o n O f : Person
Fi rs tName: f r e d
Surname: smi th

]
]

)
A f t e r O a t e : [D e & c r i p t ionOf : Date

Month: j a n u a r y
OayOfMonth: 5

]
]

This example parser output is similar to the two given previously, but
instead of having a Sender slot, it has an AmbiguousSIots slot. The filler
of this slot is a list of records, each of which specifies a SlotFiller and a
list of PossibleSIots. The SIolFiller is a structure that would normally be

• the filler of a slot in the top-level description (of a message in this case),
but the parser has been unable to determine exactly which higher.level

slot it shou#d fit into: the possibilities are given in PossibleSIots. With this
representation, it is now straightforward to construct a directed question
such as:

Do you mean the messages from, to, or copied to Fred Smith that
arrived after January 5?

Such Questions can be generated by outputting AmbiguousSIot records
as the disjunction (in boldface) of the normal case markers for each of
the Poss=bleSlots followed by the normal translation of the SlotFiller. The
main point here, however, does not concern the question generation
mechanism, nor the exact deta, ls of the formalism for representing
ambiguity, it is. rather, that a radical revision of the initial formalism was
necassar~ in order tO represent structural ambiguities without
duplicat=on of non-ambiguous material.

The adoption of such representations for ambiguity has profound
implications for the parsing strategies employed by any parser which
tries to produce them. For each type of construction that such a parser
can encounter, and here we mean construction types at the level of case
construction, conjoined list, linear fixed-order pattern, the parser muSt
"know" about ell the structural ambiguities that the construction can
give rise to, and must be prepared to detect and encode appropriately
such ambiguities when they arise. We have chosen tO achieve this by
des=gnmg a number of different parsing strategies, one for each type of
construction that will be encountered, and making the parser Switch

2Nor rs this DroDlem merely an arlifact of case r~otatlon, tt would arise in exaclty the sanle
way for a stanttarcl syntactic parSe Of a serltence such as tile well known "1 Sew tile G=*&rl(3
Canyon flying to New York•" The ddhcully dr=see beCauSe the ami0mgu=ty ¢s structural,
structural arnblt'JllJtleS c~n occur no ma~er ~nat form of structure rs crtosen.

150

between these strategies dynamically. Each such construction-specific
parsing strategy encodes detailed information about the types of
structural ambiguity possible with that construction and incorporates the
specific information necessary to detect and represent these ambiguities.

3. Other Reasons for a Construction-Specific
Approach

There are additional independent reasons for adopting a construction-
s~oecific approach to flexible parsing. Our initially motivating reason was
that dynamically selected constructidn.specific parsing strategies can
make corrections to erroneous input more accurately and efficiently than
a uniform parsing procedure, it also turned out that such an approach
provided significant advantages in the parsing of correct input as well.
These points are covered in detail in [2].

A further advantage is related to language definition. Since, our initial
flexible parser, FlexP, applied its uniform parsing strategy to a uniform
grammar of pattern.matching rewrite rules, it was not possible to cover
constructions like the one used in the examples above in a single
grammar rule. A gostnominal case frame such as the one that covers the

message descriptions used as examples above must be .spread over
several rewrite rules. The patterns actually used in RexP look like:

<?determiner "MessageAdj 14essageHead *MessageCase>
<%from Person>
<Y,s t nee Date>

The first top.level pattern says that a message description is an optional
(?) determiner, followed by an arbitrary number (') of message adjectives
followed by a message head word (one meaning "message"), followed
by an arbitrary number of message cases. Because each case has more
than ont~ component, each must be recognized by a separate pattern like
the second and third above. Here % means anything in the same word
class, "that arrived after", for instance, is equivalent to "since" for this
purpose.

The point here is not the details of the pattern notation, but the fact
that this is a very unnatural way of representing a postnominal case
construction, Not only does it cause problems for a flexible parser, as
explained in [2], but it is also quite inconvenient to create in the first
place. Essentially, one has to know the specific trick of creating
intermediate, and from the language point of view, superfluous
categories like MeesageCase in the example above. Since, we designed
FlexP as a tool for use in natural language interfaces, we considered it
unreasonable to expect the designer of such a system to have the
specialized knowledge to create such obscure rules. Accordingly, we
designed a language definition formalism that enabled a grammar to be
specified in terms much more natural to the system being interfaced to.
The above construction for the description of a message, for instance,
could be defined as a single unified construction without specifying any
artificial intermediate constituents, as follows:

[
St ruc tu reType : Object
ObjectName: Message
Schema: [

Sender: [F i l l e r T y p e : &Person]
Rec ip i en t : [F i l l e r T y p e : &Person

Number: OneOrMore]
Date: [F J l l e r T y p e : &Oats]
A f t e r : [F J l l e r T y p e : &Date

UseRes t r i c t ion: OescrJpt i onOn ly]
]

Syntax: [
SynType: NounPhrase
Head: (message note <?piece ?of ma i l>)
Case : (

<%from tSender>
<~to ~Recip ient>
<%dated toots>
<%since ~Af te r>

.-)
]

]

In addition to the syntax of a message description, this piece of formalism
also describes the internal structure of a message, and is intended for
use with a larger interface system [1] of which FlexP is a part. The larger
system provides an interface to a functional subsystem or tool, and is
tool-independent in the sense that it is driven by a declarative data base
in which the objects and operations of the tool currently being interfaced
to are defined in the formalism shown. The example is, in fact, an
abbreviated version of the definition of a message from the declarative
tool description for an electronic mail system tool with which, the

interface was actually used.

In the example, the Syntax slot defines the input syntax for a message;
it is used to generate rules for RexP, which ere in turn used to parse
input descriptions of messages from a user. FlexP's grammar to parse
input for the mail system tool is the onion of all the rules compiled in this
way from the Syntax fields of ell the objects and operations in the tool
description. The SyntaX field of the example says that the syntax for a
message is that of a noun phrase, i.e. any of the given head nouns (angle
brackets indicate Oatterns of words), followed by any of the given
postnominal Cases, preceded by any adjectives - none are given here,
which can in turn be preceded by a determiner. The up.arrows in the
Case patterns refer beck to slots of a message, as specified in the
Scheme slOt of the example - the information in the Schema sl0t is aJso
used by other parts of the interface. The actual grammar rules needed
by FlexP are generated by first filling in a pre-stored skeleton pattern for

NounPhrase, resulting in:

<?determiner ,NesssgeAdJ MesssgeHead ,NessegeCass~;

and then generating patterns for each of the Cases, substituting the
appropriate FillerTypes for the slot names that appear in the patterns
used to define the Cases, thus generating the subpatterns:

<~[from Person>
<%to Person>
<Zdated Data>
<Zslnce Date>

The slot names are not discarded but used in the results of the subrules
to ensure that the objects which match the substituted FillerTypes and up
in the correct slot of the result produced by the top-level message rule.
This compilation procedure must be performed in its entirety before any
input parsing can be undertaken.

While this approach to language definition was successful in freeing
the language designer from having to know details of the parser
essentially irrelevant tO him, it also made the process of language
development very much slower. Every time the designer wished to make
the smallest change to the grammar, it was necessary to go through the
time-consuming compilation procedure. Since the development of a
task.specific language typically involves many small changes, this has
proved a significant impediment to the usefulness of FlexP.

151

The construction-specific approach offers a way round this problem.
Since the parsing strategies and amOiguity representations are specific
to particular constructions, it is possible to represent each different type
of construction differently - there is no need to translate the language
into a uniformly represented grammar. In addition, the constructions in
terms of which it iS natural to define a language are exactly those for
which there will be specific parsing strategies, and grammar
representations. It therefore becomes possible to dispense with the
coml~ilation step reauired for FlexP, and instead interpret the language
definition directly. This drastically cuts the time needed to make changes
to the grammar, and so makes the parsing system much more useful. For
example, the Syntax slot of the previous example formalism might
become:

Syntax: [
SynType: NounPhrase
Head: (message note (?p iece ?of ma i l >)
Cases : (

[N e r k e r : %from S l o t : Sender]
[Harker: 5;to S l o t : Rec ip ien t ,]
[Ranker : %elated Slot . : Da te]
[Harket*: ~s ince Slot . : A f t e r]
)

]

This grammar representation, equally convenient from a user's point of

view, should be directly interpretable by a .parser specific to the
NounPhrase case type of construction. All the information needed by
such a parser, including a list of all the case markers, and the type of
oblect that fills each case slot is directly enough accessible from this
representation that an intermediate compilation phase should not be
required, with all the ensuing benefits mentioned above for language
development.

2. Carbonell, J. G. and Hayes, P. J. Dynamic strategy Selection in
Flexible Parsing. Carnegie.Mellon University Computer Science
Department, 1981.

3. Hayes. P. J. and Mouradian, G. V. Flexible Parsing. Proc. of 18th
Annual Meeting of the Assoc. for Comput. Ling., Philadelphia,
June, 1980, pp. 97-103.

4. Kaplan, S. J. Cooperative Responses from a Porfab/e Natural
Language Data Base Quory System. Ph.D. Th., Dept. of Computer and
Information Science, University of Pennsylvania, Philadelphia, 1979.

5. Kwasny, S. C. and Sondheimerl N. K, Ungrammaticalily and Extra.
Grammaticality in Natural Language Understanding Systems. Proc. of
17th Annual Meeting of the Assoc. for Comput. Ling, La Jolla., Ca.,
August, 1979, pp. 19-23.

6. Weischedel, R. M. and Black, J. Responding to Potentially
Unpareeable Sentences. Tech. Regt. 79/3, Dept. of Computer and
Information Sciences, University of Delaware, 1979.

4 . Conclusion
There will be many occasions, even for a flexible parser, when

complete, unambiguous parsing of the input tO an interactive system is
impossible. In such circumstances, the parser should interact with the
system user to resolve the problem. Moreover, to make things as easy as
possible for the user, the system should phrase its request for
clarafication in terms that fOCUS as tightly as possible on the real source
and nature of the difficulty. In the case of ambiguity resolution, this
means that the parser must produce a representation of the ambiguity
that does not duplicate unambiguous material, This implies specific
ambiguity rel~resentations for each b/De of construction recognized by
the parser, and corresponding specific parSthg strategies to generate
such representations. There are other advantages to a construction-
specific approach including more accurate and efficient correction of
ungrammaticality, more efficient parsing of grammatical input, and easier
task.specific language development. This final benefit arises because a
construction.specific approach allows a language definition that is
natural in terms of the task domain to be interpreted directly without
compilation into a uniform grammar formalism, thus greatly speeding the
testing of changes to the language definition.

A c k n o w l e d g e m e n t

Jaime Carbonell provided valuable comments on earlier drafts of this
paper.

R e f e r e n c e s

1. Ball. J. E. and Hayes, P.J. Representation of Task.Independent
Knowledge in a Gracefully Interacting User Interface. Proc. 1st Annual
Meeting of the American Association for Artificiat Intelligence, American
Assoc. for Artificial Intelligence, Stanford University, August, 1980, pp.
116-120.

].52

