
1. Introduction

INTERPRETING NATURAL LANGUAGE DATABASE UPDATES

S. Jermld Kaplan
Jim David,son

Computer Science Dept.
Stanford University
Stanford, Ca. 94305

Although the problem of querying a database in natural language has
been studied extensively, there has been relatively little work on
processing database updates expressed in natural language. To
interpret update requests, several linguistic issues must be addressod
that do not typically pose difficulties when dealing exclusively with
queries. This paper briefly examines some of the linguistic problems
encountered, and describes an implemented system that performs
simple natural language database update&

The primary difficulty with interpreting natural language updates is
that there may be several ways in which a particular update can be
performed in the underlying database. Many of these options, while
literally correct and semantically meaningful, may correspond to
bizarre interpretations of the request. While human speakers would
intuitively reject these unusual readings, a computer program may be
unable to distinguish them from more appropriate ones. If carried
out, they often have undesirable side effects on the database,

For example, a simple request to "Change the teacher of CS345 from
Smith tb Jones" might be carried out by altering the number of a
course that Jones already teaches to be CS345, by changing Smith's
name to b- Jones, or by modifying a "teaches" link in the database.
While all of these may literally carry Otlt the update, they may
implicitly cause unanticipated changes such as altering Jones' salary to
be Smith's,

Our approach to this problem is to generate a limited set of
"candidate" updates, rank them according to a set of domain-
independent heuristics that reflect general properties of "reasonable"
updates, and either perform the update or present the highest ranked
options to the user for selection.

This process may be guided by various linguistic considerations, such
as the difference between "transparent" and ""opaque" readings of the
user's request, and the interpretation of counterfactual conditionals.

Our goal is a system that will process natural language updates,
explaining problems or options to the user in terms that s/he can
understand, and effecting the changes to the underlying database with
the minimal disruption of other views. At this time, a pilot
implementation is complete.

2. Generating Candidate Updates

Before an appropriate change can be made to a database in response
to a natural language request, it is useful to generate a set of
"candidate" updates that can then be evaluated for plausibility. In
most cases, an infinite number of changes to the database are possible
that would literally carry out the request (mainly by creating and
inserting "dummy" values and links). However, this process can be
simplified by generating only candidate updates that can be directly
derived from the user's phrasing of the request. This limitation is

justified by observing that most reasonable updates correspond to
different readings of expressions in referentially opaque contexts.

A referentially opaque context is one in which two expressions that
refer to the same real world concept cannot be interchanged in the
context without changing the meaning of the utterance [Quine. 1971].
Natural language database updates often contain opaque contexts,

For example, consider that a particular individual (in a suitable
database) may be referred to as "Dr. Smith", "the instructor of
CSI00", "the youngest assistant professor", or "the occupant of Rm.
424". While each of these expressions may idem, fy the same database
record (i.e. they have the same extension), they suggest different
methods for locating that record (their intensions differ). In the
context of a database query, where the goal is to unambiguously
specify the response set (extension), the method by which they are
accessed (the intension) does not normally affect the response (for a
counierexample, however, see [Nash-Wcbber, 1976]). Updates, on the
other hand, are often sensitive to the substitution of extensionally
equivalent referring expressions. "Change the instructor of CS100 to
Dr. Jones." may not be equivalent to "Change the youngest assistant

professor to Dr. Jones." or "Change Dr. Smith to Dr. Jones." Each of
these may imply different updates to the underlying database,.

This characteristic of natural language updates suggests that the
generation of candidate updates can be performed as a language driven
inference [Kaplan, 1978] without severely limiting the class of updates
to be examined. "Language driven inference" is a style of natural
language processing where the infcrencing process is driven (and
hence limited) by the phrasing of the user's request. Two specific
characteristics of language driven inference arc applied here to control
the generation process.

First, it is assumed that the underlying database update must be a
series of transactions of the same type indicated in the request. That is.
if the update requests a deletion, this can only be mapped into a series
of deletions in the database. Second, the only kinds of database
records that can be changed are those that have been mentioned in
some form in the actual request, or occur on paths linking such
record¢ In observing these restrictions, the program will generate
mainly updates that correspond to different readings of potentially
opaque references in the original request.

3. Selecting Appropriate Updates

At first examination, it would seem to be necessary to incorporate a
semantic model of the domain to select an appropriate update I'mm
the candidate updates. While this approach would surely be effective,
the overhead required to encode, store, and process this knowledge for
each individual database may be prohibitive in practical applications.
What is needed is a general set of heuristics that will select an
appropriate update in a reasonable majority of cases, without specific
knowledge of the domain.

139

]he heuristics that are applied to rank the candidate updates are based
on the idea that the most appropriate one is likely to cause the
minimum number of side effects to the user's conception of the
database. This concept is developed formally in the work of Lewis,
presented in his book on Counterfactuals [Lewis, 1973]. In this Work,
Lewis examines the meaning and formal representation of such
statements as "If kangaroos had no tails, they.would topple over."
(P.8) He argues that to evaluate the correctness of dlis statement (and

similar counterfactual conditionals) it is necessary to construct in one's
mind the possible world minimally different from the real world that
could potentially contain the conditional (the "nearest" consistent
world). He points out that this hypothetical world does not differ only
in that kangaroos don't have tails, but also reflects other changes
required to make that world plausible. Thus he rejects the idea that in
the hypothetical world kangaroos might use crutches (as not being
minimally different), or that they might leave the same tracks is the
sand (as being inconsistent).

The application of this work to processing natural language database
updates is to regard each transaction as presenting a "counterfactuar'
state of the world, and request that the "nearest" reasonable world in
which the counterfactual is true be brought about. (For example, the
request "Change the teacher of CS345 from Smith to Jones." might
correspond to the counterfactual "If Jones taught CS345 instead o f
Smith. how would the databasc be different?" along with a speech act
requesting that the database be put in this new state.) To select this
nearest world, the number ,and type of side effects are evaluated for
each candidate update, and they are ranked accordingly. Side effects
that disrupt the user's view--taken to be the subset of the database that
has been accessed in previous transactions--are considered more
"severe" than changes to portions of the database not in that view. In
data processing terms, the update with the fewest side effects on the
user's data sub-model is selected as the most appropriate.

Updates that violate syntactic or semantic constraints implicit in the
database smtcture and content can be eliminated as inconsistent.
Functional dependencies, where one attribute uniquely determines
another, are useful semantic filters (as in the formal update work of"
[Dayal. 1979]). When richer semantic data models are available, such
as the Str~:ctural Model of [Wiederhold and E1-Masri, 1979], more
sophisticated constraints can be applied. (The current implementation
does not make use ofany such constrain~)

While this approach can .certainly rail in cases where complex domain
• semantics rule out the "simplest" change-the one with the fewest side
effects to the user's view--in the majority of cases it is sufficient to
select a reasonable update from among the various possibilities,

4 . An E x a m p l e

The following simple example of" this technique illustrates the
uscfuln¢,~ of the proposed approach in practical databases. [t is drawn
From the current pilot implementation.

The program is written in Interlisp [Teitelman, 1978]. and runs on a
DEC KL-10 under Tenex. An update expressed in a simple natural.
language subset is parsed by a semantic gnLmmar using the LIFER
system [Hcndrix. 1977]. Its output is a special version of the SODA
relational language [Moore, 1979] that has been modified by Jim
[)avidson to inchlde the standard database update operations "delete",
"insert" ,and "replace". The parsed request is then passed to a routine

that generates the candidate updates, subject to the constraints
outlined above. This list is then evaluated and ranked as described in
the previous section. If no updates are possible, the user is alerted to
this fact If one alternative is superior, it is carried out. If several
updates remain which cannot be compared, they arc presented for
selection in terms of the effects they will have on the user's view of the
database. If the update ultimately performed has unanticipated effects
on the user's view (i.e. if the answer to a previous query is now
altered), the user is informed.

The example below concerns a small database of information about
employees, managers and departments. It is assumed that the user
view of the world contains employees and managers, but that s/he
does not necessurily know about department~ in the database,
managers manage employees "transitively", by managing the
departments in which the employees work. For p u ~ of
presentation, intermediate results are displayed here to illustrate the
program's actions. Normally, such information would not be printed.
Commentary is enclosed in brackets("[]").

[Here is a tabular display ofthe database.]

TABLE OH

OEPT MGR

INVNTRY FISHER
MKTZNG BAKER
SALES JONES

TABLE ED

EMP DEPT

ADAMS SALES
WHITE MKTING
BROWN SALES
SMITH INVNTRY

[F i s t the user ente~ the following query, from which the program
in~rs the user's view ofthc world.]

Enter next command:
(LIST THE EMPLOYEES AND THEIR MANAGERS)

EMP M6R

AOAHS JONES
WHITE BAKER
BROWN JONES
SMITH FISHER

[]Next the user enters a natural language update request.]
Enter next command:
(CHANGE BROWN'S MANAGER FROM JONES TO BAKER]

[The program now generates the candidate updates. One of these
corresponds to moving Brown from the S~es department to the
Marketing departmenL The other would make Baker the manager of
the S~es departmenL]

The posstb le ways of performing the update:

1. In the r a l a t t o n ED change the OEPT e t t r of
the tuple

ENP OEPT
. -

BROMN SALES

to the value MKTZNG

140

2. In the Pa la t ton DM change the MGR a t t r of
the tuple

OPT t~R

SALES JONES

to the value BAKER

[The side effect of each on the user's view are computed.]
These t r a n s l a t i o n s have the fo l low ing stde e f fec ta
on the vtew:

1. Side e f f e c t s are:
De le t ions : NIL
I n s e r t i o n s : NIL
Replacements: NIL

2. Stde e f f e c t s era:
De le t ions : NIL
I n s s r t l o n s : NIL
Replacements: (ADAMS JONES) -> (ADAMS BAKER)

['The prog~m concludes that update (1) is superior to (2). since (2) has
the addiuonal side effect of changing Adams' manager to Baker as
well.]

Oestred t r s n s l a t l o n ts: 1 .

Rev'~od vtew ls :

EMP MGR

ADAMS JONES
WHITE BAKER
BROWN BAKER
SMITH F!SHER

5. C o n c l u s i o n s

Carrying out a database update request expressed in natural language
requires that an intelligent decision be made as to how the update
should be accomplished. Correctly identifying "reasonable" resultant
states of the database, and selecting a best one among these, may
involve world knowledge, domain knowledge, the user's goals and
view of the database, and the previous discourse. In short, it is a
typical problem in computational linguistics.

Most of the compli~tions derive from the fact that the user has a view
of the database that may be a simplification, subset, or transformation
of the actual database structure and contenL Consequently, there may
be multiple ways of carrying out the update on the underlying
database (or no ways at all), which.are transparent to the user. While
most or all of these changes to the underlying database may literally
fulfill the user's request, they may have unanticipated or undesirable
side-effecm on the database or the user's view.

We have developed an approach to this problem that uses domain-
independent heuristics to rank a set of candidate updates generated
from the original requesL A reasonable course of action can then be
selected, and carried out This may involve informing the user that the
update is ill-advised (if" it cannot be carried out). presenting
incomparable alternatives to the user for selection, or simply
performing one of the possible updates. Ot, r technique is motivated by
linguistic observations about the nature of update requests.
Specifically, the use of referential opacity, and (he interpretation of
counterfactual conditionals, play a role in our design.

A primary advantage of our approach is that it does not require special
knowledge about the domain, except that which is implicit in the
structure and content of the database. A simple but adequate model of
the user's view of the database is derived by tracking the previous
dialog, and the heuristics are based on general principles about the
nature of possible worlds, and so can be applied to any domain.
Consequendy, the approach is practical in the sense that it can be
transported to new databases without modification.

In part because of ils generality, there is a definite risk (hat the
technique will make inappropriate actions or fail to notice preferable
options. A more knowledge-based approach would likely yield more
accurate and sophisticated results. The proees of responding
appropriately to updates could be improved by taking advantage of
domain specific knowledge external to the database, using pan~ case-
structure semantics, or tracking dialog focus, to name a few. In
addition, better heuristics for ranking candidate updates would be
likely to enhance performance.

At present, we arc developing a formal characterization of the process
of performing updates to views. We hope that this will provide us with
a tool to improve our understanding of both the problem and the
approach we have taken. While the heuristics used in the process are
motivated by intuition, there is no obvious reason to assume that they
are either optimal or complete. A more formal analysis of the problem
may provide a basis for relating the various heuristics and suggest
additional ranking criteria.

6. B i b l i o g r a p h y

Dayal. U.: Mapping Problems in Database Systems, TR-11-79, Center
for Research in Computing Technology, Harvard University,
19"/9.

Hendrix, G.: Human Engineering for Applied Natural Language
Processing. Proceedings of the Fifth lnzernational Joint
Conference on Artificial Intelligence, 1977,183-19L

Kaplan. S. J.: Indirect Responses to Loaded Questions, Proceedings of
lhe Second Workshop on Theoretical ls~ues in Natural
Language Procexsing, Urbana-Champalgn, IL, July. 1978.

Lewis, D.: Counterfactual$, Harvard University Press, Cambridge,
MA, 1973.

Moore, R.: Handling Complex Queries in a Distributed Da~ Base,
TN-170. AI Center. SRI International, October, 1979.

Nash-Webber. B.: Semantic Interpretation Revuited, BBN report
#3335, Bolt, Beranek. and Newman, Cambridge, MA, 1976.

Quine" w.v.o. : Reference and Modality, in Reference andModaliO,,
Leonard Linsky. Ed., Oxford, Oxford University Press, 197L

Teitelman, W.: lntedisp Reference Manual, Xerox PARC. Pale Alto,
1978.

Wiederhold. G. and R. EI-Masri: The Structural Model for Database
Design, Proceedings of the International Conference on Entity"
Relationship Approach to Sy$lems Analysis and Design. North
Holland Press, 1979. pp 247-267.

141

