PERSPECTIVES ON
PARSING ISSUES

Christopher K. Riesbeck
Yale University

COMPU NAL PERSPECTIVE
IS IT USEFUL TO DISTINGUISH PARSING FROM INTERPRETATION?

Since most of this position paper will be attacking
the separation of parsing from interpretation, let me
first make it clear that I do believe in syntactic
knowledge. 1In this I am more conservative than other
researchers in interpretation at Berkeley,
Carnegie~Mellon, Columbis, the universities of
Connecticut and Maryland, and Yale.

But believing in syntactic knowledge is not the same
a8 believing in parsers! The search for a way to assign
a8 syntactic structure to a sentence largely independent
of the meaning of that sentence has led to a terrible
misdirection of labor. And this effect has been felt on
both sides of the fence. We find ourselves looking for
ways to reduce interaction between syntax and semantics
as wuch as possible. How far can we drive a purely
syntactic (semantic) analyzer, without sneaking over into
the enemy camp? How well can we disguise syntax
(semantics) as semantics (syntax)? How narrow a pipe
between the two can we get away with? What a waste of
time, when we should be starting with bodies of texts,
considering the total language analysis picture, and
looking for what kinds of knowledge need to interact to
understand those texts.

If our intent in overextending our theories was to
test their muscle, then I would have no qualms. Pushing
2 mechanism down a blind alley is an important way to
study its weaknesses. But 1 really can’t accept this
Popperian viev of modern computational linguistics.
Mechanisms are not driven beyond their limits to find
those limits, but rather to grab territory from the other
side. The underlying premise is "If our mechsanism X can
sometimes do task A, then there is no need for someone
else”s mechanism Y." Occam’s razor is used with murderous
intent.

Furthermore, the debate over whether parsers make
sense has drastically reduced interaction between
researchers. Each side sees the other as avoiding
fundamental issues, and so the results from the other
side always seem to be beside the point. For example,
vhen Mitch Marcus” explains some grammatical constraint
as syntactic processing constraints, he doesn’t answer
any of the problems I'm faced with. And I'm sure Mitch
has no need for frame-based, domain-driven partial
language analysis techniques.

This situation has not arisen because we have been
forced to specialize. We simply don“t kmow emough to
qualify for an information explosion yet. Computational
linguistics doesn’t have hundreds of journals in dozens
of languages. It”s a young field with only a handful of
people working im it.

Nor is it the case that we don’t have things to say
to each other. But — and here’s the rub —— some of the
most useful things that each of us knows are the things
that we don’t dare tell. By that I mean that each of us
knows where our theories fall apart, where we have to
kludge the programs, fudge the inputs, or wince at the
outputs. That kind of information could be invaluable
for suggesting to the others where to focus their
attentions. Unfortunately, even if we became brave
enough to talk about, even emphasize, where we re having
problems, the odds are low that we would consider
acceptable what someone else proposes as a solution.

105

1S SIMULATION OF HUMAN PROCESSING IMPORTANT?

Yes, very much so, even if all you are interested in
is a good computer program. The reason why was neatly
captured in Principles of Aztificjal Inteiligence:
"language has evolved as a communication medium between
intelligent beings" (Nilsson, p. 2). That is, natural
language usage depends on the fact that certain things
can be left ambiguous, left vague, or just left out,
because the hearer knows almost as much as the speaker.
Natural language has been finely tuned to the
communicative needs of human beings. We may have to
adapt to the limitations of our ears and our vocal
chords, but we have otherwise been the masters of our
language. This is true even if there is an innate
universal grammar (which I don’t believe in). &
universal grammar applies few constraints to our use of
ellipsis, ambiguity, anaphora, and all the other aspects
of language that make language an efficient means for
information transfer, and a pain for the programmer.

Because language has been fitted to what we do best,
I believe it"s improbable that there exist processes very
unlike what people use to deal with it. Therefore, while
I have no intention of trying to model reaction time data
points, I do find human behavior important for two kinds
of information. First, what do people do well, how do
they do it, and how does language use depend on it?
Second, what do people do poorly, and how does language
use get around it?

The question "How can ve know what human processing
is really like?" is a non-issue. We don't have to know
what human processing is really like. But if people can
understand texts that leave out crucial background facts,
then our programs have to be able to infer those facts.
If people have trouble understanding information phrased
in certain ways, then our programs have to phrase it in
ways they can understand. At some level of descriptionm,
our programs will have to be "doing what people do,"
i.e., filling in certain kinds of blanks, leaving out
certain kinds of redundancies, and so on. But there is
no reason for computational linguists to worry about how
deeply their programs correspond to human processes.

WILL PARALLEL PROCESSING CHANGE THINGS?

People have been predicting (and waiting for) great
benefits from parallelism for some time. Personally, I
believe that most of the bemefits will come in the area
of interpretation, where large-scale memory search, such
as Scott Fahlman has been worrying about, are involved.
And, if snything, improvements in the use of semantics
will decrease the attractiveness of syntactic parsing.

But I also think that there are not that many gains
to be had from parallel processing., Hash codings,
discrimination trees, and so on, already yield reasonably
constant speeds for looking up data. It is an
inconvenience to have to deal with such things, but not
an insurmountable obstacle. Our real problems at the
moment are how to get our systems to make decisions, such
as "ls the question "How many times has John asked you
for money?” rhetorical or not?" We are limited not by the
number of processors, but by not knowing how to do the
job.



THE LINGUISTIC PERSPECTIVE
HAVE OUR TOOLS AFFECTED US?

Yes, and adversely. To partially comtradict my
statements in the last paragraph, we’ve been overly
concerned with how to do things with existing hardware
and software. And we’ve been too impressed by the
success computer science has had with syntax-driven
compilation of programming languages. It is certainly
true that work on grammars, parsers, code generators, and
80 on, have changed compiler generation from massive
nulti-man-year endeavors to student course projects. If
compiler technology has benefited so much from symtactic
parsers, why can’t computstional linguistics?

The problem here is that the technology has not done
what people think it has. It has allowed us to develop
modern, well-structured, task-oriented languages, but it
has not given us patural ones. Anyone who has had to
teach an introductory programming course knows that.
High-level languages, though easier to learn than machine
language, are very different from human languages, such
as English or Chinese.

Programming languages, to readjust Nilsson’s quote,
are developed for communication between morons. All the
useful features of language, such as ellipsis and
ambiguity, have to be eliminated in order to use the
technology of syntax-driven parsing. Compilers do not
point the way for computational linguistics. They show
instead what we get if we restrict ourselves to
simplistic methods.

DO WE PARSE CONTEXT-FREELY?

My working assumption is that the syntactic
knowledge used in comprehension is at most context-free
and probably a lot less, because of memory limitatiomns.
This is mostly a result of semantic heuristics taking
over when constructions become too complex for our
cognitive chunking capacities. But this is not a
critical assumption for me.

NTERACTIONS
Since I don’t believe in the pure grammatical
approach, 1 have to replace this last set of questions
with questions about the relationship between our
knowledge (linguistic and othervise) and the procedures
for applying it. Fortunately, the questions still make
sense after this substitution.

DO OUR ALGORITHMS AFFECT OUR KNOWLEDGE STRUCTURES?

Of course. In fact, it is often hard to decide
whether some feature of a system is a knowledge structure
or a procedural factor. For example, is linear search &
result of data structures or procedure designs?

CAN WE TEST ALGORITHMS/KNOWLEDGE STRUCTURES SEPARATELY?

We do indeed try experiments based on the shape of
knowledge structures, independently of how they are used
(but I think that most such experiments have been
inconclusive). I°m not sure what it would mean, however,
for a procedure to be validated independently of the
knowledge structures it works with, since until the
knowledge structures were right, you couldn’t tell if the
procedure was doing the right thing or not.

WHY DO WE SEPARATE RECOGNITION AND PRODUCTION?

If I were trying to deal with this question on
grammatical grounds, I wouldn”t know what it meant.
Grammars are not processes and hence have no direction.
They are abstract characterizations of the set of
well-formed strings. From certain classes of grammars

106

one can mechanically build recognizers and random
generators. But such machines are not the grammars, and
a recognizer is manifestly not the same machine as a
generator, even though the same grammar may underlie
both.

Suppose we rephrase the questior as "Why do we have
separate knowledge structures for interpretation and
production?” This presupposes that there are separate
knowledge structures, and in our current systems this is
only partially true.

Interpreting and production programs abound in ad
hoc procedures that share very little in common near the
language end. The interpreters are full of methods for
guessing at mesnings, filling in the blanks, predicting
likely follow-ups, and so on. The generators are full of
methods for eliminating contextual items, picking
appropriste descriptors, choosing pronouns, and so on.
Each has a very different set of problems to deal with.

On the other hand, our interpreters and generators
do share what we think is the important stuff, the world
knowledge, without which all the other processing
wouldn't be worth a partridge in & parse tree. The world
knovledge says what makes sense in understanding and what
is important to talk about.

Part of the separation of interpretation and
generation occurs when the programs for each are
developed by different people. This results in
unrealistic systems that write what they can’t read and
read what they can’t write. Someday we’ll have a good
model of how knowledge the interpreter gains about
understanding 2 new word is converted to knowledge the
generator can use to validly pick that word in
production. This will have account for how we can
interpret words without being ready to use them.

For example, from a sentence like "The car swerved
off the road and struck a bridge abutment," we can infer
that an abutment is a noun describing some kind of
outdoor physical object, attachable to a bridge. This
would be enough for interpretation, but obviously the
generator will need to know more sbout what an abutment
is before it could confidently say "Oh, look at the cute
abutment !" .

sharing. There are two standard
at least grammatical information.
One is to save space, and the other is to maintain
consistency. Without claiming that sharing doesn’t
occur, I would like to point out that both arguments are
very weak. First, there is really not a lot of
grammatical knowledge, compared against all the other
knowledge wve have about the world, sc not that much space
would be saved if sharing occurred. Second, if the
generator derives it“s linguistic knowledge from the
parser”s data base, then we’ll have as much consistency
as we could messure in people anyway.

ENCE

Nilsson, N.

A final point on
arguments for sharing

(1980). Principles of Artificial
Tioga Publishing Co, Palo Alto,

California.



