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A b s t r a c t  

The problem of modeling human understanding and 
generation of a coherent dialog is investigated by simulating a 
conversation participant. The rule-based system currently 
under development attempts to capture the intuitive concept 
of "topic" using data structures consisting of declarative 
representations of the subjects under discussion linked to the 
utterances and rules that generated them. Scripts, goal trees, 
and a semantic network are brought to bear by general, 
domain-independent conversational rules to understand and 
generate coherent topic transitions and specific output 
utterances. 

1. R u l e s ,  t o p i c s ,  a n d  u t t e r a n c e s  
Numerous systems have been proposed to model human use 
of language in conversation (speech acts[ l ] ,  MICS[3], 
Grosz [5]). They have attacked the problem from several 
different directions. Often an attempt has been made to 
develop some intersentential analog of syntax, despite the 
severe problems that grammar-oriented parsers have 
experienced. The program described in this paper avoids the 
use of such a grammar, using instead a model of the 
conversation's topics to provide the necessary connections 
between utterances. It is similar to the ELI parsing system, 
developed by Riesbeck and Schank [7], in that it uses 
relatively small, independent segments of code (or "rules") to 
decide how to respond to each utterance, given the context 
of the utterances that have already occurred. The program 
currently operates in the role of a graduate student 
discussing qualifier exams, although the rules and control 
structures are independent of the domain, and do not assume 
any a priori topic of discussion. 

The main goals of this project are: 

• To develop a small number of general rules that 
manipulate internal models of topics in order to 
produce a coherent conversation. 

• To develop a 'representation for these models of 
topics which will enable the rules to generate 
responses, control the flow of conversation, and 
maintain a history of the system's actions during 
the current conversation. 
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• To integrate information from a semantic 
network, scripts, dynamic goal trees, and the 
current conversation in order to allow intelligent 
action by the rules. 

The rule-based approach was chosen because it appears to 
work in a better and more natural way than syntactic pattern 
matching in the domain of single utterances, even though a 
grammatical structure can be clearly demonstrated there. If it 
is awkward to use a grammar for single-sentence analysis, 
why expect it to work in the larger domain of human 
discourse,, where there is no obviously demonstrable 
"syntactic" structure? in place of grammar productions, 
rules are used which can initiate and close topics, and form 
utterances based on the input, current topics, and long-term 
knowledge. This set of rules does not include any domain- 
specific inferences; instead, these are placed into the 
semantic network when the situations in which they apply are 
discussed. 

It is important to realize that a "topic" in the sense used in 
this paper is not the same thing as the concept of "focus" 
used in the anaphora and coreference disambiguation 
literature. There, the idea is to decide which part of a 
sentence is being focused on (the "topic" of the sentence), 
so that the system can determine which phrase will be 
referred to by any future anaphoric references (such as 
pronouns). In this paper, a topic is a concept, possibly 
encompassing more than the sentence itself, which is 
"brought to mind" when a person hears an utterance (the 
"topic" of a conversation). It is used to decide which 
utterances can be generated in response to the input 
utterance, something that the focus of a sentence (by itself) 
can not in general do. The topics need to be stored (as 
opposed to possibly generating them when needed) simply 
because a topic raised by an input utterance might not be 
addressed until a more interesting topic has been discussed. 

The data structure used to represent a topic is simply an 
object whose value is a Conceptual Dependency (or CD) [8] 
description of the topic, with pointers to rules, utterances, 
and other topics which are causally or temporally related to it, 
plus an indication of what conversational goal of the program 
this topic is intended to fulfill. The types of relations 
represented include: the rule (and any utterances involved) 
that resulted in the generation of the topic, any utterances 
generated from the topic, the topics generated before and 
after this one (if any), and the rule (and utterances) that 
resulted in the closing of this topic (if it has been closed). 
Utterances have a similar representation: a CD expression 
with pointers to the rules, topics, and other utterances to 
which they are related. This interconnected set of CD 
expressions is referred to as the topic-utterance graph, a 
small example of which (without CDs) is illustrated in Figure 
1.1. The various pointers allow the program to remember 
what it has or has not done, and why. Some are used by rules 
that have already been implemented, while others are 
provided for rules not yet built (the current rules are 
described in sections 2.2 and 3). 
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Figu re 1 -1 : A topic-utterance graph 

2. T h e  c o m p u t a t i o n a l  m o d e l  
The system under implementation is, as the title says, a rule- 
based conversation participant. Since language was 
originally only spoken, and used primarily as an immediate 
communication device, it is not unreasonable to assume that 
the mental machinery we wish to model is designed primarily 
for use in an interactive fashion, such as in dialogue. Thus, it 
is more natural to model one interacting participant than to try 
to model an external observer's understanding of the whole 
interaction. 

2.1. Cont ro l  
One of the nice properties of rule-based systems is that they 
tend to have simple control structures. In the conversation 
participant," the rule application routine is simply an 
initialization followed by a loop in which a CD expression is 
input, rules are tried until one produces a reply-wait signal, 
and the output CD is printed. A special token is output tO 
indicate that the conversation is over, causing an exit from 
the loop. One can view this part of the model as an 
input/output interface, connecting the data structures that 
the rules access with the outside world. 

Control decisions outside of the rules themselves are handled 
by the agenda structure and the interest-rating routine. An 
agenda is essentially a list of lists, with each of the sublists 
referred to as a "bucket".  Each bucket holds the names of 
one or more rules. The actual firing of rules is not as simple 
as indicated in the above paragraph, in that all of the rules i n  
a bucket are tested, and allowed to fire if their test clauses are 
true. After all the rules in a bucket have been tested, if any of 
them have produced a reply-wait signal, the "best" utterance 
is chosen for output by the interest-rating routine, and the 
main loop described above continues. If none have indicated 
a need to wait, the next bucket is then tried. Thus, the rules in 
the first bucket are always tried and have highest priority. 
Priority decreases on a bucket.by.bucket basis down to the 
last bucket. In a normal agenda, the act of firing is the same 
as what I am calling the reply-wait signal, but in this system 
there is an additional twist. It is necessary to have a way to 
produce two sentences in a row, not necessarily tightly 
related to each other (such as an interjection followed by a 
Question). Rather than trying to guarantee that all such sets 
of rules are in single buckets, the rules have been given the 

ability to fire, produce an utterance, cause it to be output 
immediately, and not have the agenda stopped, simply by 
indicating that a reply-wait is not needed. It is also possible 
for a rule to fire without producing either an utterance or a 
reply-wait, as is the case for rules that simply create topics, or 
to produce a list of utterances, which the interest-rater must 
then look through. 

The interest-rating routine determines which of the 
utterances produced by the rules in a bucket (and not 
immediately output) is the best, and so should be output. This 
is done by comparing the proposed utterance to our model of 
the goals of the speaker, the listener, and the person being 
discussed. Currently only the goals of the person being 
discussed are examined, but this will be  extended to include 
the goals of the other two. The comparison involves looking 
through our model of his goal tree, giving an utterance a 
higher ranking for matching a more important goal. This is 
adjusted by a small amount to favor utterances which imply 
reaching a goal and to disfavor those which imply failing to 
reach it. Goal trees are stored in long-term memory (see next 
section). 

2.2.  Memories 
There are three main kinds of memory in this model: working 
memory, long.term memory, and rule memory. The data 
structures representing working memory include several 
global variables plus the topic-utterance graph. The topic- 
utterance graph has the general form of two doubly-l inked 
lists, one consisting of all utterances input and output (in 
chronological order) and the other containing the topics (in 
the order they were generated), with various pointers 
indicating the relationships between individual topics and 
utterances. These were detailed in section 1. 

Long-term memory is represented as a semantic network [2]. 
Input utterances which are accepted as true, as well as their 
immediate inferences, are stored here. The typical semantic 
network concept has been extended somewhat to include two 
types of information not usually found there: goal trees and 
scripts. 

Goal trees [6, 3] are stored under individual tokens or classes 
(on the property GOALS) by name. They consist of several 
CD concepts linked together by SUBGOAL/SUPERGOAL 
links, with the top SUPERGOAL being the most important 
goal, and with importance decreasing with distance below the 
top of the goal tree. Goal trees represent the program's 
model of a person or organization's goals. Unlike an earlier 
conversation program [3], in this system they can be changed 
during the course of a conversation as the program gathers 
new information about the entities i t  already knows something 
about. For example, if the program knows that graduate 
students want to pass a particular test, and that Frank is a 
graduate student, and it hears that Frank passed the test, it 
will create an individual goal tree for Frank, and remove the - 
goal of passing that test. This is clone by the routine which 
stores CDs in the semantic network, whenever a goal is 
mentioned as the second clause of an inference rule that is 
being stored. If the rule is stored as true, the first clause of 
the implication is made a subgoal of the mentioned goal in the 
actor's goal tree. If the rule is negated, any subgoal matching 
the first clause is removed from the goal tree. 
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As for scripts [9], these are the model's episodic memory and 
are stored as tokens in the semantic network, under the class 
SCRIPT. Each one represents a detailed knowledge of some 
sequence of events (and states), and can contain instances of 
other scripts as events. The individual events are represented 
in CD, and are generally descriptions of steps in a commonly 
occuring routine, such as going to a restaurant or taking a 
train trip. In the current context, the main script deals with 
the various aspects of a graduate student taking a qualifier. 
There are parameters to a script, called "roles" • in this case, 
the student, the writers of the exam, the graders, etc. Each 
role has some required preconditions. For example, any 
writer must be a professor at this university. There are also 
postconditions, such as the fact that if the student passes the 
qual he/she has fulfilled that requirement for the Ph.D. and 
will be pleased. This post-condition is an example of a 
domain-dependent inference rule, which is stored in the 
semantic network when a situation from the domain is 
discussed. 

Finally, we have the rule memory. This is just the group of 
data objects whose names appear in the agenda. Unlike the 
other data objects, however, rules contain Lisp code, stored 
in two parts: the TEST and the ACTION. The TEST code is 
executed whenever the rule is being tried, and determines 
whether it fires or not. It is thus an indication of when this rule 
is applicable. (The conditions under which a rule is tried were 
given in the section on Control, section 2.1). The ACTION 
code is executed when the rule fires, and returns either a list 
of utterances (with an implied reply-wait), an utterance with 
an indication that no reply wait is necessary, or NIL, the 
standard Lisp symbol for "nothing". The rules can have side 
effects, such as creating a possible topic and then returning 
NIL. Although rules are connected into the topic-utterance 
graph, they are not really considered part of it, since they are 
a permanent part of the system, and contain Lisp code rather 
than CO expressions. 

3 .  An e x a m p l e  e x p l a i n e d  
A sample of what the present version of the system can do will 
now be examined. It is written in MacLisp, with utterances 
input and output in CO. This assumes the existence of 
programs to map English to CO and CD to English, both of 
which have been previously done to a degree. The agenda 
currently contains six rules. The two in the highest priority 
bucket stop the conversation if the other person says 
"goodbye" or leaves (Rule3-3 and Rule3-4). They are there 
to test the control of the system, and will have to be made 
more sophisticated (i.e., they should try to keep up the 
conversation if important active topics remain). 

The three rules in the next bucket are the heart of the system 
at its current level of development. The first two raise topics 
to request missing information. The first (Rule1) asks about 
missing pre-conditions for a script instance, such as when 
someone who is not known to be a student takes a qualifier. 
The second (Rule2) asks about incompletely specified post- 
conditions, such as.the actual project that someone must do 
if they get a remedial. At this university, a remedial is a 
conditional pass, where the student must complete a project 
in the same area as the qual in order to complete this degree 
recluirement; there are four quals in the curriculum. The third 
rule in this bucket (Rule4) generates questions from topics 
that are open requests for information, and is illustrated in 
Figure 3-1. 

RULE4 
TEST: (FOR-EACH TOPICS 

(AND (EQUAL 'REQINFO (GET X 
'CPURPOSE)) 

(NULL (GET X 'CLOSEDBY)))) 

ACTION: (MAPCAN '(LAMBDA (X) 
(PROG (TMP) 
(RETURN (COND ((SETQ TMP 

(QUESTIONIZE (GET- 
HYPO ( 

EVAL X)))) 
(MAPCAN '(LAMBDA (Y) 

(COND (Y 
(LIST (UTTER Y (LIST X)))))) 

TMP)))))) 
TEST-RESULT). 

Test: Are there any topics which are requests for information 
which have not been answered? 

Action: Retrieve the hypothetical part, form all "necessary" 
questions, and offer them as utterances. 

Figure 3-1 : Rule4 

The last bucket in the agenda simply has a rule which says "1 
don't understand" in response to things that none of the 
previous rules generated a response to (RuleK). This serves 
as a safety net for the control structure, so it does not have to 
worry about what to do if no response is generated. 

Now let us look at how the program handles an actual 
conversation fragment. The program always begins by asking 
"What's new?", to which (this time) it gets the reply, "Frank 
got a remedial on his hardware qual." The CO form for this is 
shown in Figure 3-2 (the program currently assumes that the 
person it is talking to is a student it knows named John). The 
CD version is an instance of the qual script, with Frank, 
hardware, and a remedial being the taker, area, and result, 
respectively. 

U0002 
((< = > ($QUAL &AREA (=HARDWARE*) &TAKER 

( 'FRANK') &RESULT ('REMEDIAL')))) 
(ISA ('UTTERANCE*) PERSON "JOHN" PRED 

UTrS) 

Figure 3-2." First input utterance 

When the rules examine this, five topics are raised, one due to 
the pre-condition that he has not passed the qual before (by 
Rule1), and four due to various partially specified post- 
conditions (by Rule2): 

• If Frank was confident, he will be unhappy. 

• If he was not confident, he will be content. 

• He has to do a project. We don't know what. 

• If he has completed his project, he might be able 
to graduate. 

The system only asks about things it does not know. In this 
case, it knows that Frank is a student, so it does not ask aJoout 
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that. As an example, the topic that asks whether he is content 
is illustrated in Figure 3-3. 

T0005 
((CON ((< = > ($QUAL &AREA 

('HARDWARE') 
&TAKER 
('FRANK') 
&RESULT 
('REMEDIAL')))) 

LEADTO 
((CON ((ACTOR ('FRANK') IS 
('CONFIDENCE" VAL (> 0))) 

MOP 
('NEG" "HYPO')) 
LEADTO 
((ACTOR ('FRANK') IS ('HAPPINESS" 

VAL (0))))) 
MOP 
('HYPO')))) 

(INITIATED (U0013) SUCC T0009 CPURPOSE 
REQINFO 

INITIATEDBY (RULE2 U0002) ISA ( 'TOPIC' )  
PRED T0004) 

Figure 3-3: A sample topic in detail 

Along with raising these topics, the rules store the utterance 
and script post-inferences in the semantic network, under all 
the nodes mentioned in them. The following have been 
stored under Frank by this point: 

• Frank got a remedial on his hardware qual. 

• If he was confident, he'll be unhappy. 

• If he was not confident, he'll be content. 

• Passing the hardware clual will not contribute to 
his graduating. 

• He has a hardware project to do. 

• Finishing his hardware project will contribute to 
his graduating. 

While these were being stored, Frank's goal tree was altered. 
This occurred because two of the post-inferences are 
themselves inference rules that affect whether he will 
graduate, and graduating is already assumed to be a goal of 
any student. Thus when the first is stored, a new goal tree is 
created for Frank (since his interests were represented before 
by the Student goal tree), and the goal of passing the 
hardware clual is removed. When 'the second is stored, the 
goal of finishing the project is added below that of graduating 
on Frank's tree. These goal trees are illustrated in Figures 3-4 
and 3-5. 

((ACTOR ('STUDENT*) IS (*HAPPINESS" VAL 
(5)))) ~ Subgoal 

((< = > ($GRAD &ACTOR ('STUDENT') &SCHOOL 
("CMU°)))) ~ Subgoal 

((< = > ($QUAL &TAKER ('STUDENT') &AREA 
('HARDWARE') &RESULT ('PASSED=)))) 

Figure 3.4: A student's goal tree 

((ACTOR ('FRANK') IS ('HAPPINESS" VAL (5)))) 

~ Subgoal 

((< = > ($GRAD &ACTOR (~'FRANK') &SCHOOL 
('CMU')))) ~ Subgoal 

((< = > ($PROJECT &STUDENT ('FRANK') &AREA 
('HARDWARE') &RESULT ('COMPLETED'))) 
MOP ('HYPO') TIME (> "NOW')) 

Figure 3-5: Frank's new goal tree 

At this point, six utterances are generated by Rule4. They are 
given in Figure 3-6. Three are generated from the first topic, 
one iS generated from each of the next three topics, and none 
is generated from the last topic. The interest rating routine 
now compares these utterances to Frank's goals, and picks 
the most interesting one. Because of the new goal tree, the 
last three utterances match none of Frank's goals, and 
receive zero ratings. The first one matches his third goal in a 
neutral way, and receives a rating of 56 (an utterance 
receives 64 points for the top goal, minus 4 for each level 
below top, plus or minus one for positive/negative 
implications. These numbers are, of course, arbitrary, as long 
as ratings from different goals do not overlap). The second 
one matches his top goal in a neutral way, and receives 64. 
Finally, the third one matches his top goal in a negative way, 
and receives 63. Therefore, the second cluestion gets 
uttered, and ends uP with the links shown in Figure 3-7. The 
other generated utterances are discarded, possibly to be 
regenerated later, if their topics are still open. 

((< = > ($PROJECT &STUDENT ('FRANK •) &AREA 
('HARDWARE') &BODY ('?•)))) 

What project does he have to do? 

((ACTOR ('FRANK') IS ('HAPPINESS" VAL (0))) 
MOO ( '? '))  

Is he content?. 

((ACTOR ('FRANK') IS ('HAPPINESS • VAL (-3))) 
MOD ('?')) 

IS he unhappy?. 

((< = > ($QUAL &TAKER ('FRANK') &AREA 
('HARDWARE'))) MOD ('?" "NEG')) 

Hadn't he taken it before? 

((< = > ($QUAL &TAKER ('FRANK') &AREA 
(" HARDWARE ") &RESULT ( • CANCELLED'))) 
MOO ( '? '))  

Had it been cancelled on him before? 

((< = > ($QUAL &TAKER ('FRANK') &AREA 
('HARDWARE') &RESULT ('FAILED'))) MOD 
('?°)) 

Had he failed it before? 

Figu re 3.6: The six possible utterances generated 

4. O t h e r  w o r k ,  f u t u r e  w o r k  
Two other approaches used in modelling conversation are 
task-oriented and speech acts based systems. Both of these 
methodologies have their merits, but neither attacks all the 
same aspects of the problem that this system does. Task- 
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U0013 
((ACTOR ( 'FRANK') IS (*HAPPINESS* VAL (0))) 

MOP (*?°)) 
(PRED UO002 ISA (*UTTERANCE*) PERSON 

"ME* 
INTEREST.REASON (GO006) INTEREST 64 
INITIATEDBY (RULE4 TO005)) 

Figu re 3-7:  System's response to first utterance 

oriented systems [5] operate in the context of some fixed task 
which both speakers are trying to accomplish. Because of 
this, they can infer the topics that are likely to be discussed 
from the semantic structure of the task. For example, a task. 
oriented system talking about qualifiers would use the 
knowledge of how to be a student in order tO talk about those 
things relevant to passing qualifiers (simulating a very 
studious student). It would not usually ask a question like "Is 
Frank content?.", because that does not matter from a 
practical point of view. 

Speech acts based systems (such as [1]) try to reason about 
the plans that the actors in the conversation are trying to 
execute, viewing each utterance as an operator on the 
environment. Consequently, they are concerned mostly 
about what people mean when they use indirect speech acts 
(such as using "It's cold in here" to say "Close the window") 
and are not as concerned about trying to say interesting 
things as this system is. Another way to took at the two kinds 
of systems is that speech acts systems reason about the 
actors' plans and assume fixed goals, whereas this system 
reasons primarily about their goals. 

As for related work, ELI (the language analyzer mentioned in 
section 1) and this system (when fully developed) could 
theoretically be merged into a single conversation system, 
with some rules working on mapping English into CD, and 
others using the CD to decide what responses to generate. In 
fact, there are situations in which one needs to make use of 
both kinds of information (such as when a phrase signals a 
topic shift: "On the other hand..."). One of the possible 
directions for future work is the incorporation and integration 
of a rule-based parser into the system, along with some form 
of rule-based English generation. Another related system, 
MICS [3], had research goals and a set of knowledge sources 
somewhat .similar to this system's, but it differed primarily in 
that it could not alter its goal trees during a conversation, nor 
did it have explicit data structures for representing topics (the 
selection of topics was built into the interpreter). 

The main results of this research so far have been the topic- 
utterance graph and dynamic goal trees. Although some way 
of holding the intersentential information was obviously 
needed, no precise form was postulated initially. The current 
structure was invented after working with an earlier set of 
rules to discover the most useful form the topics could take. 
Similarly, the idea that a changing view of someone else's 
goals should be used to control the course of the 
conversation arose during work on producing the interest- 
rating routine. The current system is, of course, by no means 
a complete model of human discourse. More rules need to be 
developed, and the current ones need to be refined. 

In addition to implementing more rules and incorporating a 
parser, possible areas for future work include replacing the 
interest-rater with a second agenda (containing interest- 
determining rules), changing scripts and testing whether the 
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rules are truly independent of the subject matter, trying to 
make the system work with several scripts at once (as 
SAM [4] does), and improving the semantic network to handle 
the well-known problems which may arise. 
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