COMPUTATIONAL COMPLEXITY AND
LEXICAL FUNCTIONAL GRAMMAR

Robert C. Berwick
MIT Artificial lntc“igcnce Lahoratory, Cambridge, MA

1 INTRODUCTION

An important goal of moden linguistic theory is to charcterize as narrowly
as pussible the class of natural languages. An adequate linguistic theory
should be broad enough to cover observed vaciation in human languages, and
yet narrow cnough to account fur what might be dubbed “cognitive
demands” -- anong these, perhaps, the demands of learnability and
parsability. If cognitive demands arc to.cacry any real theoretical weight, then
preswnably a language may be a (theoretically) possible human language,
and yet be “inaccessible™ because it is not leamable or parsable.

Formal resuits along these lines have aiready been obtained for certain kinds
of Transformational Generative Grammars: for example, Peters and Ritchie
(1} showed that Aspecis-style unrestricted transtormational grammars can
gencrate any recursively enumerable set; while Rounds {2] [3} extended this
wotk by demonstrating that modestly restricted transformational grammars
(TGs) can generate languages whose recognition time is provably
exponential. (In Rounds’ proof, ransformations are subject to a "terminal
tength non-decreasing™ condition, as suggested by Peters and Myhiil.) Thus,.
in the worst case TGs gencratc languages whose recognition is widely
recognized to be computatonally intractable. Whether this "worst case”
complexity analysis has any real import for actual linguistic study has been
the subject of some debate (for discussion, sce Chomnsky [4]; Berwick and
Weinberg [5]). Without rcsolving that controversy here however, onc thing
can be said: to make TGs efficiently parsable one might provide additional
constraints. For instance, these additional strictures could be roughly of the
sort agvocated in Marcus’ work on parsing [6] - constraints specifying that
TG-based languages must have parsers that meet ceriain “lecality
conditions”. The Marcus' constraints apparently amount to an extension of
Knuth's LR(k) locality condition {7] to a (restricted) version of a two-stack
detenninistic push-down automaton. (The need tor LR(k)-like restrictions in
order to ensure cfficient processability was also recognized by Rounds {2].)

Recently, a new theory of grammar has been advanced with the explictly
stated aimn of meeting the dual demands of learnability and parsability - the
Lexical Functional Grammars (LFGs) of Beesnan {8]. ‘The theory of L2xical
Functional Grammars is claimed to have all the dJescriptive merits of
transformational grammar, but none of its computational unrufiness, in
LFG, there are no transformations (as classically described); the work
formerly ascribed to transformations such as "passive” is shouldered by
information siored in Iexical entrics ossociated with lexical items. The
climination of transformational power naturally gives rise to the hope that a
lexically-based system would be computationaily simpler than a
transformational one.

An intcresting question then is to determine, as has already been done for the
case of certain brands of transformational grammar, just what the “worst
case” computational complexity for the recognition of LFG languages is. If
the recognition time complexity for languages generated by the basic LFG
theory can be as complex as that for languages gencrated by a modestly
restricted transfonmational system, then presumably [LFG will also have to
add additional constraints, beyond those provided in its basic thenry, in order
t0 ensure efficient parsability.

The main resuit of this paper is to show that ccrtain Lexical Functional
Grammars can generate languages whose recognition time is very likely
computationally intractable, at least according to our current understanding
of what is or is not rapidly soivabie. Briefly, the demoenstraton proceeds by
showing how a problem that is widely conjectured to be computationally

difficult - namely, whether there exists an assignment of 1's and 0°s (or "T™s’

g

and “I™s) to the literais of a Boolean formula in conjunctive normal forn that
makes the formula evaluate to “1” (or "true™) -~ can be rc-expressed as the
problem of recognizing whether a particular string is or is not a member of
the language generated by a certain lexical functional grammar. ‘This
“reduction” shows that in the worst case the recognition of 1.FG languages

-

can be just as hard as the original Boolean satisfiability problem. Since it'is
widcly conjectured that there cannot be a polynomial-time. algorithm for
satisfiability (the problem is NP-complete), there cannot be a polynomial-time
recognition algorithm for LFG’s in genera] either. Note that this resuit
sharpens that in Kaplan and Bresnan (8]: there it is shown only that LFG's
(weakly) gencrate some subset of the class of context-sensitive languages
(including some stricly context-sensitive languages) and therefore, in the
waorst case, exponential time is known to be gufficient (though not necessary)
to recognize any LFG language. The resuit in [8] thus does not address the
question of how much time, in the worst case, is necessary to recognize LFG
languages. The result of this paper indicates that in the worst case more than
polynomial time will probably be neccssary. (The reason for the hedge
"probably”™ will become apparent below: it hinges upon the central unsolved
conjecture of current complexity theory.) In short then, this result places the
LFG languages more precisely in the complexity hierarchy.

It also turns out to be instructive to inquire intw just why a lexically-based
approach can twm out 0 be computationally difficult, and how
computational tractability may be guarantced. Advocates of lexically-based
theories may have thought (and some have cxplicitly stated) that the
banishment of transformations is a computationally wise move because
transformations are computationally “expensive.” Eliminate the
transformations, so this casual argument goes, and one has climinated all
comptitational problems. Intrigningly though, when one examines the proof
to be given below, the computational work done by transfonnations in older
theories re-emerges in the lexical grammar as the probiem of choosing
between alternative categorizations for lexical items —~ deciding, in a manner
of speaking, whether a particular terminal item is a Noun or a Verb (as with
the word kiss in English). This power of choice, coupled with an ability to
express co-occurrence constraints over arbitrary distances across terminal
tokens in a string (as in Subject-Verb number agreement) scems to be all that
is required to make the recognition of LFG languages intractable. The work
done by transformations has becn exchanged for work done by lexicai
schemas, but the overall computational burden remains roughly the same.

This leaves the question posed in the opening paragraph: just what sorts of

constraints on natural languages are required in order to cnsure efficient

parsability? An informal argument can_be made that Marcus work [6]

provides a good first attack on just this kind of characterization. Marcus’
claim was that languages casily parsed (not "garden-pathed™) by people could
be preciscly modeled by the languages easily parsed by a certain type of
restricted. deterministic, two-stack parsing machine. But this machine can he
shown (0 be a (weak) non-canonica) extension of the LR(k) grammars, as
proposed by Knuth 5]

Finally, this paper will discuss the relevance of this technical result for more
down-to-curth computational linguistics. As it turns out, even though general
LFG’s may weil be computationally intractable, it is casy to imagine a varicty
of additional constraints for LFG theory that provide a way Lo sidestep
around the reduction argument. Al of these additional restrictions amount to
making the LFG thcory more restricted, in such a way that the reduction
argument cannot be made to work. For exampie, one cffective restriction is
to stipulate that there can only be a finite stock of features with which to label
lexical items. In any case, the moral of the story is an unsurprising one:
specificity and constraints can absolve a theory of computational
intractability. What may be more surprising is that the rcquisite locality
constraints seem to be uscful for a variety of theories of grammar, from
transformational grammar to lexical functional grammar.

2 AREVIEW OF REDUCTION ARGUMENTS

The demonstration of the computational complexity of LLFGs retics upon the
standard compicxity-theoretic technique of reductivg. Because this method
may be unfumiliar to many readers, a short review is presented immediately
below; this is followed by a sketch of the reduction proper.

The idea behind the reduction technique is to take a difficult problem, in this
case, the probiem of determining the sausfiability of Boolean formulas in
conjunctive normai form (CNF), and show that the known problem can be
quickly transformed into the problem whose complexity remains to be
determined, in this case, the probiem of deciding whether a given string i3 in
the language gencraicd by a given l.exical Functional Grammar. Before the
reduction proper is reviewed, some definitional groundwork must be
presented. A Boolean formula in conjunctive normal form is a conjunction of
disjunctions. A formula is satisfiable just in casc there exists some assignment
of T's and F's (or I's and 0's) to the literals of the formula X, that forces the
evaluation of the entrc formula to be T; otherwise, the formuia is said to be
unsatisfiable. For cxample, - - —
(XVXVXDAX VX VXIAX VX VX))

Esau'sﬁablc. sincc_ the assignment (£ X2=T (hence Xzz F), X]=F (hence
Xy3=N. Xy=F (X,=T) X,=T (X;=F), and X,=F makes the whole
formuia evalute to “T™. 'The reduction in the proof below uscs a somewhat
more restricted format where every term is comprised of the disjunction of
exactly three literals, so-called 3-CNF(or "3-SAT™). This restriction entails
no loss of generality (sce Hoperoft and Ullman, (9], Chapter 12), since this
restricted furmat is also NP-complete.

How does a reduction show that the LFG recognition problem must be at
least as hard (computationaily spcaking) as the original probiem of Boolean
satisfiability? 'I'he answer is that any decision procedure for L.FG recognition
could be uscd asa correspundingly fast procedure for 3-CNF. as follows:

(1) Given an instance of a 3-CNF problem (the question of whether there
exists a satisfying assignment for a given formula in 3-CNF), apply the
transfurmational algorithm provided by the reduction: this algorithm is itseif
assumed t0 exccute quickly, in polynomial time or less. The algurithm
outputs a corresponding LFG decision problem, namely: (i) a lexical
functional grammar and (ii) a string w be tested for membership in the
language generated by the I.FG. The LFG recognition probiem represents or
mimics the decision problem for 3-CNF in the sense that the "yes” and "no*
answers (0 both satisfiability problem and membership problem must
coincide (if there is a satisfying assignment. then the corresponding LFG
decision problem should give a "yes” answer. etc.).

(2) Solve the LFG decision problem -- the string-L.FG pair ~ output by Step
L: if the string is in the LLFG language, the original formula was satisfiable; if
not, unsatisfiable.

(Mote that the grammar and string so constructed depend upon just what
fonmula is under analysis; that is. for cach different CNF formula, the
procedure presented above outputs a differen LFG grammar and string
combination. In the LFG case it is important to remember that "grammar™
rcally means “grammar plus lexicon” -~ a3 one might cxpect in a
lexically-based theory. S. Peters has observed that a slighily different
reduction allows one to keep most of the grammar fixed across all possible
input formulas, constructing only different-sized lexicons for each different
CNF formula; for details, see below.)

To sec how a reduction can tell us something about the “worst case™ time or
space complexity required (o recognize whether a string is or is not in an LFG
language, suppose for cxample that the decision procedure for determining
whether a string is in an LFG language tkes polynomial time (that is, takes
time n* on a deterministic Turing machine, for some integer k, where n= the
length of the input string). Then. since the composition of two polynomial
algorithms can be readily shown t take only poiynomial time (sce [9)]
Chapter 12), the entire process skciched above, from input of the CNF
formula to the decision about its satisfiability, will take only polynomial time.

However, CNF (or 3-CNF) has no known polynomial time algorithm, and
indeed, it is considered exceedingly unlikely that one could exists. Therefore,
it is just as unlikely that LFG recognition could be done (in general) in
polynomial time,

The theory of computational complexity has a much more compact term for
problems like CNF: CNF is NP-complete. This label is easily deciphered:
(1) CNF is in the ¢lass NP, that is, the class of languages that can be

"recognized by a gop-deterministic Turing machine in polynomial time.

(Hence the abbreviation “NP®, for "non-deterministic polynomial”. To see
that CNF is in the class NP, note that onc can simply guess all possible
combinations of truth assignments to literals, and check each guess in
polynomial time.)

(2) CNF is cumplete, that is, all other languages in the class NP can be quickly
reduced 10 some CNF formula, (Roughly, one shows that Boolean formulas
can be used to “simulate” any valid computation of a non-deterministic
Turing machine.)

Since the class of probicms solvablc in polynomial time on a deterministic
Turing machine (conventionally notated, P) is trivially contained in the class
so solved by a nondeterministic Turing machine. the class P must be a subset
of the class NP. A wetl-known, well-studied. and still upen question is whiher
the class P is a proper subsct of the class NP, that is, whether there are
problems solvable in non-deterministic polynomial time that cannot be
solved in detcrministic polynomial time. Becausc ail of the scveral thousand
NP-compicte problems now catalogued have so far proved recalcitrant to
deterministic polynomial time solution, it is widely held that P must indeed
be a proper subsct of NP, and therefore that the best possible algorithms for
solving NP-compicte problems must takc more than polynumial time (in
general, the aigorithms now known for such problems involve exponential
combinatorial search, in onc fashion or another; these are essentially methods
that do no better than © brutally simulate -- deterministically, of course - a
non-deterministic machine that “guesses” possible answers.)

To repeat the force of the reduction argument then, if afl LFG recognition
problems were solvable in polynomial time, then the ability to quickly reduce
CNF formulas to LFG recognition problems implies that all NP-complete
problems would be soivable in polynomial time, and that the class P=the
class NP. This pussibility scems extremcly remote. Hence, our assumption
that there is a fast (general) procedure for recognizing whether a string is or is
not in the lunguage gencrated by an arbitrary LFG grainmar must be faise.
In the terminology of complexity theory, LFG recognition must be NP-hard
- "as hard as” any other NP problem, including the NP-complete problems.
This means only that LFG recogntion is a1 /east as hard as other NP-complete
problems - it could still be more difficult (lie in some class that contains the
class NP). If one could also show that the languages generated by LFGs are
in the class NP, then LFGs would be shown 10 be NP-compicte. This paper
stops short of proving this last claim, but simply conjectures that LFGs are in
the class NP,

3. A SKETCH OF THE REDUCTION

To carry out this demonstration in detail, one must explicitly describe the
transformation procedure that takes as input a formula in CNF and outputs a
corresponding LFG decision problem — a string to be tested for membership
in a LFG language and the LFG itseif. One must also show that this can be
done quickly, in a number of steps proportional to (at most) the length of the
original formula to some polynomial power. Let us dispose of the last point
fist. The string to be tested for membership in the LFG language will simply
be the original formula, sans parentheses and logical symbols; the LFG
recognition problem is to find a well-formed derivation of this string with
respect to the grammar 1o be provided. Since the actual grammar and string
one has to write down to "simulate” the CNF problem tumn out w0 be no
worse than linearly farger than the original formula, an upper bound of say,
time n-cubed (where n=length of the original formula) is more than
sufficient to construct a corresponding LFG; thus the reduction procedure
itself can be done in polynomial time, as required. This paper will therefore
have nothing further to say about the time bound on the transformation
procedure.

Some caveats are in order before embarking on a proof sketch of this
reduction. First of all, the relevant details of the LFG theory will have to be
covered on-the-fly; see [8] for more discussion.’ Also, the grammar that is
output by the reduction procedure will ot look very much like a grammar
for a nawral language, although the grammatical devices that will be
empioyed will in cvery way be those that are an essential part of the LFG
theory. (namely, feature agreement, the lexical analog of Subject or Object
“control”, lexical ambiguity, and a garden variety context-free grammar.) In
other words, aithough it is most unlikely that any patural language would
encode the sadsfiability problem (and hence be intractabic) in just the
manner outlined below, on the other hand, no "exotic” LFG machinery is
used in the reduction. Indeed. some of the more powerful LFG notational
formalisms -- long-distance binding, existential and ncgative feature operators
= have not been exploited. (An carlier proof made use of an cxistential
operator in the feature machinery of. LFG, but the reduction presented here
does not.)

To make good this demonstration one must set out just what the satisfiability
problemn is and what the decision problem for membership in an LFG
language is. Recall that a formula in conjunctive normal form is satisfiable
just in case every conjunctive term evaluates to (ryg, that is, at least gne literal
in each term is true. The satisfiability problem is to find an assignment of T"s
and F's to the literals at the hottom (note that the complement of literals is
ajso permitted) such that the root node at the wp gets the value "T™ (for
true). How can we get a lexical functional grammar to represent this
problem? What we want is for satisfyjng assignments to correspond to to
weil-formed sentences of some corresponding LFG grammar, and
non-satisfving assignments to correspond to sentences that are nog
well-formed, according to the LFG grammar:

satisfiable non-satisfiable

formyla w formylaw

sentence w' IS sentence w' IS NOT

in LFG language L(G) in LFG language 1(G)

Figure 1. A Reduction Must Preserve Solutions to the Qriginal Problem

Since one wants the satisfying/non-satisfying assignments of any particular
formuia 10 map over into well-formed/ill-formed sentences, one must
obviously exploit the LFG machinery for capturing well-formedness
conditions for sentences. First of all, an LFG contains a base context-free
grammar. A minimal condition for a sentence (considered as a string) to be in
the language generated by a lexical-functional grammar is that it can be
gencrated by this base grammar; such a sentence is then said to have a
well-formed constityent strycture, For example, if the base rules included
S=3NP VP; VP=>V NP, then (glossing over details of Noun Phrase rules)
the senterce John kissed the baby would be well-formed but John the baby
kissed would not. Note that this assumes, as usual, the cxistence of a lexicon
that provides a categorization for each terminal item, c.g., that baby is of the
category N, kissed is a V, etc. Importanty then, this well-formedness
condition requires us to provide at least one legitimate parse trce for the
candidate sentence that shows how it may be derived from the underlying
LFG base context-free grammar. (There could be more than one legitimate
trec if the underlying grammar is ambiguous.) Note further that the choice of
categorization for a lexical itemn may be crucial. If baby was assumed to be of
category V. then both sentences above would be ill-formed.

A second major component of the LFG theory is the provision for adding a
set of so-called finctional equations to the base context-frec rules. These
equations are used 1o account for that the co-occurrence restrictions that are
so much a part of natural languages (c.g., Subject-Verb agreement). Roughly,
one is-allowed to associate featurgy with lexical cntrics and with the
non-terminals of specified context-free rules; these features have vajues. The
cquation machinery is used to pass features in certain ways around the parse
tree, and conflicting values for the same feature arc cause for rejecting a
candidate analysis. To take the Subject-Verb agreement example, consider
the sentence the baby is kissing John. The lexical cntry for baby (considered

as a Noun) might have the Number feature, with the value singulac. The
lexical entry for is might assert that the gymber feature of the Subicgt above
it in the parsc trce must have the value gingular; meanwhile, the feature
values for Subiject are automatically found by another rule (associated with
the Noun Phrase portion of S==NP VP) that grabs whatever features it finds
below the NP node and copics them up above to the S node. Thus the S node
gets the Subject feature, with whatever value it has passed from baby below -
namely, the value singulag; this accords with the dicates of the verb is, and all
is weil. Similarly, in the sentence, the boys in the band is kissing John, boys
passes up the number value plural, and this clashes with the verb’s constraint;
as a result this sentence is judged ill-formed:

S feawres: Subject Number:Singular or Plural?

/’ = CLASH!

’ i,

‘
+ NP AN
[

)
Number:plural

1)

\

A ‘:' Number:singular
\ |
the boys in the band s’

kissing John.

Figure 2. Co-occurrence Restrictions are Enforced by Feawre Checking in an
LFG.

It is important to note that the feature compatability check requires (1) a
particular constitucnt structure tree (a parse trec); and (2) an assignment of
terminal items (words) to lexical categories - e.g., in the first Subjcct-Verb
agreement cxample above, baby was assigned to be of the category N, a
Noun. The tree is obviously required because the feature checking
machinery propagates values according to the links specified by the
derivation tree; the assignment of terminal items to categories is crucial
because in most cases the values of features are derived from those listed in
the fexical entry for an item (as the value of the pumber feature was derived
from the lexical entry for the Noun form of baby). One and the same
termiial item can have two distinct lexical entrics, corresponding to distinct
lexical categorizations; for example, baby can be both a Noun and a Verb. It
we had picked baby to be a Verb, and hence had adupted whatever features
are associated with the Verb entry for baby to be propagated up the tree, then
the string that was previously well-fortned, the baby is kissing John would
now be considered deviant. If a string is ill-formed under ail possible
derivation trees and assignments of features from possible lexical
categorizations, then that string is not in the language generated by the LFG.
The possibility of multiple derivation trees and lexicul categorizations (and
hence multiple feature bundles) for one and the same terminal item plays a
crucial rule in the reduction proof: it is intended to capwre the satisfiability
problem of deciding whether to give a literal X, a value of "T™ or "F™, '

Finally, LFG also provides a way to express the familiar patterning of
grammatical relations (e.g.. "Subject” and "Object”) found in natural
language. For example, transitive verbs inust have objects. This fact of life
(expressed in an Aspects-style transformational grammar by subcategorization
restrictions) is captured in LFG by specifying a so-called PRED (for
predicate) feature with a Verb: the PRED can describe what grammaticat
reladons like “Subject” and "Object” mugt be filled in after feature passing
has taken place in order for the analysis to be well-formed. For instance, a
transitive verb like kiss might have the pattern, kiss<{SubjectObject)), and
thus demand that the Subject and Object (now considered o be "features™)
have some value in the final analysis. The values for Subject and Object
might of course be provided from some other branch of the parse tree, as
provided by the feature propagation machinery; for exampie, the QObject
feature could be filled in from the Noun Phrase part of the VP expansion:

SUBJECT: Sue
S features] PRED : ‘kiss<(Subject)(Object)>’
OBJECT : John
TR
Sue v NP.
kiss John

Figure 3. Predicate Templates Can Demand That a Subject or Object be
Filled In. ’

But if the Objcct were pot filled in, then the analysis is declared functionally
incomplete, and is ruled out. This device is uscd to cast out sentences such as,
the baby kissed.

So much for the LFG machinery that is required for the reduction proof.
(There are additional capabilitics in the LFG theory, such as long-distance
binding, but these will not be called upon in the demonstration beiow.)

What then does the LFG representation of the satisfiability problem look
like? Basically, there are three parts (0 the satisfiability probiem that must be
mimicked by the LFG: (1) the assignment of valucs to literuls, e.g., X2->"'I":
X'F Q) the co-ordination of value assignments across intervening literals
in the formula; c.g., the literal 7(2 can appear in scveral different tenms, but
one is nut ullowed to assign it the value ™™ in one tcrm and the value "F” in

another (and the same gocs for the complement of a literal: if X, has the

e

value "1™, Yz cannot have the value Y. and (3) satisfiability must
correspond to LIFG well-formedness, i.e., cach term has the truth value T
just in case at least png fiteral in the tenn is assigned “T™ and all terms must
evaluate to "1™,

Let us now go over how these components may be reproduced in an LFG,
one by one. .
(1) Assignments: The input string 0 be tested for membership in the LFG

will simply be the original formula, suns parenthescs and logical symbols; the:

terminal items are thus just a string of X;'s. Recail that the job of checking
the string for well-formedncss involves finding a derivation tree for the string,
solving the ancillary co-occurrence cquations (by feature propagation), and
checking for functional completencss. Now, the cuntext-free grammar
constructed by the transfonmation procedure will be set up so as tw generate a
virtual copy of the associated formula, down to the point where literals X, are
assigned their vatues of "T™ or "F". If the original CNF form had N terms,
this part of grammar would look like:

S=0'l‘1 'I‘z w T, (one "T™ for each term)
T.I=Yi Yj Yk (one triple of Y's per term)

Several comments are in order here,

(1) The context-free base that is built depends upon the original CNF
formula that is input, since the number of terms, o, varies from formula w
formula. In Stanicy Peters’ improved version of the reduction proof, the
context-free base is fixed for all formulas with the rules:

S=S5 §

= TTTouS=TTForTF ForT F Tor...

(remaining twelve expansions that have at least one “T™ in each triple)

The Peters grammar works by rccursing until the right number of terms is
gencrated (any sentcnces that are too long or too short cannot be matched to
the input formula). Thus, the number of terms in the original CNF formula
need not be cxplicitly encoded into the base grammar.

(2) The subscripts ij, and k depend on the actual subscripts in the original
formula

(3) The Y, are ngt terminal items, but arc non-terminals.

(4) This grammar will have to be slightly modified in order for the reduction
o work, as will become apparent shortly.

10

Notc that so far there are no rulcs to cxtend the parsc tree down to the level
of terminal items, the X,. The next step does this and at the same time adds
the power to choose between "T™ and “F~ assignments to literals. One
includes in the context-free base grammar {wo productions deriving each
terminal item Xi, namely, XiT‘--o)(.l and XiF=in. corresponding to an
assignment of "T™ or "F™ to the formula literal X, (it is important not to get
confused here between the literals of the formula -~ these are lerminal
elements in the lexical functional grammar ~ and the literals of the grammar
- the non-terminal’ symbols.) One must also add, abviously, the rules
Yi=oxiT|XiF. for cach i, and rules corresponding to.the negations of

variables, 7-.'['5?; Note that these are not "exotic” LFG rules: cxactly the
same sort of rulc is required in the baby case, i.c., N=>baby or V=5 baby,
corresponding to whether baby is a Noun or a Verb. Now, the lexical entries
for the "X;T" categorization of X; will look very different from the "X FT
categorization of X, just as one might expect the N and V forms for baby to
be different. Here is what the entrics for the two categorizations of 7(.l look
like:

X XT (Ttruth-assignment)y=T
(Tassign Xi)=T
X XF (Tassign X) =F

The feature assignments for the negation of the literal X; is simply the dual of

the entries above (since the sense of "T™ and "F™ is reversed):

¥: YT (Tuuth-assignment)=T
(fassign X)=F.

Y: XF (fasign X) =T

The role of the additional “truth-assignment” feature will be explained
below.

Figure 4. Sample Lexical Entries 10 Reproducc the Assignment of T°s and F's
0 a literal X,

The upward-directed arrows in the entries reflect the LFG feature
propagation machinery. In the case of the XiT entry, for instance, they say to
"make the Truth-gssignment feature of the node ghgye XiT have the value
“T", and make the X, portion of the Assign feature of the node above have
the value T.* This feature propagation device is what reproduces the
assignment of T's and F's 1o the CNF literals. If we have a triple of such
elements, and at least one of them is expanded out to X.‘T. then the feanice
propagation machinery of LFG will mergg the common feature names into
one large structure for the node above, reflecting the assignments made;
morcover, the term will get a filled-in truth assignment value just in case at
least one of the expansions sclected an X(T path:

T, feature structure: [{ ruth-assignment=
Assignf X, =
X]=
X, =FE
R
XT XF XF
terminal ‘ r |
sring: X; XJ Xy

Figure 5. The LFG Feature Propagation Machinery is Uscd to Percolate
Feature Assignments from the Lexicon,

(The features are passed transparently through the intervening
Y nodes via the LFG "cupy" device. (T=1);

dns simply mcans that ail the features of the node below the node to
which the "copy” up-and-down arrows are attachced are to be
the same as those of the node above the up-and-down arrows.)

It is plain that this mechanism mimics the assignment of values o literals
required by the satisfiability problem.

(2) Co-ordination of assignments: One must also guarantee that the x.l value
assigned at one place in the tree is not contradicted by an X; or X| clsewhere.
To ensure this, we use the LFG co-occurrence agreement machinery: the
Assign feature-bundle is passed up from each term T; to the highest node in
the parse tree (one sxmply adds the (T =) notation to each T, rule in order to
indicate this). The A;ﬂgn feature at this node will thus contam the ynion of
all assigy feature bundles passed up by all terms. I any X, values conflict,
then the resulting structure is judged ill-formed. Thus, only compatible X;
assignments are well-formed:

features: Assign: E(,:Torl-“ﬂ

Clashi

(Tassign X.,)=T (Tassign X,,: F)

Figure 6. The Featurce Compatability Machinery of LFG can Force
Assignments to be Co-ordinated Across Terms,

(3) Prescrvation of satisfying assignments. Finally, one has to reproduce the
conjunciive character of the 3-CNF problem - that is, a sentence is satisfiable

(well-formed) iff cach term has at least one literal assigned the value "T. .

Part of the disjunctive character of the problem has alrcady been encoded in
the feature propagation machinery psesented so far: if at least one X; in a
term T, expands to the lexical entry X,T, then the tryth-assignment feature
gets the value T. ‘This is just as desired. Ifone, two, or three of the literals X,
in a term select X.IT, then Tl's truth-assignment feature is T, and the analysis
is well-formed. But how do we rule out the case where all three Xi‘s in aterm
select the “F" path, X;F? And how do we ensure that glj terms have at least
one T below them?

Both of these problems can be solved by resorting to the LFG functional
completeness constraint. The trick will be to add a Pred feature 0 a
“dummy" node artached to cach term; the sole purpose of this feature will be
to refer to the feature Truth-assispmient, just as the predicate template for the
transitive verb %iss® mentions the feature Qbijegt. Since an analysis is not
well-formed if the “grammatical rclations” a Prcd mentions are not filled in
froin somewhere, this will have the effect of forcing the Truth-assignment
teature to get filled in every term. Since the “F lexical entry does not have a
Truy-assignmeny value, if al] the X; in a werm tripie sclect the X.F path (all
the literals are "F") then ng Truth-assignment fcature is ever picked up from
the lexicatl entrics, and that term never gets a Truth-assignment fcature. This
violates what the predicate template demands, and so the whole analysis is
thrown out. (The ill-formedness is exacdy analogous to the case where a
transitive verb never gets an Object.) Since this condition is applied to cach
term, we have now guaranteed that ¢ach) term must have at least gge literal
below it that sclects the T path - just as desired. To actually add the new
predicate template, one simply adds a new (but dummy) branch to each term
T,, with the appropriate predicate constraint attached to it

11

T, featuregi{Pred: ‘dummy2((TTruth~asignment)):]

/ \\Tmth-aslgnment—'l'

Dummy2
lexical entry: ,'
‘dummy2’: 'l \ ‘
(1 Pred)= \\
‘dummy2<(T ’I‘ruth-mgmnent))’ N

\

‘e

..._-

cou

CXF
F
|

TR F
|
X
N\
(1Truth-assigament)=T
Figure 7. Predicatcs Can be Used to Force at least one "I Per Term.

There is a final subtle point here: one must prevenr the Pred and
Truth-assignment features for each term from being passed up to the head
"$" node. The reason is that if these features were passed up, then since the
LFG machinery automatically merges the values of any features with the
same name at the topmost node of the parse trec, the LFG machinery would
force the union of the feature vaiues for Pred and Truth-assignment over all
terms in the analysis tree. The result would be that if agy term had at least
one 1™ (hence satisfying the Truth-assignment predicate template in at least .
one term), thcn the Pred and Truth-assignment would get filled in at the

topmost node as weil. The string below would be well-formed if at least one -
term were T, and this would amount to a disjunction of disjunctions (an

“OR" of "OR"s), not quite what is sought. To climinate this possibility, one.
must add a final trick: each term T, is given separate Predicate,

Truth-assignment. and Assign featurcs, but only the Assign feature is

propagated to the highest node in the parse tree as such. In contrast, the

Predicate and Truth-assignment features for cach term are kept “protected”

from merger by storing them under separate feature headings labelled

TynT o The means by which just the ASSIGN feature bundle is lifted out is

the LFG analogue of the natural language phenomenon of Subject or Object

“control”, whereby just the features of the Subject or Object of a lower clause

are liftcd out of the lower clause to becume the Subject or Object of a matrix

sentence; the remaining features stay unmergeable because they stay

protected behind the individually labelled terms.

To actually "implement” this in an LFG one can add two ncw branches to
each Term expansion in the base context-free grammar, as well as two
“contrul” cquation specifications that do the actual work of lifting the

features from a lower clause to the matrix sentence:
Natral language case (from (8}, pp. 43-45):

The girl persuaded the baby to go.

(part of the) lexical entry for
persuaded:
V (1 VCOMP Subject)=(T Object)

The notation (T VCOMP Subject)=(1 Object) — dubbed a "control
equation™ -~ means that the features of the Object above the V(erb) node are
to be the same as those of the features of the Subject of the verb complement
(VCOMP). Hence the top-most node of the parse trec cventually has a
feature bundle soinething like:

Butject: {bundle of features for NP subject "the girl"} . I
redicate: ‘persuade<(T Subject)(T Object)(T Veomp)>’
Object: {bundle of fe.-u.urc‘sh for NP Object “the baby"}

~,

% COPIED
Verb \
Complement: | Subject: {bundle of features for NP subject “the baby”
“"VCOMP")
L Predicate: 'go<(TSubject)>’

Note lrow the Object features have been copied from the Subject
features of the Verb Complement, via the notation described above, but
the Predicatc features of the Verb Complement were left behind.

The satisfiability analogue of this machinery is almost identical:

Phrase structure tree:

T

/ ~

Al T.COMP
Dummy2 Y Y Yy

J

One now attaches a “control cquation” to the /A, node that forces the Asjm.
feature bundle from the T,comMP side to be lifted up to get merged into the
Assizn feature bundle of the T, node (and then, in turn. to become merged at
the wpmost node of the tree by the usual fuil copy up-and-down arrows):

{1 'l'iCOMP Assign) = (T Assign)

Note how this is just like the copying of the Subject features of a Verb
Complement into the Object position of a matrix clause.

4, RELEVANCE OF COMPLEXTTY RESULTS AND CONCLUSIONS
The demonstration of the previous scction shows that LFGs have enough
power to “simulute” a probably computationally intractable problem. But
what are we to make of this result? On the positive side, a complexity result
such as this one places the LFG theory more preciscly in the hierarchy of
complexity classes. If we conjecture, as scems reasonabie, that LFG language
recugnition is actually in the class NP (that is, LFG rccognition can be done
by a non-deterministic Turing machine in polynomial time), then LFG
language recognition is NP-complete. (This conjccture seems reasonable
because a non-deterministic Turing machine should be able to "guess” all
featurc propagation solutions using its non-decterministic power - including
any "long-distance™ binding solutions, an [LFG device not discussed here.
Since checking candidate solutions is quite rapid - it can be done in a? time
or less, as described in (8] ~ recognition should be possible in polynomial
time on such a machine.) Comparing this result to other known language
classes, note that context-sensitive language rccognition is in the class
polynomial space ("PSPACE™), since (non-dcterministic) linear bounded
automata gencrate exactly the class of context-sensitive languages.
(Non-dcterministic and deterministic polynomial space classes collapse
together, because of Savitch's weil-known resuit [9] that any function
computabic in non-deterministic space N can be computed in deterministic
space N2) Furthennore, the class NP is clcarly a subset of PSPACE (since if
a function uscs Space N, it must use at lcast Time N), and it is suspected, but
not known for certain, that NP is a proper subsct of PSPACE. (This being a
form of the P=NP question oncc again.) Our conclusion is that it is likely
that LFG's generate a proper subset of the context-sensitive languages. (In (8]
it is shown that this includes some strictly context-sensitive languages.) It is
intercsting that scveral other “natural” extensions of the context-free
languages — notably, the class of languages gencrated by the so-called
“indexed grammars” —~ also generate a subsct of the context-scnsitive
hanguages, inciuding those strictly context-sensitive languages shown to be
generable by LFGs in (8], but are provably NP-complete (sce {2] for proofs).
Indeed, a cursory look at the power of the indexcd grammars at lcast suggests
that they might subsume the machinery of the LFG theory; this would be a
goud conjecture to check.

On the other side of the coin. how might one restrict LFG theory further so
as 1o avoid possible intractability? Several cscape hatches immediately come
to mind; thesc will simply be listed here. Note that all of these “fixes” have
the effect of adding additional constraints to turther restrict the LFG theory,

L. Rule out “worst case” languages as linguistically irrelevant.

The probable computational intractability arises because co-occurrence
restrictions (compatible assignment of X;’s) can be forced across arbitrary
distances in the terminal string in conjunction with lexical ambiguity for cach
terminal item. [f some device can be found in natural languages that filters
out or removes such ambiguity locally (so that the choice of whether an item
is "T" or "F" never depends on other items arbitrarily far away in the
terminal string), or if natural languages ncver employ such kinds of
co-uccurrence restrictions, then the reduction is theorctically relevant, but
linguistically irrelevant. Note that such a finding would be a positive
discovery, since one would be able w further restrict the LFG theory in its

12

attempt to characterize all and only the natural languages. This discovery
would be on a par with, for cxample, Peters and Ritchic's observation that
although the context-sensitive phrase structure ruies formally advanced in
linguistic theory have the power o generate non-context-free languages, that
power has apparently never been used in immediate constituent analysis [11].

2. Add "locality principics” for recognition (or parsing).

One could simply stipulate that LFG languages meet some condition known
to ensure cfficicnt recognizability, e.g.. Knutit's {7] LR(k) restriction, suitably
extended to the case of context-sensitive languages. (See {10] for more
deails.)

3. Restrict the lexicon.
The reduction depends crucially upon having an infinite stock of lexical items
and an infinitc number of fcatures with which to label them -~ several for
each literal X;. This is necessary because as CNF formulas grow larger and
larger, the number of literals can grow arbitrarily large. If, for whatever
reason, the stock of lexical items or feature labels is finite, then the reduction
method must fail after a certain point. This restriction seems ad koc in the
case of lexical items, but perhaps less so in the case of features. (Speculating,
perhaps features require “grounding” in terms of other language/cognitive
sub-systems -- ¢.g., a feature might be required to be one of a finite number
of primitive "basis” elements of a hypothetical conceptual or sensori-motor
cognitive systern.)

WLE
[would like to thank Ron Kaplan, Ray Perrauit, Christos Papadimitriou, and
particularly Stanley Peters for various discussions about the contents of this
paper. }
This report describes rescarch done at the Artiticial Incelligence [aboratory
of tie Massachusetts Instituce of Technology. Support for the Laboratory’s
artiticial intelligence rescarch is provided in part by the Office of Naval
Rescarch under Otfice of Nayal Research contract N00014-80-C-0505.
{1] Peters, S. and Ritchic, R. "On the generative power of transformational
granmnars,” Infoanation Sciences 6, 1973, pp. 49-83.

{2} Rounds, W, "Complexity of recognition in intermediate-level languages,”
Proceedings of the 14th Aun. Symp. on Switching Theory and Automata,
19713.

(31 Rounds W. "A grammatical characterization of cxponential-time
languages,” Procecdings of the 16th Ann. Symp. on Switching Theory and
Automata, 1975, pp. 135-143.

[4] Chomsky, N. Rules and Representations New York: Columbia University
Press, 1980.

{51 Berwick, R. and Weinberg, A. The Role of Grammars in Models of
Language Use, unpublished MIT repory, forthcoming, 1981,

[6] Marcus, M. A Theory of Syntactic Recognition for Natural Language,
Camiridge, MA: MIT Press, 1980.

7] Knuth, D. "Oa the translation of languages from left to right”,
Information and Control, 8, 1965, pp. 607-639.

(8] Kaplan, R. and Bresnan, J. Lexicai-functional Grammar: A Formai System
Jor Grammatical Representation. Cambridge, MA: MIT Cognitive Science
Occasionat Paper #13, 1981. (aiso forthcoming in Bresnan, ed., The Mentai
Representation of Grammatical Relatioas, Cambridge, MA: MIT Press, 1981

[9] Hopcroft, J. and Ullman, J. Introduction to Automata Theory, Languages,
and Computation, Reading, MA: Addison-Wesiey, 1979.

{10] Berwick, R. Locality Principles and the Acquisition of Syntactic
Knowledge, MIT PhD. dissertation, 1981 forthcoming.

{11} Peters, S. and Ritchie. R. Context-sensitive immediate constituent
analysis: contexi-free languages revisited, Mathematical Systems Theory, 6:4,
1973, pp. 324-333. ’

