AT GRAMAR MODELING IN APPLIED LINGUISTICS

T. P. KEHLER.
Department of Mathematics and Physics
Texas Woman's University
R. C. ¥WOODS
Departrent of Corputer Science
Virginia Tedmological University

ABSTRACT: Augmented Transition Hetwork grammars have

significant areas of unexplored application as a simula--

tion tool for grammar designers. The intent of this pa-
per is to discuss some cuxrrent efforts in developing a
grammar testing tool for the specialist in linguistics.
The scope of the system under discussion is to display
structures based on the modeled gramuar. Full ‘language
definition with facilitation of semantic interpretation
is not within the scope of the systems described in this
paper. Application of grammar testing to an applied
linguistics research enviromment is emphasized. Exten-
sions to the teaching of linguistics principles and to
refinement of the primitive ATW functions are also con-
sidered. .

1. Using Hetwork Models in Experimental Grarmar Design

Application of the ATN to general grammar modeling
for similation and comparative purposes was first sug-
gested by Woods(l). ibtivating factors for using the
network model as an applied grammar design tool are:

1. The model provides a means of organizing struc-
tural descriptions at any level, from surface
syntax to deep propositional intervpretations.

2. A network model may be used to revresent differ-
ent theoretical approaches to grammar definition.

3. The graphical representation of a grarmar permdit-
ted by the network model is a relatively clear
and precise way to express notions about struc-
ture.

4. Computational simulation of the grammar enables
systematic tracing of subcomponents and testing
against text data.

Grimes (2), in a series of linguistics workshops, demon-
strated the utility of the network model even in emvi-
roments where computational testing of grammars was not
possible. Grimes, along with other contributors to the
referenced work, illustrated the flexdbility of the AIN
in tagmemic analysis of grammatical structures. ATJ
implementations have mostly focused on effective natural
language understanding systems, assuming a computation-
ally sophisticated research enviromment. Implementations
are often in an emviromment which requires some in-
depth understanding and support of LISP systems. Re-
cently much of the information on the ATl formalism,
applications and techmiques for implementation was sum-
marized by Bates (3). Though many systems have been
developed, little attention has been given to creating
an interactive grammar modeling system for an individual
with highly developed lmgu:.sucs skills but poorly de-
veloped computational skills.

The individual involved in field linguistics is
concerned with developing concise workable descriptions
of some corpus of data in a given language. Particular
problems in developing rules for interpreting surface
structures are proposed and discussed in relation to
the data. In field linguistics applications, this in-
wolves developing a taxonomy of structural types follow-
ed by hypothesizing underlying rule systems which pro-
vide the highest level of data integration at a

123

syntactic as well as semantic level of analysis. The
AIN is proposed as a tool for assisting the linguist to
develop systematic descriptions of language data. It is
assumed that the typical user will interface with the
system at a point where an ATN and lexicon have been
developed. The AIN is developed from the theoretical
model chosen by the linguist.

Once the ATN is implemented as a computational pro-
cedure, the user enters test data, displays structures,
examines the lexicon, and edits the grammar to produce
a refined AT grammar description. The d:.splayed struc-
tures provide a labeled structural intervretation of the
mput: string based on the linguistic model used. Trac-
ing'of the parse may be used to follow the process of
building the structural interpretation. Computational
implementation requires giving attention to the details
of the interrelationships of grammatical rules and the
interaction between the grammar rule system and the lex-
ical representation. Testing the grammar against data
forces a level of systemization that is significantly
more rigorous than discussion oriented evaluation of
grammar systems,

2. Design Considerations

The general design goal for the grammar testing
syst:em described here is to provide a tool for develop~

experimentally driven, systematic representation
mdels of language data. Eng:.neenng of a full language
understanding system is not the primary focus of the
efforts described in this paper. Ideally, one would
like to provide a tool which would attract apvlied lin-
guists to use such a system as a simulation environment
for model development.

The design goals for the systems described are:

1. Ease of use for both movice and expert modes of
overation,

2. Perspicuity of grammar representation,
3. Support for a variety of linguistic theories,
4. Transportability to a variety of systems.

The prototype grammar design system consists of a
grammar gemerator, an editor, and a monitor. The func-
tion of the grammar editor is to provide a means of
defining and manipulating grarmar descriptions without
requiring the user to work in a specific orogramming
language envirornment. The editor is also used to edit
lexicons. The editor knows about the AIN envirorment
and can provide assistance to the user as needed.

The monitor's function is to handle input and out-
put of grammar and lexicon files, manage displays and
traces of parsings, provide consultation on the system
use as needed, and enable the user to cycle from editor
to parsing with minimm effort. The momitor can also be
used to provide facilities for studying grammar effi-
ciency. Transportability of the grammar modeling system
is established by a program generator which enables im-
plementation in different progranming languages.

3. Two Implememtations of Grammar Testing Systems

To develop some understanding on the design and
implementation requirements for a system as spec-
ified in the previcus section, two experimental grarmar
testing systems have been developed. A partial ATN im-
plementation was done by Kehler(4) in a system (SNOPAR)
which provided some interactive granmar and development
facilities. SNOPAR incorporated several of the basic
features of a grammar generator and monitor, with a
limited editor, a grammar generator and a muber of
other features.

Both SNOPAR and ADEPT are implemented in SNOBOL
and both have been transported across operating systems
(i.e. TOPS-20 to IBM's QS). For inmplementation of text
editing and program grammar generation, the SNOBOLA
language is reasonable. However, the lack of camprehen-
sive list storage managment is a limitation on the ex-
tension of this implementation to a full natural lan-
guage understanding system. Originally, SNOBOL was used
because a suitable LISP was not available to the
implementor.

3.1 SNOPAR

SNOPAR provides the following functions: grammar
creation and editing, lexicon creation and editing, ex-
ecution (with some error trapping), tracing/debugging
and file handling. The grammar creation portion has as
an option use of an interactive grammar to create an
ATN. One of the goals in the design of SIOPAR was to
introduce a notation which was easier to read tham the
LISP representation most frequently used.

Two basic formats have been used for writing gram-
mars in SNOPAR. One separates the context-free syntax
type operations fram the tests and actions of the gram-
mar. f’Ihis action block format is of the following gen-
eral form:

arc-type~block
state arc-type :S(TO(rest-action-block))
arc-type :5(T0(test~action-block))

! :F (FRETURIY)

where arc-type is a CAT, PARSE or FINDVRD etc., and the
test-action-block appears as follows:

test-action-block
state arc-test ! action
arc-test ! action

:S(T0 (arc-type~block))
:S(T0(arc-tyve~block))

where an arc-test is a CQMPAR or other test and an
action is a SEIR or BUILDS type action. iote that an
additional intermediate state is introduced for the test
and actions of the ATH.

The more stz iard formar used is given as:

state-> arc-type -% condition-test-and-action-block
- new-state

An example noun phrase is given as:
WP CAT('DET') SETR('NP','DET',Q) :S(T0C'ADJ'))
CAT('NPR') SETR('NP','NPR',Q)
:SCTO('PORIP')))F
ADJ CAT('ADJ') SEIR('NP','ADJ',Q) :S(TO('ADI'))
CAT('N') SETR('WP','N',Q)
:S(TO('N'))F (FRETURN)
NPP PARSE(FP()) SEIR('NP', 'NPP',Q):S(TO('tFP'))
POPNP NP = BUTLDS (NP) : (RETURN)

The Parse function calls subnetworks which consist of
Parse, Cat or other arc-typés. Structures are initial-
ly built through use of the SEIR fumction which uses

the top level constituent name (e.g. NP) to form a list
of the constituents referenced by the register name in
SEIR. All registers are treated as stacks. The BUILDS
function may use the implicit register name sequence as
a default to build the named structure, The top level
constituent name (i.e. NP) contains a list of the regis-
ters set during the parse which becomes the default list
for structure building. There are global stacks for
history taking and back up functions.

Typically, for other than the initial creation of a
gramar by a naive user, the AIN function library of the
system is used in confunction with a system editor for
grammar development. Several ATN grammars have been
written with this system.

3.2 ADEPT

In an effort to make an easy-to-use simulation tool
for linguists, the basic concepts of SNOPAR were extend-
ed by Woods (5) to a full ATN implementation in a system
called ADEPT. ADEPT is a system for generating ATN pro-
grams through the use of a network editor, lexicon
editor,error correction and detection component, and a
monitor for execution of the grammar. Figure 1 shows
the system organization of ADEPT.

The editor in ADEPT provides the following
functions:

network creation

arc deletion or editing

arc insertion

arc reordering

state insertion and deletion

[T B B |

ATN
Grammar |— | AIN Display
Editor

‘ Parser
T ATN Grammar i
" | 5 Program

AIN Files |— | ATN Program
Generator

ATN Functions

Lexicon LT
T o
The four main editor command types are summarized below:

E net> Edits a network
(Creates it if it doesn't exist)
E (gstate),(state) Edit arc information
D <(pet Deletes a network
D {statd® Deletes a state
D <{state),<state> Delete an arc
I (sta Insert a state
I Insert an arc
0 <{state Order arcs fram a state
L <filename) List networks

State, network, and arc editing are distinguished by
context and the arguments of the E, D, or I commands.
For a previously undefined E net causes definition of
the network. The user must specify all states in the
network before starting. The editor processes the state
list requesting arc relations and arc information such as
the tests or arc actions. The states are used to help
diagnose errors caused by misspelling f a state or
cmssion of a state.

Once the network is defined, arcs may by edited by
specifying the origin and destination of the arc. The
arc information is presented in the following order: arc
destination, arc type, arc test and arc actions. Each of

these items is displayed, permitting the user to change
values on the arc list by typing in the needed informa-
tion. !ultiple arcs between states are differentiated
by specifying the order mmber of the arc or by dis-
playing all arcs to the user and requesting selection
of the desired arc.

New arcs are inserted in the network by the I com-
mand. Whenever an arc insert is performed all arcs from
‘the state are mumbered and displayed. After the user
specifies the mumber of the arc that the new arc is to
follow, the arc information is entered.

Arcs may be reordered by specifying the s
state for the arcs of interest using the O comand. The
user is then requested to specify the new ordering of the
ares.

Insertion and deletion of a state requires that the
editor determine the states which may be reached from
the new state as well as finding which arcs terminate on
the new state. Once this information has been establish~
ed, the arc information may be entered.

when a state is deleted, all arcs which immediately
leave the state or which enter the state froam other
states are removed., Error conditions existing in the
network as a result of the deletion are then reported.
The user then either verifies the requested deletion and
corrects any errors or cancels the request.

Cramar files are stored in a list format. The PUT
command causes all networks currently defined to be writ-
ten out to a file.
Ifglgnemdcisalreadydefined. the network is not
read in.

By placing a series of checking functions in an ATR
editor, it is possible to filter out mary potential
errors before a grammar is tested. The user is able to
focus on the grammar model and not on the specific pro-
gramming requirements. A monitor program provides a top
Tevel interface to the user once a grammar is defined for
parsing sentences. In addition, the moni tor program
manages the stacks as well as the SEWD, LIFT and HOLD
lists for the network grammar. Switches may be set to
control the tracing of the parse.

An additional feature of the Woods ADFPT system is
the use of easy to read displays for the lexicon and
grammar. An exarple arc is shown:

()--CAT('DET')-- (ADJ)
*AA0 TESTS. **
ACTIONS
SETR('DET')

ADEPT has been used to develop a small grammar of
English. Future experiments are plarmed for using
ADEPT in an linguistics applications oriented erviron-
ment.

4. Experiments in Grammar Modeling

Utilization of the AIN as a grammar definition
system in linguistics and language education is still at
an early stage of development. Vleischedel et.al. (6)
have developed an ATi-based system as an intelligent
CAI too for teaching foreign language. 'ithin the
SHOPAR system, experiments in modeling English transfor-
mational grammar exercises and modeling field linguis-
tics exercises have been carried out. In field linguis-
tics research some grarmar develooment has been done.

Of interest here is the systematic formulation of rule
systems associated with the syntax and semantics of

GET will read in and define a grapmar.

natural language subsystems., Proposed model grammars can
be evaluated for efficiency of representation and extend-
ibility to a larger corpus of data. Essential to this
approach is the existence of a self-contained easy-to-use
transportable AT modeling systems. In the following
sections some example applications of grammar testing to
field linguistics exercises and application to modeling
a language indigenous to the Philippines are given.

4.1 An Exercise Camputationally Assisted Taxonomy

TYDl.cal exercises in a first cowrse in field lin-
guistics give the student a series of phrases or senten-
ces malmguauemckrmntome student. Taxonomic
analysis of the data is to be done producing a set of
formulas for constituent types and the hierarchicat
relationship of constituents. In this particular case a
tagmerric analysis is done. Consider the following three
sentences selected from Apinaye exercise (Problem 100)(7):

kukren kokoi the monkey eats
kukren kokoi rach the big monkey eats
ape rach mih mech the good man works well

First a sirple lexicon is contructed, from this and other
data. Secondly, immediate constituent analysis is car-
ried out to yield the following tagmemic formulae:

ICL := Pred:VP + Subj:1®
NP := Head:N + imod:AD
VP := Head:V + Vimod:AD

The ATN is then defined as a simple syntactic organd.za-
tion of constituent types. The SWOPAR representation of
this grammar would be:

ICL PARSE(VP()) SETR('ICL','Pred’,Q)

(TO('SU'})F (FRETURN)
su PARSEQ®()) SEIR(' ICL' 'Subj',Q)

S(TO('POPICL'))F (FRETURN)
POPICL Ic¢l, = BUILDS(ICL) :(REIURN)
VP CAT('V') SETR('VP','Head’,Q)

:S(TO('MOD'))F (FRETURN)
WD CAT('AD') SEIR('VP','VNbd',Q)
POPVP VP = BUILDS(VP) : (RETURN)
NP CAT('W') SEIR('NE', 'Head',0)

:S(TO('\MOD '))F (FRETURN)
D CAT('AD') SETR("MP', 'Nbd',Q) °
POPNP NP = BUILDS () : (RETURN)

HD

Thus permitting the parse of the first sem:ence (Kukren
kokoi) as:

(ICL
(Pred

(Head KUKREN)))
(Subj
P
(Head KOKOI))))

English gloss may be used as in the following example:

GLOSS::
WORK MUCH MAN WELL/GOOD

The'good man works a lot.
STATE: ICL. INPUT:

(IcL
(Pred
(VP
(Head APE
(MMod RACH)))
(Subj
P

(Head MIH)
(Mod MECH))))

Each sentence in the exercise may be entered, making

125

corrections to the gramar as needed. Once the basic
notions of syntax and hierarchy are established, the
model may then be extended to incorporate context-
sensitive and semantic features., Frequently, in propos-
ing a taxonomy for a series of sentences, one is tempted
to propose Tmervus structiral types in order to handle
all of the data. The orientation of grammar testing
encourages the user to lock for more concise representa-
tions. Tracing the sentence parse can y:.eld information
about the efficiency of the representation. Tracing is
also illustrative to the student, permitting many pars-
ings to be cbserved.

4.2 Cotabato Manobo

An AIN representation of a grammar for Cotabato
Manobo was done by Errington(8) using the mamual propos-
ed by Grimes(2). Recently, the grammar was implemented
and tested using SWOPAR. The implementation took place
over a three month period with imitial implementation at
the word level and eventual extension to the clause
level with conjunctions and enbedding. Comments were
used throughout the grarmar to explain the rational for
particular arc types, tests or actionms.

A wide variety of clause types are handled by the
grammar. A specific requirement in the llanobo gracmar
is the ability to handle a significant amount of test-
ing on the arcs. For example, it is not uncamon to
have three or four arcs of the same type differentiated

by checits on registers from previous points in the parse.

With nine network types, this leads to a comsiderable
amount of time being spent in context checking. A
straight forward apvroach to the grammar design leads to
a considerable amount of backing up in the parse. Vhile
a high speed parse was not an objective of the design,
it did point ocut the difficulty in designing grammars of
s:.gmflczmt size without getting in to programming
practice and applying more efficient parsing routines.
Since an objective of the project is to provide a sys-
tem which emphasizes the linguistics and not programming
practice, it was necessary to maintain descriptive
clarity at the sacrifice of performance. An example
parse for a clause is given:

EGkAHJSA!EM-]SABEGAS--ﬁiepersmiseadxgﬂce
GLOSS :
EAT THE PERSOW.PECPLE THE RICE
STATE:CL INPUT:
3
P

action is 'eat’

(V3TR! I\AE'u)))
(VPTYZE VERB)))
€30 4 focus is 'the people’

(NP
(DET SA)
QQuc)
w ETA))))
actor is 'the people’

QPNUC
@ TTAN)))
object is 'rice’

(DET SA)
uc
QPRUC
(1 3EGSS))))

126

5. Sumary ang Conclusions

Development of a relatively easy to use, transpor-
table grammar dsxgn system can make ooss:l.ble the use of
gramar modeling in the applied linguistics enviromrent,
in education and in linguistics research. A first step
in this effort has been carried out by immlementing two
exmerimental systems,SNOPAR and ADEPT, which emphasize
notational clarity and an editor/monitor interface to
the user. memmrkedlwrlsdes:.gnedt:ocmvxde
error handling, correction and interaction with the user
in establishing a network model of the grammar.

Sae apolications of SHOPAR have been made to
testing taxonaically based grarmars. Funure use of
ADEPT in the linguistics education/research is piammed.

Develoving a user-oriented ATH modeling svstem for
liraaists prcvides certain insights to the ATN model
itself. Such things as the perspicuity of the AT
renresentation of a grammar and the ATN model applica-
bility to a variety of language types can be evaluated.
In addition, a rore mdespreao application of AINs can
lead to same standardization in grammar modeling.

The related issue of develooing interfaces for user
extension of grarmars in natural language processing
systams can be investigated fram increased use of the
Ammdelby t:hepe.rsonwkw is not a specialist in arti-
ficial intelligence. The systems gemeral design does
mot Limit itself to apnlication to the ATN model.

6. References

1. %oods, V., Transition Network Grammars for Natural
Language Analysis, Commmications of the ACM, vol.
13, no. 10, 1970.

[

Grimes, J., Transition Network Grammars, A Guide,
ueumr? Gra:mnrs Grimes, J., ed., 1975.

3. Bates, liadelein, The Theory and Practice of Augment-
ed Transition Hetwork Grammars, Lecture Notes in
Camputer Science, Goos, G. and Hartmanis, J., ed.,
1578

Rehler, T.P.,
AJCL 55, 1976.

5. Voods; C.A., ADEPT - Testing System for Augmented
Transition Hetwork Grammars, ifasters Thesis,
Virginia Tech, 1979.

6. Veischedel. R.M., Voge, W.M., James, M., An
Artificial Intelhgence Anma& to Langua,,e Instruc-
tion, Artificial Intelllgence, Vol. 10, No. 3, 1978.

7. Merrifield, William R., Constance M. Naish, Calvin
R. Rensch, Gillian Story, Laboratory Marmal for
Morpnology and Syntax, 1967.

8. Errington, Ross, 'Transition Network Grammar of
Cotabato Manobo.' Studies in Philipnine Linguistics,
edited by Casilda Edrial-Luzares and Austin Hale.
Volume 3, Number 2. Manila: Summer Institute of
Linguistics. 1979.

SNOPAR: A Grammar Testing System,

