Flexible Parsing

Phil Hayes and George Mouradian
Computer Science Department, Carnegie-Mellon University
Pittsburgh. PA 15213, USA

Abstract!

When people use natural language in natural settings, they often
use it ungrammaticaily, missing out or repeating words,
breaking-off and restarting, speaking in fragments, etc.. Their
human listeners are usually able to cope with these deviations with
little difficuity. If a compuler system wishes t¢c accept natural
language input from its users on a routine basis. it must dispiay a
similar indifference. In this paper. we outline a set of parsing
{lexibilities that such a system should provide. We go on to
describe FlexP. a boltom-up pattern-imatching parser that we have
designed and implemented to provide these flexibilities for
restricted natural language input to a limited-domain computer
system.

1. The Importance of Flexible Parsing

When people use natural language in natural conversation, they often
do not respect grammatical niceties. Instead of speaking sequences of
grammatically well-formed and complete sentences, people often miss aut
or repeat words or phrases, break off what they are saying and rephrase
or replace it, speak in fragments. or use otherwise incorrect grammar.
The lollowing example conversation involves a number of these
grammatical deviations:

A: lwant ... can you send 2 memo a message to to Smith

8: Is that John or John Simith or Jim Smith’

A: Jim '
Instead of being unable or refusing to parse such ungrammaticality,
human listeners are generally unperturbed by it. Neither participant in the
above example, for instance. would have any difficulty in following the
conversation.

If computers are ever to converse naturally with humans, they must be
able to parse their input as Hexibly and robustly as humans do. While
considerable advances have been made in recent years in applied natural
language processing, few of the systems that have been constructed have
paid sulficient attention to the kinds of deviation that will inevitably occur
n ther mput of they are used oy a natural environment. in many cases, if
the user's input does not conform to the syslem's grammar, an indication
of incomprehension {ollowed by a request to rephrase may be the best he
can expect. We betieve that such inflexibility in parsing severely limits ihe
practicality ol natural language compuler inleriaces, and is a major reason
why natural langyuage has yet to find wide acceptance in such applications

as database retrieval or interactive command languzges.

In this paper, we report on a flexible parser, called FlexP, suitable for
use with a restricted natural language interface to a limited-domain
computer system. We describe first the kinds of grainmatical deviations
we are trying {o deal with, then the basic design decisions for FlexP with
juslification for them based an the kinds of problem to be solved, and
finally wmore details of our parsing system with worked examples of its
operation. These examples.and most of the others in the paper, represent
natural language input to an electronic mail system that we and others [1]
are constructing as part of our research on user interfaces. This system
employs FlexP to parse its input.

2. Types of Grammatical Deviation

There are a nuiber of distinct types of grammatical deviation and not
all types are found in all types of conumunication situation. In this section,
we lirst define the restricted type of communication situation that we will
be concerned with, that of a limited-domain computer system and its user

97

communicating via a keyboard and display screen. We then present a
taxonomy of grammatical deviations common in this context, and by
implication a set of parsing flexibilities needed to deal .with them.

2. 1. Communicalion with a LLimited-Domain System

in the remainder of this paper. we will focus on a restricted type of
communication situation, that between a limited-domain system and its
user, and on the parsing flexibilities needed by such a system to cope with
the user's inevitable grammatical deviations. Examples of the type of
system we have in mind are data-base retrieval systems. electronic mail
systems. medical diaynosis systems, or any systems operating in a domain
so restricted that they can compictely understand any relevant input a
user might provide. In short, exactly the kind of system that is normaily
used for work in applied naturai lanyuage processing. There are several
points to be made.

First. although zuch systems can be expected to parse and understand
anything relevant to their domain, their users cannot be expected to
confine themselves to relevant input. As Bobrow et. al. {2| note, users
oftcn explain their underlying motivations or olherwise juslily their
reguests in terms quite irrelovant to the domain of the system. The result
is that such systems cannot expect to parse uil their mpul even wath the
use ol flexible parsing lechniques.

Secondly, a flexible parser is just part of the conversational component
of such a system. .and cannot solve all parsing problems by itself. For
example, il a parser can extract two coherent fragments from an olherwise
incomprehensible input, the decisions about what Ihe system should
next must be made by another component of the system. A decision on
whether to jump to a conclusion about what the user intended, to present
him with a set of aiternative interpretations. or to profess total confusion,
can only be made with information about the history of the conversation,
beliefs about the user's goals. and measures of plausibility for any given
action by the user. See (7] for more discussion of this broader view of
graceful interaction in man-machine communication. Suffice it to say that
we assume a flexible parser is just one component of a larger system, and
thal any incomprehensions or ambiguities that it finds are passed on to
another component of the system with access to higher-level information,
putting it in a better position to decide what to do next.

Finally, we assume that, as usual for such systems, input is typed,
rather than spoken as is nonnal in human conversations. This simplifies
low-levei processing tremendously because key-strokes unlike speech
wave-forms are unambiguous. On the other hand. problems like
misspelling arise. and a flexibie parser cannot assume that segmentation
into words Ly spaces and carriage returns will always be correct.
However, such input is stilt one side of a conversation, rather than a
polished text in the manner of most written material. As such, it is likely to
contain many of the same type of errors normally found in spoken
conversations.

2.2. Misspeiling

Misspelling is perhaps the most common form of grammatical deviation
in written language. Accordingly, it is the form of ungrammaticality that
has been dealt with the most by languaye processing systems. PARRY
[11]. LIFER [8]. :vd nhumerous other systems have tried to correct inisspelt
input from their users.

|1hm 1esemich was spxeexnoed by e Al Torce Office of Scwtific Nesentch ander
Conttaet 1 49620 79 C 0143,

An ability to correct spelling implies the existence of a dictionary of
correctly spelled words An input word not found in the dictionary is
assumed (o be nusspell and is compared against each of the dictionary
words. il a dictionary word comes close enough to the input word
according to some criteria of lexical matching, it is used in place of the
input word.

Spelling correction may be attempted in or out of context. For instance,
here is only one reasonablie correction for “refavent” or lor “seperate”,
but tor an mnput like "un” some kind of conlext is typically necessary as in
“I'll see you un April” or “he was shot with the stoien un.” in elfect.
contexi can be used to reduce the size ol the dichionary to be searched for
correct words. This bhoth makes the search more ulficient and reduces the
possibiiily of mulliple matches of the mput agamst the dictionary. The
LIFER {8] system uses the strong constramts typically provided by its
semanbic gramni in lins way to reduce the range of possibiliies for
spelling correction.

A particularly troublesome kind of spelling error resuits in a valid word
different from the one intended. as in "show me on of the messages”.
Clearly, such an error can only be corrected through comparison against
a contextuatly determined vocabulary.

2.3. Novel Words

Even accomplished users of a language will sometimes encounter
words they do not know. Such situations are a test of their language
learning skills. I one didn't know the word “fawn”, one could at least
decide it was a colour from “a fawn coloured sweater”. If one just knew
the word as refermg 1o a youny deer, one nnght conclude that it was beiny
used to mean the colour of a young deer. In general. beyond making
direct interences abotuit the role of unknown words from their immediate
context, vocabulary learninyg ciw) require arbitrary amounts of real-worid
knowledge and mference. and this is certainiy beyond the capabilities of
present day artificial intelligence technigues (though see Carbonell [4] for
work in this direction).

There is. however, a very common special subclass of novel words that
is well within the capabiiities of present day systems: unknown proper
names. Given an appropriate context. either sententiai or discourse. it is
relatively straighttorward 0 parse unknown words into the names of
peopie. places, etc. Thus in “send copies to Moledeski Chiselov” it is
reasonable to conciude from the local context that "Moledeski” is a first
name, "Chiselov” 13 a surname, and together they identily a person (the
intended recipient of the copies). Strateqies like this were used in the
POLITICS [5]. FRUMP |6}, and PARRY | 11] sysiems.

Since novel words are by definition not in the known vocabulary, how
can a parsing system distinguish them from misspellings? I most cases.
the novel words will not be close enough to known words to allow
successtut correction, as in the above example. bul this is not aiways true;
an unknown first name of “Al" could easily be corrected to "ail”.
Conversely. it is not sale to assuime thal unknown words in contexts which
allow proper names are really proper names as in: "send copies to at
managers”. In this example. "al" probably should be corrected to "all”.
In order to resolve such cases it imity be necessary to check against a list
of referents tor proper names, if this is known, or otherwise to consider
such factors as whether the initind letters of 1he wortds are capilidized.

As far as we know. no systems yet consiructed have integrated their
handling of misspelt words and unknown. proper names 1o the degree
outlined abouve. However, the COOP {9] system ailows systematic access
10 a dita base cantainmg proper names without the need for inclusion of
the worcds m the system’s parsing vocabulary.

2.4. Erroneous segmenting markers

Written text is segmented into words by spaces and new lines. and into
higher level units by commas. periods and other punctuation marks. Both
classes. especially the second, may be omitted or inserted speciously.
Spoken language is also segmented. but by the quite different markers of

98

stress. interaction and noise words and phrases. we will not consider
those further here.

Incorrect seymentation at the lexical level results in two or more words
being run together, as in “runtogether”, or a single word being split up
into two or more segments, as in "tog ether” or (inconveniently) "to get
her”, or combinations of these effects as in “runto geth er”. In all cases. it
seems natural to deal with such errors by extendinyg “the spelling
correction mechanism to be able to recognize target words as initial
segments of unknown words, and vice-versa. As far as we know. no
current systems deal with incorrect segmentation into words.

The other type of segmenting error, incorrect punctuation, has a much
broader impact on parsing methodology. Current parsers typically work
one sentence at a time. and assume that each sentence is terminated by
an explicit end of sentence marker. A flexibie parser must be able to deal
with the potential absence of such a marker. and recognize the sentence
boundary regardiess. It should also be able to make use of such
punctuation if it is used correctly, and to ignore it it it is used incorrectly.

Instead ol punctuation. many interactive systems use carriage-return to
indicate sentence termination. Missing sentence terminators in this case
correspond to two sentences on one line, or to the typing of a sentence
without the terminating return, while specious terminators correspond to
typing a sentence on more than one line.

2.5. hioken-0Off and Restarled Utlerances

in spoken language. it is very common to break off and restart all or part
ot an utterance:

| want to --- Couid you lell ime the name?

Was the man --er-- the olflicial here yesterday?
Usually, such restarts are signalled in soime way. by "um™ or “er”. or inore
explicitly by "let's back up” or some sinular phrase.

In written fanguage. such restarts do not normaily occur because they
are erased by the writer belore the reader sees them. Interactive
computer syslems typically provide facilitics for their users to delete the
tast character. word, or current hne as though it had never been typed. for
the very purpose of allowing such restarts. Given these signals, the
restarls are easy (o detect and inlerpret. However, sometimes users lad to
make use ol hese signals. Sometunes, lor instance. input not containing

a carriage-return can be spread over several lines by intermixing of input
and output. A flexible parser should be able to make sense out of
“obvious"” restarts that are not signailled, as in:

delete the show me all the messages from Smith

2.6. Fragmentary and Otherwise Elliptical Input

Naturally occuring language often involves utterances that are not
complete sentences. Oiten the appropriateness of such fragmentary
utterunces depends on conversational or physical context as in:

A: Do you mcan Jim Smith or Fred Smith?
B8: Jim

A: Send a message to Smith

8: 0K

A: with capies to Jones
A flexible parser must be able to parse such fragments given the
appropriate context.

There is a question here of what such fragments should be parsed into.
Parsing systems which have deall with the problem have typicaily
assumed (I 1t such inputs are ellipses of complete sentences. and that
therr parsing invoives finding that complete sentence, and parsing it. Thus
the sentence corresponding to "Jim" in the example above would be "1
mean Jim". Essentally this view has been taken by the LIFER [8] and
GUS [2] systems. An alternalive view 1s that such fragments are not
eliipses of more complete sentences, but are themseives compilete

utterances given the context in which they occur, and should be parsed as
such. We have taken tlus view in our approach to flexible parsing, as we
will explain more fuily below. Carbonell (personal conwnunication)
suggests a third view appropriate for some fragments: that of an extended
case frame. In the second example above, for instance. A’'s "with copies
to Jones™ forms a natural part of the case frame established by “send a
message to Smith™ Yet another approach to fragment parsing is taken in
the PLANES system {12} which always parses in terims of major fragiments
rather than complete ulterances. This technique relies on there hcing
only one way to combine the fragments thus obtained, which may be a
reasonable assumption for many limited domain systems.

Ellipses can also occur without regard to context. A lype that
inleractive systems are paricularly likely to tace is crypticness in which
arhicles and othoer non-essentind words are omitted as in "show messages
after June 17" instead of the more complete "show me all messages dated
alter June 177, Again, there is a question of whether to consider the
cryptic input complete, winch would mean modifying the system'’s
grammar, or whether to consider it efliptical, and complete it by using
flexibie techniques to parse it against the complete version as it exists in
the standard granmmar.

Other common forms of effipses are associated with conjunction as i

John got up and [John] brushed his teeth.
Mary saw Bill and Bill {saw] Mary. o
Fred recognized [the building] and [Fred] walked towards the building.

Since conjunctions can support such a wide range of ellipsis, it is
generally impricticai to recognize such utterances by appropriate
grammar extensions. Efforts to deul with conjunction have therefore
depended on general mechanisms which supplement the basic parsing
strategy. as in the LUNAR system [15]. or which modify the grammar
temporarily. as in the work of Kwasny and Sondheimer {10{. We have not
attempled to deal with this type of ellipsis in our parsing syslem, and will
not discuss further the type of flexibility it requires.

2.7. Inlerjected Phrases, Omission, and Substitution

Sometimes people interiect noise or other qualilying phrases into what
is otherwise a normat grammatical flow as in:

| want the message dated | think June 17

Such interjections can be inserted at almost any point in an utterance, and
so must be deait with as they arise by flexible techniques.

1t is relatively straigitforward for a system of limited comprehension to
screen out and ignore standard noise phrases such as "1 think” or "as far
as | can tell”. More troublesome are interiections that cannot be
recognized by the system, as might for instance tre the case in

Disptiy [just to refresiymy memory| the message dated June 17.
I want 1o see the message |as | forgot what it said] dated June 17,

where the unrecognized interjections are bracketed. A flexible parser
should be able to ignore such interjeclions. There is always the chance
that the unrecognized part was an important part of what the user was
trying to say. but clearly, the problems that arise from this cannot be
handled by a parser.

Omisgions of words (or phrases) from the input are closely related to
cryptic input as discussed above, and one way of dealing with cryptic
npul is to treat il as a set of omissions. However, in cryptic input only
messential information is missed out, while it is conceivable that one could
aiso omit essential information as in:

Displiay the message June 17

Here itis unclear whether the speaker means a message dated on June 17
or belore Jung 17 or after June 17 {we assume that the system addressed
can display things unmediately, or not at all). I an omission can be
narrownd down in this way, the parser should be able to generate all the
alternatives {for contextual resolution of the ambiguity or for the basis of a
question 1o the user). It the omission can be narrowed down {0 one
Alternative then the mput was merely oyptic.

Besides omitting words and phrases, people sometimes substitute
incorrect or unintended ones. Often such substitutions are spelling errors
and should be caught by ihe spelling correction mechanism, but
sometimes they are inadvertent substitutions or uses of equivalent
vocabulary not known to the system. This type of substitution is just like
an omission except that there is an unrecognized word or phrase in the
place where the omitted input should have been. For instance, in "the
message over June 17", "over" takes the place of "dated” or "sent after”
or whatever else is appropriate at that point. If the substitution is of
vocabulary which is appropriale bul unknown to the system, parsing of
substituted words can provide the basis of vocabulary extension.

2.8. Agreemcnt Failure

It is not uncommon for people to fail to make the appropriate agreement
between the various parts of a noun or verb phrase asin :

| wants to send a messages to Jim Smith.

The appropriate action is to ignore the lack of agreement, and Weischedel
and Bluck [13| describe a method for relaxing the predicates in an ATN
which typically check for such agreements. However, it is generally not
possible to conclude locally which value of the marker (number or person)
for which the clash occurs is actually intended. We considered examples
in which the disagreement invoives more than inflections (as in “the
message over June 17") in the section on substitutions.

2.9. Idioms

Idioms are phrases whose interpretation is not what would be obtained
by parsing and interpreting them constructively in the normal way. They
may also not adhere to the standard syntactic rules. Idioms must thus be
parsed as a whole in a pattern matching kind of mode. Parsers based
purely on patlern matching, like that of PARRY |1 1], thus are able to parse
idioms naturally, while others must either add a preprocessing phrase of
pattern matching as in the LUNAR system | 15}. or mix specific patterns in
with more general rules, as in the work of Kwasny and Sondheimer (o).
Semantic grammass {3, 8] provide a relatively natural way of mixing
idiomatic and more general patterns.

2.10. User Supplied Changes

In normal lnman conversalion, once something is said. it is said and
cannot be changed, except indirectly by more words which refer back to
the orignal ones. In inleractively typed input, there is always the
possibility that a user may notice an errar he has made and go back and
correct it limsell, withoul waiting for the system 1o pursue s own,
possibly slow and ineflective. methods of correction. With appropriate
ediling facilities, the user may do this without erasing intervening words,
and, if the system is processing his input on a word by word basis. may

3. An Approach to Fiexibie Parsing

Most current parsing systems are unable to cope with most of the kinds
of grammatical deviation outlined above. This is because lypical parsing
systems attempt to apply their grammar to their input in a rigid way, and
since deviant input, by definition. does not conforin to the grammar, they
are unable to produce any kind of parse for it at all. Attempts to parse
more flexibly have typically involved parsing strategies to be used after a
top-down parse using an ATN [14} or similar transition net has failed.
Such eftorts inciude the ellipsis and paraphrase mechanisims of LIFER {8],
the predicate relaxation technigues of Weischedel and Black {13}, and
several of the devices for extending ATN's proposed by Kwasny and
Sondheimer {10].
thus alter a word that the system has already processed. A flexible parser
must be able to take advantage of such user provided corrections to
unknown words, and to prefer them over its own corrections. It must aiso
be prepared to change its parse if the user changes a valid word to
another ditferent but equally valid word.

We have constructed a parser, FlexP. which can apply its grammar to
its input fiexibly, and thus deal with the grammmatical deviations discussed
in the previous seclhion. We should emphasize. however. that FlexP is
designed 1o be used m the mterlace to a restncted-domain system. Ag
such, it is mtended to work Irom a domain-specific semantic grarmmmar,
rather than one suitable for broader classes of input. FlexP thus does not
embody a solution for flexible parsing of natural language in general. In
describing FlexP. we will note those of its techniques that seem unlikely to
scale up to use with more compiex grammars with wider coverage.

We have adopted in FlexP an approach to fiexible parsing basecd not on
ATN's, but closer to the paltern-matching parser ol the PARRY system
[11]. possibly the most robust parser yet constructed. Our approach is
based on several design decisions:

e boliom up rather than top-down parsing: This aids in the
" parsing ol fragmentary utterances, and in the recogintion of
interjections and restarts.

o patlern matching: This is essential lor idioms, and also aids
in the detection of omissions and substtutions in
non-idiomatic phrases.

e parse suspension and conlinuation: The ability o
suspend i parse and ker resume its processing is important
for interjections, restarts, and non-explicit terminations.

In the remainder of this section we examine and justify these design
decisions in more detail.

3.1. Bottom-Up Parsing

Qur choice of 4 bottom-up strateyy is based on our need to recoynize
isolated sentence fragments. H an ulterance which woulkd normally be
considered only a fraginent of a complete sentence is to be recognized
top-down. there are two approaches to take. First. the grammar can be
altered so that the frayment is recoynized as a complete ulterance in its
own right. This is undesirabie because it can cause enormous expiansion
of the grammar. and because it becomes difficuit to decide whether a
frayment appears in isolation or as part of a larger utterance, especially if
the possibility of missing end of sentence markers also exists. The second
option is for the parser to inter from the conversational context what
grammatical sub-category {or sequence of sub-categories) the fragment
might lit into. and then to do a top-down parse from that sub-category.
This essentially is the tactic used in the GUS 2| and LIFER [8} systems.
This strategy is clearly belter than the first one, but has two problems; first
of predicting all possible sub-categories which might come next, and
secondly. of inefficiency it a large number are predicted. Kwasny and
Sondheimer |10] use a combination of the two strategies by temporarily
moditying an ATN grammar to accept fragment categories as complete
utterances at the tunes they are contextually predicted.

Bottom-up parsing avoids the problem of predicting what
sub-categories imay occur. a fraginent fitting a given sub-category does
occur, it is parsed as such whatever the context. However. if a given input
can be parsed as more than one sub-category. the bottom-up approach
would have to produce them all. even if only one would be predicted
top-down. In a system of limited comprehension. fragimentary recognition
is sometines necessary because nat all of an input can be recognized,
rather than because of intentional ellipsis. Here. it is probably impossible
to make predictions and bottom-up parsing is the oily method that is likely
to work. As described below. bottom-up strategies, coupled with
suspended parses. are also helpfut in recoynizing interjections and
restarts.

3.2. Pattern Matching

We have chosen to use a yrammar of linear paiterns rather than a
lransihon network because pattern-matching meshes well with boltom-up
parsing. beciause o facates recogmiion ol utletances with omissions

and substitubions, and because it 1s necessary anyway for the recoynition
of idiomatic phrases.

The grommae of the parser is a sot of rewrite or production rules whose
felt hand sikie s atimear pattern of constituents (lexical or inghey fevel) and
whose right hand side defines a resuit consttuont. Elements of the

pattern may be labelled optional or allow for repeated matches. We make
the assumption, certamnly true lor the grammar we are presently working
with, that the grammar wifl be semantic rather than syntactic. with patterns
corresponding to idiomatic phrases or to object and event descriptinns
meanmgful i some lmited domai. rather than to general syntactic
structures.

Linear patterns fit well with bottom-up parsing because they can be
indexed by any of their components. and because. once indexed, it is
straighttorward to confirm whether a pattern matches input aiready
processed in a way consistent with the way the pattern was indexed.

Patterns help with the detection of omissions and substitutions because
in either case the relevant pattern can still be indexed by the remaining
elements that appear correctly in the input. and thus the pattern as a
whole can be recognized even it some of its elements are missing or
incorrect. In the case of substitutions. such a technique can actually hetp
locus the speliing correclion, proper namme recognition. or vocabulary
learning techniques. whichever is appropriate. by isolating the substituted
mnput and the pattern constituent which it shouid have matched. In effect,
this allows the normally bottom-up parsing strategy lo go top-down to
resolve such substitutions.

In normat left to right processing, it is not necessary to activate ail the
patierns indexed by every new word as it is considered. If a new word is
accounted lor by a pattern that has already been partially matched by
previous input. it is likely that no other patterns need to be indexed and
matched for that wnput. Tius heuristic alows FlexP's parsing algorithin to
limit the number of patterns it tnes to match. We should emphasize,
however, that it is a heuristic. and while it has caused us no trouble with
the limuted-dotnain grammiir we have been using, it is unclear how well it
would transfer to a more complex grammar. FlexP's algorithm does.
however, carry along mulliple partial parges in other ambiguous cases.
removing the need for any backtracking.

3.3. Parse Suspension and Continuation

FlexP employs the technique of suspending a parse with the possibility
of later continuation to help with the recognition ot interjections. restarts,
and implicit tenminations. The parsing algorithun works left to right in a
breadth-lirst manner. It waintaing a set of partial parses. each ol which
accounts for the input alrendy processed but not yet accounted lor by a
completed parse. The parser altempts to incorporate each new input into
each of the partial parses. I this is successful. the partial parses are
exiended and may increase or decrease in number. I no partial parse can
be extended. the entire set 1S saved s a suspended parse.

There are several possible exptanations for input mismatch, i.e. the
failure of the next input to extend a parse.

¢ The input could be an implicit termination, i.e. the start of a
new top-level utterance, and the previous utterance shouid be
assumed complete. .

e Phe mpui could be a restart, n which case li.e aclive parse
should be abandoned and a new parse starteci from that point.

* The input could be the start of an interjection, in which case
the active parse should be temporarily suspended, and a new
parse started for the interjection.

It is not possible, in general, to distinguish between these cases at the
time the mismatch occurs. K the active parse is not at a possibie
termination point, then input mismatch cannot indicate impficit

100

termination, but may indicate either restart or interjection. it is necessary
to suspend the active parse and wait to see if it is continued at the next
input mismatch. On the other hand, it the active parse is at a possible
termination point. input mismatch does not rule out interjection or even
restart. In this situation. our aigorithm tentatively assumes that there has
been an implicit termination. but suspends the active parse anyway for
subsequent potentiat continuation.

Note also that the possibility of implicit termination provides justification
for the strategy of interpreting each input immediately it is received. if the
input signals an implicit termination, then the user may well expect the
system lo respond immediately to the input thus terminated.

4. Details of FlexP

This section describes how FlexP achieves the Hexibilities discussed
earlier. The implementation described is being used as the parser for an
intefligent intertace 10 A multi-media message system {1]. The intelligence
in this interface is concentrated in a User Agent which mediites belween
the user and the underlying tool system. The Agent ensures that the
interaction goes smoothly by, among other things, checking that the user
specifies the operations he wants performed and their parameters
correctly and unambiguously. conducting a dialogue with the user if
problems arise. The role of Flex!” as the Agent's parser is 10 transiorm the
user’'s input into the internal representations emiployed by the Agent.
Usually this input is a request for action by the tool or a description of
objects known to the tool. Our examples are drawn from that context.

4.1. Preliminary Example

Suppose the user types
display new messages

Interpretation begins as soon as any input is available. The first word is
used as an index into the store of rewrite rules. Each rule gives a paltern
and a structure 10 be produced when the pattern is matched. The
components of the structure are built from the structures or words which
match the elements of the pattern. The word “display” indexes the rule:

(pattern:
result:

(Display Message Description)

| Structureiype: OperationRequest

Operation: Display

Massage: (Filler Messagellescription)]

Using this rule Ihe parser constructs the partial parse tree

(Display
|

|
display

MessageDescription)

We call the partially-instantiated pattern which labels the upper node a
hypothesis. It represents a possible interpretation for a segment of input.

The next word "new" does not directly match the hypothesis, but since
"new" is a MsgAdj (an adjective which can modily a description of a
message). it indexes the rule:

(pattern: (7?Det <*MsgAdj Msgllead “*MsqCase)
result: [Structurelype: Messagelescription
Components: ----<=-=----- 1

Here. "?" means optional, and "*" means repeatable. For the sake of
clarity, we have omitted other prefixes which distinguish between terminal
and non-terminal pattern elements. The resuit of this rule fits the current
hypothesis. so extends the parse as lollows:

(Display Massagelescriplion)

! |
| |
| (?Net *MsgAdj Msgliead *MsgCase)
| 1
| |
disptay new

101

The hypothesis is not yel fully confirmed even though all the clements are
matched. lIts second clement malches another Jowor level hypothesis
which is only incompletely matched. This lower pattern becomes the
curren hypothes:s because it predicts what should come next in the input
stream.

The third input matches the category Msghtlead (head noun of a
megsage description) and so fits the current hypothesis. This match fills
the fast non-oplionatl slot in that pattern. By doing s0 it makes the current
hypothesis and its parent pattern potentially compiete. When the parser
finds a potentially complete phrase whose result is of interest to the Agent
(and the parent phrase in this examplie is in that calegory), the result is
constructed and sent. However. since the parser has not seen a
termination signal, this parse is kept active. The mput seen so far may be
only a prefix for some longer utterance such as "display new messages
about ADA". In this case "about ADA" would be recognized as a match
for MsyCase (a prepositional phrase that can be part of a message
description), the parse wouid be extended. and a revision of the previous
structure sent to the Agent.

4.2. Unrecognized Words

When an input word cannot be found in the dictionary, spelling
correction is attempted in a background process which runs at lower
priority than the parser. The input word and a list ol possibilities derived
from the current hypothesis are passed as arguments. For example:

display the new nessaegs

produces the partial parse

(Display MessageDescription)
| |
|
| (?het *MsyAdj MsgHead *MsgCase)
| | |
| | |
display the new

The lower pattern is the current hypothesis and has two elements eligible
to match the next input. Another MsgAdj couid be matched. A match for
MsgHead would also fit. Both elements have associated lists of keywords
known to occur in phrases which match them. The one for MsgHead
includes the word “"messages”. and the spelling corrector passes this

back to the parser as the most likely interpretation.

In some cases the spelling corrector produces severat likely
alternatives. The parser handles such ambiguous words using the same
mechanisins which acconunodate phrases willh ambiguous interpretations
That is. allernative interpretations are carried along until there is enough
input to discriminate those which are plausible from those which are not.
The dutails are given in the next section.

The user may also correct the input text himseif. These changes are
handled in much the same way as lho'se propased by the spelling
corrector. Of course, these user-supplied changes are given priority, and
parses built using the formwer version must be moditied or discardexd.

Spelling correction is run as a separate, fower priority process because
a reasonable parse may be produced even without a proper interpretition
for the unknown word. Since spelling correction can invoive rather
time-consuming searches, this work is best done when the parser has.no
better alternatives to explore.

4.3. Ambiguous Input

In the first exampie there was only one hypothesis about the structure
of the input. More generally, there may be several hypotheses which
provide competing interprelations aboutl what has already been seen and
what will appear next. Unlil these partial parses are found to be
inconsistent with the actual input, they are carried along as part of the
active parse. Therefore the active parse is a set of partial parse trees each

efficiency required for reai-time response. but could conceivably fail to
tind appropriate parses. We have not encountered such circumstances
with the sirall domain-specific semantic grammar we have been using.

4.4. Flexible Maiching

The only flexibiity described so far 1s that allowed by the optional
elements of patterns. | omissions can be anticipated, allowances may be
built o the grammar. In this section we show how other omissions may
he handled and other flexibilibes achieved by allowng additional freedom
in the way an item 1s allowed to match a pattern. here are two ways in
with a top-level hypothesis about the overali structure of the input so far
and a current hypothesis concerning the next input. The actual
impiementation allows shanng of common structure amony competing
hypotheses and so 1s more efficient than this description suggests.

The input
were there any messages on.......

couid be completed by giving a date ("...on Tuesday"”) or a topic ("...on
ADA™). Conscquently, the sub-phrase "any messages on” results in two
partial parses:

(?Det *MsgAdj Msgilead <*MsgCase)
| | |
1 i l
any messages (On Dale)
|
i
on
and
(?Det *MsgAdj Msgllead “*MsgCase)
| | |
| | |
any messages {(On Topic)

on

If the next inpul were "Tuesday” it would be consistent with the first parse,
bul not the second. Since one of the allernatves does account for the
nput, those that do not may be discivded. On the other hand. if all the
partiad parses faal to match the input, olher action is taken. We consider
such siluahions in the sechion un suspended parses.

As a yeneral strategy. we carry sevetal possible imnterpretations only as
long as there is no clear best alternative. In particutar no fiexible parsing
techniques are used 10 support parses for which there are plausibie
allernatives under normai parsing. This beuristic helps achieve the
which the matching criteria inay be relaxed. namely

e relax consistency constraints, e.g. number agreement
« allow out of order matches

Consistency constraints are predicates which are attached to ruies.
They assert relationships winch must hold among the items which fill the
pattern. These constraints allow context-sensilive constructions in the
grammar. Such predicates are commonly used for similar purposes by
ATN parsers | 14| and the flexibility achieved by relaxing these constraints
has been explored belore [13]. The techmique fits smoothly into FiexP but
has not aclually been needed or used in our current application.

On the other hand. out of order maiching is essential for the parser’s
approach to errors of omission. transposition, and substitution. Even
when strictly ntenpreted. severai efements of a pattern may he eligibie to

match the next input item. For example. in the pattern for a
MessageDescription
(?Det =MsgAdj Msgllead *MsgCase)

each ol the first three elements 1s imitially eligibie but the tast is not. On the

other hind. once Msyllead has been matched only the last element 1
eligible under the stnct interpretation of the pattern.
Consicdler the input
displity new nboui ADA

The lust two words parse nornally Lo produce

(Display MessageDescription)
| |
] !
| (7Det *MsgAdj MsgHead *MsgCase)
]]
| |
display new

The next word does not fit that hypothesis. The two eligible eiements
predict either another messaye adjective or a MsgHead. The word
"about” does not match esther of these, nor can the parser construct any
path to them using intermediate hypotheses. Since there are no other
partial parses available to account for this input. and since normal
matching fails, fiexible matching is tried.

First. previously skipped elements are compared to the input. in this
exampie. the element ?Det is considered but does not match. Next,
elements to the rnight of the eligible elements are considered. Thus
MsgCase is considered even though the non-optionai element MsgHead
has not been matched. This succeeds and allows the partial parse to be
extended to

(Display MessageDescription)

] |

| (?Det *MsgAdj Msyllead “*MsgCase)

: : (About topic)
dilsplay an abc’)ut

which correctly predicts the final input item.

Unrecoynizable substitutions are also handled by this mechanism. In
the pirase

display the new stuff about ADA

the word "stulf” is not found in the dictionary so spelfing correction is
tried but does not produce any plausible alternatives. While speiling
correction 1S underway, the remaininy inputs can be parsed by simply
omittng "stuft* and using the flexible matching procedure.
Transposihons are handied through one application of Hexible matchiny if
the efement of the transposced pair 1s optional, two applicalions if not.

4.5. Suspended Parses

Interjeclions are more common in spoken than in wien language but
do occur in typed input sometimes. To deal with such input, our design
allows for blocked parses to be suspended rather than merely discarded.

Users. especially novices. may embeliish their input with words and

phrases that do rat provide essential information and cannot be
specifically anticipate. Consider t.vo exampies:

display please messages dated June 17

dispiay lor me messages dated June 17
in the first case. the interjected word "please” could be recognized as a
common noise phrase which means nothing to the Agent except possibly
10 suyyust that the user is 2 novice. The second example is more difficult.
Both words of the interiected phrase can appear in a number of legitimate
and meanmingiul construchons: they cannot be ignored so easily.

102

For the latter example. parse suspension works as follows. After the
first word, the active parse contains a single partial parse:

(Disptay
!

|
display

MessageDascription)

The next word does not fit this hypothesis, so it is suspended. In its place,
a new active parse is constructed. It contains several partial parses
including

(For Person) and (For Timelntervat)
| 1
| |

for for

The next word confirms the first of these, but the fourth word
“messages” does nol. When the parser finds that it cannot extend the
active parse, it considers the suspended parse. Since "messages” fits,
the active and suspended parses are exchanged and the remainder of the
input processed normally, so that the parser recognizes “display
messages dated June 17" as if it had never contained "for me”.

5. Conclusion

When people use language naturally, they make mistakes and employ
economies of expression that. often result in language which is
ungrammatical by sirict standards. In particular, such grammatical
deviations will inevitably occur in the input of a computer system which
allows its user 1o employ naturad languige. Such a computer system must,
therefore, be prepared to parse its inpui flexibly, if it is avoid (rustration for
its user.

I this paper. we have attempted to outline the main kinds of Aexibility a
natural language parser intended [or natural use shouid provide. We aiso
described a bottom-up pattern-matching parser, FlexP, which exhibits
these Hexibilities, and which is suitable for restricted natural language
input to a limited-domain system.

References

1. Ball, J. E. and Hayes, P. J. Representation of Task-independent
Knowledge in a Gracefully interacting User Interface. Tech. Rept. ,
Carnegie-Mellon University Computer Science Department, 1980.

2. Bobrow.D. G., Kapian, R. M., Kay, M.. Norman D. A., Thompson, H.,
and Winograd. T. "GUS: a Frame-Driven Dialogue System." Artificial
Intelligence 8 (1977), 155-173.

3. Burton. R. R. Semantic Grammar: An Engineering Technique for
Constructing Natural Language Understanding Systems. BBN Report
3453, Boit, Beranek. and Newman, Inc., December, 19786.

4. Carbonell, J. G. Towards a Seil-Extending Parser. Proc. of 17th
Annual Meeting of the Assoc. for Camput. Ling., La Joila, Ca.,
August, 1979, pp. 3-7.

5. Carbonell, J. G. Subjective Understanding: Computer Models of
Belief Systems. Ph.D. Th., Yale University, 1979.

8. DedJong, G. Skimming Stories in Real-Time. Ph.D. Th., Computer
Science Dept., Yale University, 1979.

7. Hayes, P. J.. and Reddy, R. Graceful Interaction in Man-Machine
Communication. Proc. Sixth Int. Jt. Conf. on Artificial Intelligence, Tokyo,
1979, pp. 372-374.

8. Hendrix, G. G. Human Engineering for Applied Natural Language
Processing. Proc. Filth int. Jt. Conl. on Artificial Intelligence, MIT, 1977,
pp. 183-191.

9. Kaplan, S.J. Cooperative Responses from a Portabie Natural
lanyuage Data Base Query System. Ph.D. The, Dept. of Computer and
Information Science. University of Pennsylvania, Philadelphia, 1979.

10. Kwasny, S. C. and Sondheimer, N. K. Ungrammaticality and
Extra-Grammaticality in Natural Language Understanding Systems. Proc.
of 17th Annual Meeting of the Assoc. for Comput. Ling., La Jolia, Ca.,
August, 1979, pp. 19-23.

11. Parkison. R. C., Colby. K. M.. and Faught. W. S.. "Conversationai
Language Comprehension Using litegrated Pattern-Matching and
Parsing.” Artthicial intetligence 9 (1977), 111-134.

12. Waltz, D. L. "An English Language Question Answering System for
a Lurge Relational Dala Base.” Connn. ACM 21,7 (1978), 526-539.

13. Weischedel, R. M. and Black. J. Responding to Polentially
Unparseable Sentences. Tech. Rept. 7973, Dept. of Computer and
Inforination Scienees, University of Delaware, 1979.

14. Woods. W. A, "Transition Network Grammars for Naturat Language
Analysis." Comm. ACM 13, 10 (October 1970), 591-608.

15. Woods, W. A.. Kaplan, R. M., and Nash-Webber, B. The Lunar
Sciences Langikge System: Final Report. Tech. Rept. 2378, Boit,
Beranek, and Newman, Inc., 1972,

103

