CAPTURING LINGUISTIC GENERALIZATIONS WITH METARULES
IN AN ANNOTATED PHRASE-STRUCTURE GRAMMAR

Kurt Konolige
SRI! International®

1. Introduction .

Computational modeis employed by current natural language
understanding systems rely on phrase~structure representations
of syntax. Whether impiemented as augmented transition nets,
BNF grammars, annotated phrase-structure grammars, or similar
methods, a phrase-structure representation makes the parsing
probiem computationally tractable [7]. However,
phrase-structure representations have been open to the
criticism that they do not capture linguistic generalizations
that are ecasily expressed in transformational grammars,

This paper describes a formalism for specifying syntactic
and semantic generalizations across the rules of a
phrase-structure grammar (PSG). The formalism consists of
two parts:

1. A declarative description of basic
phrase~structures and their
translation.

syntactic
associated semantic

2. A set of metarules for deriving additional grammar
rules from the basic set.

Since metaruies operate on grammar rules rather than phrase
markers, the transformational effect of metaruies can be
pre=computed before the grammar is used to analyze input,
The computational efficiency of a phrase-structure grammar is
thus preserved.

Metarule formulations for PSGs have recently received
increased attention in the linguistics literature, especially in
[4], which greatly influenced the formalism presented in this
paper. OQur formalism differs significantly from [4] in that
the metarules work on a phrase-structure grammar annotated
with arbitrary feature sets {Anpnotated Phrase~structure
Grammar, or APSG [7]). Grammars for a large subset of
English have been written using this formalism [9], and its
computational viability has been demonstrated {6]. Because of
the increased structural complexity of APSGs over PSGs
without annotations, new techniques for applying metarules to
these structures are developed in this paper, and the notion of
a match between a metarule and a grammar rule is carefully
definede The formalism has been impiemented as a computer

program and preliminary tests have been made to establish its
validity and effectiveness.

2. Metarules

Metarules are used to capture linguistic generalizations that
are not readily expressed in the phrase-structure rules,
Consider the two sentences:

1. John gave a book to Mary

2. Mary was given a2 book by John

Although their syntactic structure is different, these twao
sentences have many ciements in common. In particular, the
predicate/argument structure they describe is the same: the
gift of a book by john to Mary. Transformational grammars
capture this correspondence by transforming the phrase marker

*This research was supported by the Defense Advanced
Research Projects Agency under Contract N00039-79-C-0118
with the Naval Electronics Systems Command. The views and
conclusions contained in this document are those of the author
and should not be interpreted as representative of the official
policies, cither expressed or implied, of the U.S. Government,
The author is grateful to Jane Robinson and Gary Hendrix for
comments on an earlier draft of this paper.

for (1) into the phrase marker for (2). The wunderlying
predicate/argument structure remains the same, but the surface
realization changes. However, the recognition of
transformational grammars is a very difficult computational
problem.*

By contrast, metarules operate directly on the rules of a
PSG to produce more ryles for that grammar. As long as the
number of derived rules is finite, the resulting set of rules is
still a PSG. Unlike transformational grammars, PSGs have
efficient algorithms for parsing {3]. In a sense, all of the
work of transformations has been pushed off into a
pre-processing phase where new grammar rules are derived.
We are not greatly concerned with efficiency in pre-processing,
because it only has to be done once.

There are still computational limitations on PSGs that must
be taken into account by any metarule system. Large numbers
of phrase-structure rules can seriously degrade the
performance of a parser, both in terms of its running time**,
storage for the rules, and the ambiguity of the resulting
parses {6]. Moreover, the generation of large numbers of ruies
seems psychologically implausible. Thus the two criteria we
will use to judge the efficacy of metaruies will be: can they
adequately capture linguistic generalizations, and are they
computationally practicable in terms of the number of ruies
they generate. The formalism of [4] is especially vulnerable
to criticism on the latter point, since it generates large
numbers of new rules.***

3. Representation

An annotated phrase-structure grammar (APSG) as
developed in [7] is the target representation for the
metarules. The core component of an APSG is a set of
context-free phrase-structure rules. As is customary, these
rutes are input to a context-free parser to analyze a string,
producing a phrase-structure tree as output. In addition, the
parse tree so produced may have arbitrary feature sets, called
annotations, appended to each node. The annotations are an
efficient means of incorporating additional information into the
parse tree. Typically, features will exist for syntactic
processing (e.g.,, number agreement), grammatical function of
constituents (e.g., subject, direct and indirect objects), and
semantic interpretation.

Associated with each rule of the grammar are procedures
for operating on feature sets of the phrase markers the rule
constructse These procedures may constrain the application of
the rule by testing features on candidate constituents, or add
information to the structure created by the rule, based on the
features of its constituents. Rule procedures are written in
the programming language LISP, giving the grammar the power
to recognize class O languages. The wuse of arbitrary
procedures and feature set annotations makes APSGs an

*There has been some success in restricting the power of
transformational grammars sufficiently to allow a recognizer to
be built; see [8].

**Sheil [10] has shown that, for a simple recursive descent
parsing algorithm, running time is a linear function of the
number of rules. For other parsing schemes, the relationship
between the number of rules and parsing time is unclear.

**+This is without considering infinite schemas such as the
one for conjunction reduction. Basically, the problem is that
the formalism of [4] allows compiex features [2] to define
new categories, generating an exponential number of categories
(and hence ruies) with respect to the number of features.

extremely powerful and compact for.~alism for representing a
language, similar to the earlier ATN formalisms [1]. An
example of how an APSG can encode a2 large subset of English
is the DIAGRAM grammar [9].

It is unfortunately the very power -of APSGs (and ATNs)
that makes it difficult to capture linguistic generalizations
within these formalisms. Metaruies for transforming one
annotated phrase~structure rule into another must not onily
transform the phrase-structuyre, but also the procedures that
operate on feature sets, in an appropriate way. Because the
transformation of procedures is notoriousiy difficult,* one of
the tasks of this paper will be to illustrate a decilarative
notation describing operations on feature sets that is powerful
enough to encode the manipulations of features necessary for
the grammar, but is still simpie enough for metarules to
transform.

4. Notation
Every rule of the APSG has three parts:

1. A phrase=structure rule;

2. A restriction set (RSET) that
applicability of the rule, and

restricts the

3. An assignment set {ASET) that assigns vaiues to
features.

The RSET and ASET manipulate features of the phrase marker
anaiyzed by the rule; they are discussed beiow in detail.
Phrase-structure ruies are written as:

CAT => Cy €3 o Cp

where CAT is the dominating category of the phrase, and C1
through C, are its immediate constituent categories. Terminal
strings can be included in the rule by enclosing them in double
quote marks.

A feature set is associated with each node in the parse tree
that is created when a string is analyzed by the grammar.
Each feature has a name (a string of uppercase alphanumeric
characters) and an associated value. The values a feature can
take on (the domain of the feature) are, in general, arbitrary.
One of the most useful domains is the set 70,-,NIL',., where
NiL is the unmarked case; this domain car‘responds' to the
binary features used in [2]). More complicated domains can be
used; for exampte, 2 CASE feature might have as its domain the
set of tuples {<1 5G>,<2 §6>,¢3 $6>,<1 PL>,<2 PL>,<3 PL3).

Most interesting are those features whose domain is a phrase

marker. Since phrase markers are just data structures that the
parser creates, they can be assigned as the value of a feature.
This technique is used to pass phrase markers to various parts
of the tree to reflect the grammatical and semantic structure
of the input; examples will be given in later sections.

We adopt the following conventions in referring to features
and their values:

- Features are one-place functions that range over
phrase markers constructed by the phrase—structure
part of a grammar rule. The function is named by
the feature name.

-~ These functions are represented in prefix form, e.g.,
(CASE NP) refers to the CASE feature of the NP
constituent of a phrase marker. In cases where
there is more than one constituent with the same
category name, they will be differentiated by a "#"
suffix, for exampie,

VP <> V NPF1 NP¥2

*it is sometimes hard to even understand what it is that a
procedure does, since it may involve recursion, side-effects,
and other complications.

has two NP constituents.

- A phrase marker is assumed to have its immediate
constituents as features under their category name,
eege, (N NP) refers to the N constituent of the NP,

- Feature functions may be nested, Cege,
(CASE (N NP)) refers to the CASE feature of the N

constituent of the NP phrase marker. For these
nestings, we adopt the simpler notation
(CASE N NP), which is assumed to be
right-associative.

- The vaiue NIL always implies the unmarked case.
At times it will be useful to consider features that
are not explicitly attached to a phrase marker as
being present with value NiIL.

- A constant term will be written with a preceding
single quote mark, e.g,, 'SG refers to the constant
token SG.

4.1. Restrictions

The RSET of a rule restricts the applicabillty of the rule by
a predication on the features of its constituents. The phrase
markers used as constituents must satisfy the predications in
the RSET before they will be anaiyzed by the rule to create a
new phrase marker. The most useful predicate is equality: a
feature can take on onily one particular value to be acceptable.
For example, in the phrase structure rule:

S => NP VP
number agreement could be enforced by the predication:
(NBR NP) = (NBR VP)

where NBR is a feature whose domain is ,.SG,PL_' «* This would
restrict the NBR feature on NP to a;r&e with that on VP
before the S phrase was constructed. The economy of the
APSG encoding is seen here: anly a single phrase~structure ruie
is required. Aiso, the linguistic requirement that subjects and
their verbs agree in number is enforced by a single statement,
rather than being implicit in separate phrase structure ruies,
one for singular subject-verb combinations, another for plurais.

Besides equality, there are onty three additional
predications: inequality (#), set membership {e) and set
non-membership (§). The last two are useful in dealing with
non-binary domains. As discussed in the next section, tight
restrictions on predications are necessary If metarules are to
be successful in transforming grammar rules. Whether these
four predicates are adequate in descriptive power for the
grammar we contemplats remains an open empirical guestion;
we are currently accumulating evidence for their sufficiency by
rewriting DIAGRAM using just those predicates.

Restriction predications for a rule are collected in the
RSET of that rule. All restrictions must hold for the rule to
be applicabie. As an illustration, consider the
subcategorization rule for ditransitive verds with prepositional
objects {e.g., "John gave 2 book to Mary"}:

VP => V NP PP
RSET: (TRANS V) = 'DI;
(PREP V) = (PREP PP)

The first restriction selects only verbs that are marked as
ditransitive; the TRANS feature comes from the lexical entry
of the verb. Ditransitiv. verbs with prepositional arguments
are always subcategorized Ly the particular preposition used,
eofs, "give" aiways uses "to" for its prepositional argument.

*How NP and VP categories could "“inherit® the NBR feature
from their N and V constituents is discussed in the next
section.

The second predication restricts the preposition of the PP for a
given verb. The PREP feature of the verb comes from its
lexical entry, and must match the preposition of the PP phrase*

4.2. Assignments

A rule will normally assign features to the dominating node
of the phrase marker it constructs, based on the vaiues of the
constituents' features. For example, feature inheritance takes
place in this way. Assume there is a feature NBR marking the
syntactic number of nouns. Then the ASET of a rule for noun
phrases might be:

NP -> DET N
ASET: (NBR NP) := (NBR N}

This notation is somewhat non-standard; it says that the value
of the NBR function on the NP phrase marker is to be the
vajue of the NBR function of the N phrase marker.

An interesting application of feature assignment is to
describe the grammatical functions of noun phrases within a
clause. Recaii that the domain of features can be constituents
themselves. Adding an ASET describing the grammatical
function of its constituents to the ditransitive VP rule yields
the following:

VP => V NP PP
ASET: (DIROBJ VP) :
(INDOBJ VP) :

(NP VP);
(NP PP).

[l

This ASET assigns the DIROB} (direct object) feature of VP
the value of the constituent NP, Similarly, the value of
INDOBJ (indirect object) is the NP constituent of the PP
phrase.

A rule may also assign feature values to the constituents of
the phrase marker it constructss Such assignments are context
sensitive, because the values are based on the context in which
the constituent occurs.®® Again, the most interesting use of
this technique is in assigning functional roles to constituents in
particular phrases. Consider a rule for main clauses:

S -> NP VP
ASET: (SUBJ VP) := (NP S).

The three features SUBJ, DIROBJ, and INDOBJ of the VP
phrase marker will have as value the appropriate NP phrase
markers, since the DIROB) and INDOB) features will be
assigned to the VP phrase marker when it is constructed. Thus
the grammatical function of the NPs has been identified by
assigning features appropriately,

Finally, note that the grammatical functions were assigned
to the VP phrase marker. By assembling ail of the arguments
at this level, it is possible to account for bounded deletion
phenomenon that are lexically controiled. Consider
subcategorization for Equi verds, in which the subject of the
main clause has been deieted from the infinitive complement
("John wants to go"):

*Note that we are not considering here prepositional phrases
that are essentially meta-arguments to the verb, dealing with
time, place, and the like. The prepositions used for
meta-arguments are much more variable, and usuaily depend on
semantic considerations.

**The assignment of features to constituents presents some
computational problems, since a context-free parser will no
longer be sufficient to analyze strings. This was recognized in
the original version of APSGs [7], and a two-pass parser was
constructed that first uses the context-free component of the
grammar to produce an initial parse tree, then adds the
assignment of features in context.

VP <> V INF
ASET: (SUBJ INF) := (SUBJ'VP)

Here the subject NP of the main clause has been passed down
to the VP (by the S rule), which in turn passes it to the
infinitive as its subject. Not all linguistic phenomenon can be
formulated so easily with APSGs; in particular, APSGs have
troubie describing unbounded deletion and conjunction
reduction. Metarule formulations for the latter phenomena
have been proposed in {5], and we will not deal with them
here.

5. Metarules for APSGs

Metarules consist of two parts: a match tempiate with
variables whose purpose is to match existing grammar rules;
and an instantiation template that produces a new grammar
rule by using the match template's variable bindings after a
successful match. Initially, a basic set of grammar rules is
input; metarules derive new rules, which then can recursively
be used as input to the metarules. When (if) the process halts,
the new set of rules, together with the basic ruies, comprises
the grammar.

We will use the following notation for metaruies:
MF => IF

CSET: ¢4, Cq, we Cq

where MF is 2 matching form, IF is an instantiation form, and
CSET is a set of predications. Both the MF and IF have the
same form as grammar rules, but in addition, they can contain
variables. When an MF is matched against a grammar rule,
these variables are bound to different parts of the rule if the
match succeeds. The IF is instantiated with these bindings to
produce a new ruie. To restrict the application of metarules,
additional conditions on the variable bindings may be specified
(CSET); these have the same form as the RSET of grammar
rules, but they can mention the variables matched by the MF,

Metarules may be classified into three types:

1. Introductory metaruies, where the MF is empty
{=> IF). These metaruies introduce a class of
grammar rules.

2. Deletion metarules, where the IF is empty
(MF =>). These delete any derived grammar rules
that they match.

3. Derivation metaruies, where both MF and IF are
present. These derive new grammar rules from old
ones.

There are linguistic generalizations that can be captured most
perspicuously by each of the three forms. We will focus on
derivation metarules here, since they are the most complicated.

6. Matching

An important part of the derivation process is the definition
of 2 match between a metarule matching form and a grammar
tule. The matching problem is complicated by the presence of
RSET and ASET predications in the grammar rules. Thus, it is
heipful to deflne a2 match in terms of the phrase markers that
will be admitted by the grammar rule and the MF. We will say
that an MF matches a grammar rule just in case it admits at
teast those phrase markers admitted by the grammar rule. This
deflnition of a match is sufficient to allow the formuiation of
matching algorithms for grammar rules compiicated by
annotations.

We divide the matching process into two parts: matching
phrase-structures, and matching feature sets. Both parts must
succeed in order for the match to succeed.

6.1, Matching Phrase-structures

For phrase=stryctures, the definition of a match can be
repiaced by a direct comparison of the phraseestructures of the
MF and grammar rule. Variabies in the MF phrase-structure
are used to Indicate "don't care® parts of the grammar rule
phrase~structure, while constants must match exactly. Single
lower case letters are used for variables that must match
single categories of the grammar rule. A typical MF might be:

§ =>.2 VP

which matches

S => NP VP with a=NP;
§ => SB VP with a=SB;
S => "IT* VP with a=®IT";
ete.

A varizble that appears more than once in an MF must have the
same binding for each occurrence for a match to be successful,
Cefey

VP «> V aa
matches

VP <> V NP NP with a=sNP

but not

VP «> V NP PP

Single letter variables must match a single category in a
grammar rule. Double letter variables are used to match a
number of consecutive categoriss (including none) in the rule.
We have:

VP => V uu

matching
VP => V with uu=();
VP => V NP with uu=(NP);

VP «> V NP PP with uus(NP PP);
etc.

Note that double letter variables are bound to an ordered list
of elements from the matched rule. Because of this
characteristic, an MF with more than one double lstter variable
may match a ruie in several different ways:

VP <> V uy vy
matches
VP «> V NP PP with uu=(), vvs(NP PP);

yu=(NP), vvys[PP);
uus(NP VP), vy=().

All of these are considered to be valid, independent matches.
Double and single listter variabies may be intermixed freely in
an MF.

While double letter variables match multipie categories in a
phrase structure rule, string variables match parts of a
category. String variables occur in both double and singie
letter varieties; as expected, the former match any number of
consecutive characters, while the latter match single
characters. String variables are assumed when an MF category
contains a mixture of upper and lower case characters, o.g.:

Vi «> V NPfa NPuu
matches

VP => V NP#1 NP
VP «> V NP#1 NPF2

with a=1, uu=();
with a=1, uu=(f 2);

etce

String variables are most useful for matching category names
that may use the # convention.

6.2. Feature Matching

So far variables have matched only the phrase~structure
part of grammar rules, and not the feature annotations. For
feature matching, we must return to the original definition of
matching based on the admissidility of phrase markers. The
RSET of a grammar rule is a closed formula invoiving the
feature sets of the phrase marker constructed by the rule; let
P stand for this formula. If P is true for a given phrase
marker, then that phrase marker is accepted by the rule; if
not, it is rejected. Similarly, the RSET of a matching form is
an open formula on the feature ssts of the phrase marker; let
R(Xy,x9000xy) stand for this formula, where the x; are the
variables of the RSET. For the MF!s restrictions to match
those of the grammar rule, we must be able to prove the
formulia:

P > (EXy)(Exg)ee(Exp) R(x1,X3,meexp)

That is, whenever P admits a phrase marker, there exists some
binding for R's free variables that aiso admits the phrase
marker.

Now the importance of restricting the form of P and R can
be seen. Proving that the above implication hoids for general P
and R can be a hard probiem, requiring, for exampie, a
resolution theorem prover. By restricting P and R to simple
conjunctions of equalities, inequalities, and set membership
predicates, the match between P and R can be performed by a
simpie and efficient algorithm.

6.3. Instantiation

When 2 metarule matches a grammar rule, the CSET of the
metarule is evaluated to see if the metarule can iIndeed be
applieds For example, the MF:

VP -> *BE" xP
CSET: x g 'v

will match any rule for which x is not bound to V.

When an MF matches a rule, and the CSET is satisfied, the
instantiation form of the metarule is used to produce a new
ruie. The variables of the IF are instantiated with their values
from the match, producing a new rule. In addition, restriction
and assignment features that do not conflict with the IF's
features are carried over from the rule that matched. This
latter is a very handy property of the instantiation, since that
is usuatly what the metarule writer desires. Consider a
metarule that derives the subject-aux inverted form of a main
clause with a finite verd phrase:

grammar ruie: S => NP AUX VP
RSET: (NBR NP) = (NBR AUX);
(FIN VP) = 4

metaruie: S => NP AUX VP

Shbd -> AUX NP VP

If features were not carried over during an instan.iation, the
result of matching and instantiating the metaruie would be:

SAl -> AUX NP VP

This does not preserve number agreement, nor does it restrict
the VP to being finite. Of course, the metaruie could be
rewritten to have the correct restrictions in the IF, but this
would sharply curb the utility of the metarules, and lead to the
proliferation of metaruies with slightly different RSETs.

7. An Example: Dative Movement and Passive

We are now ready to give a short example of two metarules
for dative movement and passive transformations. The
predicate/argument structure will be described by the feature
PA, whose value is a list:

(V NPy NPy ...)

where V is the predicating verb, and the NPs are its
arguments. The order of the arguments is significant, since:

("gave” "john" "2 book" "Mary")
<=> gift of a book by John to Mary

("gave" "John" "Mary"* "a book")
<=> 1? gift of Mary to a book by John

Adding the PA feature, the rule for ditransitive verbs with
prepositional objects becomes:

VP -> v NP PP
RSET: (TRANS V) = 'DI;
(PREP V) = (PREP PP);
ASET: (PA VP) := '{(V VP) (SUBJ VP)(NP VP)(NP PP))

The SUBJ feature is the subject NP passed down by the S rule.

7.1« Dative Movement

in dative movement, the prepositional NP becomes a noun
phrase next to the verb:

1. John gave a book to Mary =>
2, John gave Mary a book

The first object NP of (2) fills the same argument role as the

prepositional NP of (1)e Thus the dative movement metarule
can be formulated as follows:

metarule DATMOVE

VP => V uu PP
ASET: (PA VP) := '(a b c (NP PP))

=> VP <> V NP#D uu

RSET: (DATIVE V) = I+
(PREP V) = NIL;
ASET: (PA VP) :=1!(a b c (NPFD VP))

DATMOVE accepts VPs with a trailing prepositional argument,
and moves the NP from that argument to just after the verb.
The verb must be marked as accepting dative arguments, hence
the DATIVE feature restriction in the RSET of the
instantiation form. Also, since there is no longer a
prepositional argument, the PREP feature of the VP doesn't
have to match it. As for the predicate/argument structure, the
NP#D constituent takes the place of the prepositional NP in
the PA feature.

DATMOVE can be applied to the ditransitive VP rule to

yield the ditransitive dative construction. The variable
bindings are:

uu = (NP};

a = (V vP)

b = (SuBj VP);

¢ = {NP VP),

Instantiating the |F then gives the dative construction:

VP => V NP#D NP
RSET: (DATMOVE V) = '+
(TRANS V) = 'Dl;
ASET: (PA VP) :=
"((V VP) (SUBJ VP) (NP VP) (NP#D VP))

There are other grammar rules that dative movement will apply

to, for example, verbs with separable particles:

Make up a story for me => Make me up a story.

This is the reason the double-ietter variable "uu" was used in
DATMOVE. As long as the final constituent of a VP rule is a
PP, DATMOVE can apply to yield a dative construction.

7.2. Passive

In the passive transformation, the NP immediately following
the verb is moved to subject position; the original subject
moves to an agentive BY-phrase:

(1) John gave a book to Mary =>
(2) A book was given to Mary by John.

A metarule for the passive transformation is:
metarule PASSIVE

VP -> V NPuu vv
ASET: (PA VP) := '(a (SUBJ VP) bb (NPuu VP) cc);

=> AP <> V PPL vv PPHA
RSET: (PREP PP§A) = 'BY;
ASET: (PA VP) := '(a (NP PPFA) bb (SUBJ VP) cc).

PASSIVE deletes the NP immediately following the verb, and
adds a BY-prepositional phrase at the end. PPL is 3 past
participle suffix for the verb. In the predicate/argum=ant
structure, the BY-phrase NP substitutes for the original
subject, while the new subject is used in place of the original
object NP. Applying PASSIVE to the ditransitive rule yields:

AP —> V PPL PP PPFA

RSET: (TRANS V) = 'DI;
(PREP V) = (PREP PP);
ASET: (PA VP) :=

(v VP) (NP PPFA) (SUBJ) VP) (NP PP));

6.8., "A book was given to Mary by John" will be analyzed by
this rule to have a PA feature of ("give” "John® "a
book® "Mary*), which is the same predicate/argument structure
as the corresponding active sentence.

PASSIVE can also apply to the rule generated by DATMOVE
to yield the passive form of VP's with dative objects:

AP -> V PPL NP PPFA
RSET: (DATMOVE V) = '+;
(TRANS V) = 'DI;
(PA VP) :=
H{(V VP) (NP PPFA) (NP VP) (SUBJ VP));

ASET:

e.g., "Mary was given a book by john".

8. Implementation

A system has been designed and implemented to test the
validity of this approach. It consists of a matcher/instantiator
for metarules, along with an iteration foop that applies ail the
metarules on each cycie until no more new rules are generated.
Metarules for verb subcategorization and finite and non-finite
clause structures have been written and input to the system.
We were especially concerned:

- To check the perspicuity of metarules for describing
significant fragments of English using the above
representation for grammar rules.

- To check that a reasonably small number of new
grammar rules were generated by the metarules for
these fragments.

Both of these considerations are critical for the performance
of natural language processing systems. Preliminary tests

indicate that the system satisfies both these concerns; indeed,
the metarules worked so well that they exposed gaps in a
phrase-structure grammar that was painstakingly developed
over a five year period and was thought to be reasonabiy
compiete for a large subset of English {9]. The number of
derived ruies generated was encouragingly small:

Subcategorization:
1 grammar rule
7 metarules => 20 derived rules
Clauses:
8 grammar rules

5 metarules => 25 derived rules

9. Conclusions .

Metaruies, when adapted to work on an APSG
representation, are 3a very powerful tool for specifying
generalizations in the grammar. A great deal of care must be
exercised -in writing metarules, because it is easy to state
generalizations that do not actually hoid. Also, the output of
metarules can be used again as input to the metaruies, and this
often produces surprising resuits. Of course, language is
complex, and it is to be expected that describing its
generalizations will also be a difficult task.

The success of the metarule formulation in deriving 3 small
number of new rules comes in part from the increased
definitional power of APSGs over ordinary PSGs. For example,
number agreement and feature inheritance can be expressed
simply by appropriate annotations in an APSG, but require
metarules on PSGs. The definitionai compactness of APSGs
means that fewer metarules are needed, and hence fewer
derived rules are generated.

1.

2.

3.

4.

5.

6.

8.

9.

10.

REFERENCES

W. Woods, "An Experimental Parsing System for Transition
Network Grammars, R. Rustin (ed.), Natural Language
Processing, Prentice~Hall, Englewood Cliffs, New jersey,
1973.

N. Chomsky, Aspects of the Theory of Syntax, MIT Press,

Cambridge, Mass., 1965.

J. Early, "An Efficient Context Free Parsing Algorithm,"
CACM, Vol. 13 (1970) 94-102.

Gerald Gazdar, "Engiish as a Context—Free Language"
University of Sussex, (unpublished paper, April, 1979).

Geraid Gazdar, "Unbounded Dependencies and Coordinate
Structure® University of Sussex, (submitted to Linguistic
inquiry, October, 1979).

Kurt Konolige, "A Framework for a Portable NL interface

to Large Data Bases,” Technical Note 197, Artificial
Intelligence Center, SRI internationai, Menio Park,
California (October 1979).

william He Paxton, A Framework for Speech
Understanding,? Technical Note 142, Artificial Inteiligence
Center, SRI finternational, Mento Park, Caiifornia (June
1977).

S« R. Petrick, TAutomatic Syntactic and Semantic
Analysis,* Proceedings of the Interdisciplinary Conference

on Automated Text Processing, (November 1976).

Jane Robinson, *DIAGRAM: A Grammar for Dialogues,”
Technical Note 205, Artificial Intelligence Center, SRI
international, Menlo Park, California (February 1980).

Context-Free
(1976).

B. A, Sheil, "Observations on
Statistical Methods in Linguistics,

Parsing,*

